In her “Letter to Greta Thunberg” series, Katie Singer explains the real ecological impacts of so many modern technologies on which the hope for a bright green (tech) future is based on.
A letter to Greta Thunberg
by Katie Singer
Even when reality is harsh, I prefer it. I’d rather engineers say that my water could be off for three hours than tell me that replacing the valve will take one hour. I prefer knowing whether or not tomatoes come from genetically modified seed. If dyeing denim wreaks ecological hazards, I’d rather not keep ignorant.
The illusion that we’re doing good when we’re actually causing harm is not constructive. With reality, discovering true solutions becomes possible.
As extreme weather events (caused, at least in part, by fossil fuels’ greenhouse gas [GHG] emissions) challenge electrical infrastructures, we need due diligent evaluations that help us adapt to increasingly unpredictable situations—and drastically reduce greenhouse gas emissions and ecological damage. I have a hard time imagining a future without electricity, refrigerators, stoves, washing machines, phones and vehicles. I also know that producing and disposing of manufactured goods ravages the Earth.
Internationally, governments are investing in solar photovoltaics (PVs) because they promise less ecological impacts than other fuel sources. First, I vote for reviewing aspects of solar systems that tend to be overlooked.
Hazards of Solar Photovoltaic Power
1. Manufacturing silicon wafers for solar panels depends on fossil fuels, nuclear and/or hydro power. Neither solar nor wind energy can power a smelter, because interrupted delivery of electricity can cause explosions at the factory. Solar PV panels’ silicon wafers are “one of the most highly refined artifacts ever created.”[1] Manufacturing silicon wafers starts with mining quartz; pure carbon (i.e. petroleum coke [an oil byproduct] or charcoal from burning trees without oxygen); and harvesting hard, dense wood, then transporting these substances, often internationally, to a smelter that is kept at 3000F (1648C) for years at a time. Typically, smelters are powered by electricity generated by a combination of coal, natural gas, nuclear and hydro power. The first step in refining the quartz produces metallurgical grade silicon. Manufacturing solar-grade silicon (with only one impurity per million) requires several other energy-intensive, greenhouse gas (GHG) and toxic waste-emitting steps. [2] [3] [4]
2. Manufacturing silicon wafers generates toxic emissions
In 2016, New York State’s Department of Environmental Conservation issued Globe Metallurgical Inc. a permit to release, per year: up to 250 tons of carbon monoxide, 10 tons of formaldehyde, 10 tons of hydrogen chloride, 10 tons of lead, 75,000 tons of oxides of nitrogen, 75,000 tons of particulates, 10 tons of polycyclic aromatic hydrocarbons, 40 tons of sulfur dioxide and up to 7 tons of sulfuric acid mist. To clarify, this is the permittable amount of toxins allowed annually for one metallurgical-grade silicon smelter in New York State. [5] Hazardous emissions generated by silicon manufacturing in China (the world’s leading manufacturer of solar PVs) likely has significantly less regulatory limits.
3. PV panels’ coating is toxic
PV panels are coated with fluorinated polymers, a kind of Teflon. Teflon films for PV modules contain polytetrafluoroethylene (PTFE) and fluorinated ethylene (FEP). When these chemicals get into drinking water, farming water, food packaging and other common materials, people become exposed. About 97% of Americans have per- and polyfluoroalkyl substances (PFAs) in their blood. These chemicals do not break down in the environment or in the human body, and they can accumulate over time. [6] [7] While the long-term health effects of exposure to PFAs are unknown, studies submitted to the EPA by DuPont (which manufactures them) from 2006 to 2013 show that they caused tumors and reproductive problems in lab animals. Perfluorinated chemicals also increase risk of testicular and kidney cancers, ulcerative colitis (Crohn’s disease), thyroid disease, pregnancy-induced hypertension (pre-eclampsia) and elevated cholesterol. How much PTFEs are used in solar panels? How much leaks during routine operation—and when hailstorms (for example) break a panels’ glass? How much PTFE leaks from panels discarded in landfills? How little PFA is needed to impact health?
4. Manufacturing solar panels generates toxic waste. In California, between 2007 and the first half of 2011, seventeen of the state’s 44 solar-cell manufacturing facilities produced 46.5 million pounds of sludge (semi-solid waste) and contaminated water. California’s hazardous waste facilities received about 97 percent of this waste; more than 1.4 million pounds were transported to facilities in nine other states, adding to solar cells’ carbon footprint. [8]
5. Solar PV panels can disrupt aquatic insects’ reproduction. At least 300 species of aquatic insects (i.e. mayflies, caddis flies, beetles and stoneflies) typically lay their eggs on the surface of water. Birds, frogs and fish rely on these aquatic insects for food. Aquatic insects can mistake solar panels’ shiny dark surfaces for water. When they mate on panels, the insects become vulnerable to predators. When they lay their eggs on the panels’ surface, their efforts to reproduce fail. Covering panels with stripes of white tape or similar markings significantly reduces insect attraction to panels. Such markings can reduce panels’ energy collection by about 1.8 percent. Researchers also recommend not installing solar panels near bodies of water or in the desert, where water is scarce. [9]
6. Unless solar PV users have battery backup (unless they’re off-grid), utilities are obliged to provide them with on-demand power at night and on cloudy days. Most of a utility’s expenses are dedicated not to fuel, but to maintaining infrastructure—substations, power lines, transformers, meters and professional engineers who monitor voltage control and who constantly balance supply of and demand for power. [10] Excess power reserves will increase the frequency of alternating current. When the current’s frequency speeds up, a motor’s timing can be thrown off. Manufacturing systems and household electronics can have shortened life or fail catastrophically. Inadequate reserves of power can result in outages.
The utility’s generator provides a kind of buffer to its power supply and its demands. Rooftop solar systems do not have a buffer.
In California, where grid-dependent rooftop solar has proliferated, utilities sometimes pay nearby states to take their excess power in order to prevent speeding up of their systems’ frequency. [11]
Rooftop solar (and wind turbine) systems have not reduced fossil-fuel-powered utilities. In France, from 2002-2019, while electricity consumption remained stable, a strong increase in solar and wind powered energy (over 100 GW) did not reduce the capacity of power plants fueled by coal, gas, nuclear and hydro. [12]
Comparing GHG emissions generated by different fuel sources shows that solar PV is better than gas and coal, but much worse than nuclear and wind power. A solar PV system’s use of batteries increases total emissions dramatically. Compared to nuclear or fossil fuel plants, PV has little “energy return on energy Invested.” [13]
7. Going off-grid requires batteries, which are toxic. Lead-acid batteries are the least expensive option; they also have a short life and lower depth of discharge (capacity) than other options. Lead is a potent neurotoxin that causes irreparable harm to children’s brains. Internationally, because of discarded lead-acid batteries, one in three children have dangerous lead levels in their blood. [14] Lithium-ion batteries have a longer lifespan and capacity compared to lead acid batteries. However, lithium processing takes water from farmers and poisons waterways. [15] Lithium-ion batteries are expensive and toxic when discarded. Saltwater batteries do not contain heavy metals and can be recycled easily. However, they are relatively untested and not currently manufactured.
8. Huge solar arrays require huge battery electric storage systems (BESS). A $150 million battery storage system can provide 100 MW for, at most, one hour and eighteen minutes. This cannot replace large-scale delivery of electricity. Then, since BESS lithium-ion batteries must be kept cool in summer and warm in winter, they need large heating, ventilation, air conditioning (HVAC) systems. (If the Li-ion battery overheats, the results are catastrophic.) Further, like other batteries, they lose their storage capacity over time and must be replaced—resulting in more extraction, energy and water use, and toxic waste. [16]
9. Solar PV systems cannot sufficiently power energy guzzlers like data centers, access networks, smelters, factories or electric vehicle [EV] charging stations. If French drivers shifted entirely to EVs, the country’s electricity demands would double. To produce this much electricity with low-carbon emissions, new nuclear plants would be the only option. [17] In 2007, Google boldly aimed to develop renewable energy that would generate electricity more cheaply than coal-fired plants can in order to “stave off catastrophic climate change.” Google shut down this initiative in 2011 when their engineers realized that “even if Google and others had led the way toward a wholesale adaptation of renewable energy, that switch would not have resulted in significant reductions of carbon dioxide emissions…. Worldwide, there is no level of investment in renewables that could prevent global warming.” [18]
10. Solar arrays impact farming. When we cover land with solar arrays and wind turbines, we lose plants that can feed us and sequester carbon. [19]
11. Solar PV systems’ inverters “chop” current and cause “dirty” power, which can impact residents’ health. [20]
12. At the end of their usable life, PV panels are hazardous waste. The toxic chemicals in solar panels include cadmium telluride, copper indium selenide, cadmium gallium (di)selenide, copper indium gallium (di)selenide, hexafluoroethane, lead, and polyvinyl fluoride. Silicon tetrachloride, a byproduct of producing crystalline silicon, is also highly toxic. In 2016, The International Renewable Energy Agency (IRENA) estimated that the world had 250,000 metric tons of solar panel waste that year; and by 2050, the amount could reach 78 million metric tons. The Electric Power Research Institute recommends not disposing of solar panels in regular landfills: if modules break, their toxic materials could leach into soil. [21] In short, solar panels do not biodegrade and are difficult to recycle.
To make solar cells more recyclable, Belgian researchers recommend replacing silver contacts with copper ones, reducing the silicon wafers’ (and panels’) thickness, and removing lead from the panels’ electrical connections. [22]
13. Solar farms warm the Earth’s atmosphere.
Only 15% of sunlight absorbed by solar panels becomes electricity; 85% returns to the environment as heat. Re-emitted heat from large-scale solar farms affects regional and global temperatures. Scientists’ modeling shows that covering 20% of the Sahara with solar farms (to power Europe) would raise local desert temperatures by 1.5°C (2.7°F). By covering 50% of the Sahara, the desert’s temperature would increase by 2.5°C (4.5°F). Global temperatures would increase as much as 0.39°C—with polar regions warming more than the tropics, increasing loss of Arctic Sea ice. [23] As governments create “green new deals,” how should they use this modeling?
Other areas need consideration here: dust and dirt that accumulate on panels decreases their efficiency; washing them uses water that might otherwise go to farming. Further, Saharan dust, transported by wind, provides vital nutrients to the Amazon’s plants and the Atlantic Ocean. Solar farms on the Sahara could have other global consequences. [24]
14. Solar PV users may believe that they generate “zero-emitting,” “clean” power without awareness of the GHGs, extractions, smelting, chemicals and cargo shipping involved in manufacturing such systems—or the impacts of their disposal. If our only hope is to live with much less human impact to ecosystems, then how could we decrease solar PVs’ impacts? Could we stop calling solar PV power systems “green” and “carbon-neutral?” If not, why not?
Katie Singer’s writing about nature and technology is available at www.OurWeb.tech/letters/. Her most recent book is An Electronic Silent Spring.
REFERENCES
1. Schwarzburger, Heiko, “The trouble with silicon,” PV Magazine, September 15, 2010.
2. Troszak, Thomas A., “Why do we burn coal and trees to make solar panels?” August, 2019. https://www.researchgate.net/publication/335083312_Why_do_we_burn_coal_and_trees_to_make_solar_panels
3. Kato, Kazuhiko, et. al., “Energy Pay-back Time and Life-cycle CO2 Emission of Residential PV Power System with Silicon PV Module,” Progress in Photovoltaics: Research and Applications, John Wiley & Sons, 1998.
4. Gibbs, Jeff and Michael Moore, “Planet of the Humans,” 2019 documentary about the ecological impacts and money behind “renewable” power systems, including solar, wind and biomass. www.planetofthehumans.com
5. New York State Dept. of Environmental Conservation – Facility DEC ID: 9291100078 PERMIT Issued to: Global Metallurgical Inc.; http://www.dec.ny.gov/dardata/boss/afs/permits/929110007800009_r3.pdf
6. https://www.epa.gov/pfas/basic-information-pfas; https://www.niehs.nih.gov/health/topics/agents/pfc/index.cfm
https://www.medpagetoday.com/publichealthpolicy/environmentalhealth/84009
Way, Dan, “Policymakers demand answers about GenX-like compounds in solar panels,” CJ Exclusives, July 16, 2018. https://www.carolinajournal.com/news-article/policymakers-largely-unaware-of-genx-like-compounds-in-solar-panels/
“Solar panels could be a source of GenX and other perfluorinated contaminants,” NSJ Staff News, Feb. 16, 2018. https://nsjonline.com/article/2018/02/solar-panels-could-be-a-source-of-genx-and-other-perflourinated-contaminants/
Lerner, Sharon, “The Teflon Toxin,” The Intercept, Aug. 17, 2015. About PFOAs, hazardous chemicals used in Teflon coating and on solar panels and found in 97% of peoples’ bodies.
Lim, Xiao Zhi “The Fluorine Detectives,” Nature, Feb. 13, 2019. https://www.scientificamerican.com/article/the-fluorine-detectives/
7. Rich, Nathaniel, “The Lawyer Who Became DuPont’s Worst Nightmare,” January 6, 2016. About attorney Robert Bilott’s twenty-year battle against DuPont for contaminating a West Virginia town with unregulated PFOAs. See also Todd Haynes film, “Dark Waters,” 2019.
8. https://www.wired.com/story/solar-panels-are-starting-to-die-leaving-behind-toxic-trash/
Hodgson, Sam, “Solar panel makers grapple with hazardous waste problem,” Associated Press, Feb. 11, 2013; https://business.financialpost.com/commodities/energy/solar-panel-makers-grapple-with-hazardous-waste-problem
9. Egri, Adam, Bruce A. Robertson, et al., “Reducing the Maladaptive Attractiveness of Solar Panels to Polarotactic Insects,” Conservation Biology, April, 2010.
10. “Exhibit E to Nevada Assembly Committee on Labor,” Submitted by Shawn M. Elicegui, May 20, 2025, on behalf of NV Energy.
11. https://www.latimes.com/business/la-fi-solar-batteries-renewable-energy-california-20190605-story.html “California has too much solar power. That might be good for ratepayers,” Sammy Roth, LA Times, June 5, 2019. https://www.wsj.com/articles/how-california-utilities-are-managing-excess-solar-power-1488628803, “How California Utilities Are Managing Excess Solar Power,” Cassandra Sweet, Wall Street Journal, March 4, 2017.
12 Jancovici: Audition Assemblée Nationale: Impact des EnR – 16 Mai 2019. https://www.assemblee-nationale.fr/dyn/opendata/CRCANR5L15S2019PO762821N030.html. See also video with slides: https://www.youtube.com/watch?v=Hr9VlAM71O0&t=1560s; minutes 45:20-48:30.
13 https://jancovici.com/wp-content/uploads/2020/07/Jancovici_Mines_ParisTech_cours_7.pdf (slides 18 -19)
14 UNICEF and Pure Earth, “A third of the world’s children poisoned by lead,” 29 July 2020. https://www.unicef.org/press-releases/third-worlds-children-poisoned-lead-new-groundbreaking-analysis-says
15. Katwala, Amit, “The spiraling environmental cost of our lithium battery addiction,” 8.5.18; https://www.wired.co.uk/article/lithium-batteries-environment-impact. Choi, Hye-Bin, et al., “The impact of anthropogenic inputs on lithium content in river and tap water,” Nature Communications, 2019.
16. Martin, Calvin Luther, “BESS Bombs: The huge explosive toxic batteries the wind& solar companies are sneaking into your backyard, Parts 1 and 2,” Aug. 28, 2019. https://rivercitymalone.com/win-solar-energy/bess-bombs-part-1/
https://rivercitymalone.com/win-solar-energy/bess-bombs-part-2/
18. https://spectrum.ieee.org/energy/renewables/what-it-would-really-take-to-reverse-climate-change.
19. Carroll, Mike, N.C. Cooperative Extension, Craven County Center, updated 2020. “Considerations for Transferring Agricultural Land to Solar Panel Energy Production.” https://craven.ces.ncsu.edu/considerations-for-transferring-agricultural-land-to-solar-panel-energy-production/
20. Segell, Michael, “Is Dirty Electricity Making You Sick?” Prevention Magazine, Jan. 2009.
21.https://fee.org/articles/solar-panels-produce-tons-of-toxic-waste-literally/ https://www.forbes.com/sites/michaelshellenberger/2018/05/23/if-solar-panels-are-so-clean-why-do-they-produce-so-much-toxic-waste/?sh=14e584e0121c
22. O’Sullivan, Barry, “Are Your Solar Panels Recyclable?” 9 Feb. 2015.
23. Lu, Zhengyao and Benjamin Smith, “Solar panels in Sahara could boost renewable energy but damage the global climate—here’s why,” TheConversation.com, Feb. 11, 2021. https://theconversation.com/solar-panels-in-sahara-could-boost-renewable-energy-but-damage-the-global-climate-heres-why-153992
24. Gray, Ellen, “NASA Satellite Reveals How Much Saharan Dust Feeds Amazon’s Plants,” Feb. 22, 2015. https://www.nasa.gov/content/goddard/nasa-satellite-reveals-how-much-saharan-dust-feeds-amazon-s-plants
I wonder if Greta will ever see this letters and if so if she still thinks 1. asking Government nice to do something will help
and more imported:
2. If we can tech our way out of this mess.
Greta is an op. Why anyone still takes her seriously is beyond me.
https://www.wrongkindofgreen.org/2019/01/17/the-manufacturing-of-greta-thunberg-for-consent-the-political-economy-of-the-non-profit-industrial-complex/
As usual, another nonsensical post from our anti-environmental troll. The link you posted is to a series that is not even about the environment. In its own words, “[t]his series is about new financial markets in a world where global economic growth is experiencing stagnation.” Wrong Kind of Green appears to be an anti-capitalist group, which is fine per se. But its blathering essay about Greta Thunberg is laced with all sorts of innuendoes and is very short of facts (I perused it briefly, but it was of no interest to me and far too long to read).
People who obsess on economics from either side — leftists, right wingers, socialists, communists, fascists, neoliberals, neoconservatives, etc. — don’t necessarily know or care anything more about the environment than anyone else and are not authorities or experts on environmental issues.
Greta Thunberg is not an op or any such thing. You should be ashamed of yourself for attacking a teenager who, at great cost to herself, takes on the establishment for the good of the Earth. Thunberg doesn’t advocate FOR any type of energy that I’ve ever seen, she just demands that global leaders do something about global warming/climate change, and has complained about some fossil fuel industries. What exactly is your problem with that?
LMAO please turn off the fanboy mode. Greta is obviously a poster girl for the New Deal For Nature. It baffles me that yall self-identified “radical environmentalists” get so defensive about this. Using children in propaganda really works, huh.
Notice that I. does not and cannot respond to my question or to the fact that Thunberg doesn’t advocate for anything except for adults and world leaders to fix the problem, aside for her conclusory comment that Thunberg “is obviously a poster girl for the New Deal For Nature,” a statement without any supporting facts.
Full Disclosure: My wife and I put solar panels on our roof at substantial cost to us (we don’t use a lot of electricity and our bills were much lower before we rented the solar panels) because we thought that doing so was good for the environment. If we’d known then what we know now, we’d never have done this.
To boil this down: you can’t have your cake and eat it too. Industrial humans never learned this lesson, even though they’ve heard the words since childhood.
I fully agree that changing technologies won’t solve any of the problems caused by the replaced technologies. However, I would like to see a serious study comparing the harms caused by wind & solar compared to the harms caused by fossil fuels, and another study comparing the harms caused by driving vehicles powered by internal combustion engines compared to driving vehicles powered by batteries. Only then would we truly know which technologies are harmful. Wild claims — that switching to solar and wind from fossil fuels and using electric vehicles instead of internal combustion vehicles would cause even more harm than we are already causing — are totally unsupported at this point. I’m talking about REPLACEMENT, not the current situation where despite more solar and wind, we keep using the same amount of fossil fuel energy.
For ease of circulating this data, I’ve summarized the most impressive points below, from this letter and the one focusing on silicon wafers alone:
Silicon wafer production requires that they be in a smelter at 3000°F. for several years, with one such plant requiring as much fossil fuel or nuclear power as a city of 300,000.
If all vehicles were electric, power demands would double, and could not be met by any means other than nuclear.
Solar cannot meet the demands of high energy users, including data centers, internet providers, factories, or EV charging stations.
Solar panels are coated with teflon, which contains toxins that are already in 97% of all human bodies, and which cause tumors and reproductive harm in lab tests.
From 2002-2019, France increased solar power production by 100 GW, with no net reduction in fossil power use.
Solar panels are toxic, do not degrade, and are not recyclable. Their manufacture also produces huge amounts of numerous toxic chemicals and heavy metals, increasing both air and water pollution.
Google abandoned renewable power in 2011, with engineers concluding that “wholesale adaptation of renewable energy would not (result) in significant reductions in CO2 emissions… Worldwide, there is no level of investment in renewables that would prevent global warming.”
Indeed, solar INCREASES global warming. 85% of the solar heat that reaches solar panels goes back into the atmosphere. Estimates are that while solar panels covering half of the Sahara Desert could supply 2.5 times Europe’s electricity demand (which is less than half of global demand), they would raise the average global temperature by .39°C.
All that said, how does maintaining the current system compared to replacing it as much as possible with wind & solar?
If you think that we can continue business as usual with some other form of energy, consider this:
“A single gallon of gasoline contains approximately forty megajoules of chemical energy. Dividing energy by volume yields an energy density of ten billion joules per cubic meter. Gasoline is ten quadrillion times more energy-dense than solar radiation, one billion times more energy-dense than wind and water power, and ten million times more energy-dense than human power. The total global uranium available normalized by the volume of the earth would likely render its energy density comparable to geothermal.” – International Journal of Green Energy, 5: 438–455, 2008
It makes no sense to use fossil fuel to transition to less efficient forms of energy.
What is your point Carl? That humans should just continue destroying the planet? The point of all this is that we need to start living a lot more simply and naturally, and at some point give up industrial living altogether. It’s not about meaningless technicalities regarding forms of energy.
Well Jeff if you had read the series you would know more about how and why your idol raised to stardom and what are the institutions and corporations promoting her. If you think those people give a shit about the earth, I don’t know what to tell you. The facts are all there, you just don’t want to see.
If “the facts are there,” state them. Otherwise this is all just BS. I’m not reading some ridiculously long diatribe when all they had to do was list who’s behind her and what their evidence of that is. If you can’t do that, then you don’t know anything either.
Jeff I don’t exist to educate you. If you prefer to believe Greta is a spontaneous phenomenon that has nothing to do with corporate greenwashing, it’s your problem not mine. Do you think I care whether or not you believe me lol? The truth is still the truth.
No, it’s true you don’t exist to educate Jeff. But Jeff is not the only person reading this webpage, and presumably your interventions here are intended to influence the rest of us. If you can’t produce a single piece of evidence beyond your data dump to support your argument, how do you expect anyone to take you seriously? Just give us 3 corporations, the corresponding dates, and the amounts, and those of us who wish to can investigate the veracity of your claims on our own.