By Max Wilbert / Deep Green Resistance Great Basin

While global warming is a topic of conversation and news coverage every day around the world,‭ ‬the basic raw materials that drive the global economy are rarely discussed as being involved.‭ ‬But these materials play a key role in global environmental issues.

Where do plastics come from‭? ‬How is paint made‭? ‬How do simple electronics,‭ ‬like land line telephones,‭ ‬come to be‭? ‬How does the electric grid itself come to be‭? ‬And in a world that is being wracked by warming,‭ ‬how do these basic industrial technologies impact the climate‭?

This will be the first article in a series exploring these questions and more.‭ ‬This inaugural piece will focus on steel:‭ ‬a material so ubiquitous it is nearly invisible,‭ ‬a material that was the foundation of the industrial revolution,‭ ‬a material that even today is used a measure for the health of the global economy.

The foundation of an economy

Steel,‭ ‬alongside oil,‭ ‬is the basic raw material of the global industrial economy.‭ ‬The material is widely used in construction and almost all other industries.‭ ‬The amount of steel being consumed per capita is often used as a measure of economic progress:‭ ‬financial firms like the World Bank consider‭ ‬700‭ ‬pounds of steel consumption per person per year a basic measure of the economic development of a nation.

More than‭ ‬1.3‭ ‬billion tons of steel‭ ‬is produced every year.

What is steel made of‭?

Steel is an alloy composed mainly of iron mixed with smaller portions other material,‭ ‬most often carbon,‭ ‬but sometimes manganese,‭ ‬chromium,‭ ‬vanadium,‭ ‬or tungsten.‭ ‬These other substances act as hardening agents to strengthen the steel.

The first step in our journey along the path of steel production is the extraction of the basic materials.‭ ‬The largest iron ore mine in the world is the Carajás Mine in Northern Brazil.‭ ‬The facility produces more than‭ ‬90‭ ‬million tons of iron ore‭ ‬every‭ ‬year.‭ ‬The ore is transported nearly‭ ‬900km‭ ‬(in the largest train in the world‭)‬ along a single train track to the port city of Sao Luis.‭

The train line,‭ ‬called EFC,‭ ‬was shut down in October of‭ ‬2012‭ ‬by indigenous inhabitants of the region protesting a planned expansion of the mine.

The environmental impacts of the mine are‭ ‬numerous.‭ ‬Firstly,‭ ‬to reach the ore,‭ ‬the rainforest must be cleared.‭ ‬More than‭ ‬6,000‭ ‬square kilometers of forest around the Carajas mine are clearcut every year for charcoal alone.‭ ‬More forest is removed for direct mining operations.‭ ‬Mercury is used‭ ‬in the mining process,‭ ‬and‭ ‬contaminates‭ ‬90‭ ‬percent of fish downstream of the mine.

In addition to the environmental impacts,‭ ‬iron ore mining in the Amazon has displaced tens of thousands of indigenous people,‭ ‬decimated newly-contacted tribes through the spread of infectious diseases,‭ ‬and flooded remote areas with thousands of workers,‭ ‬networks of roads,‭ ‬and all the associated impacts.

Poverty,‭ ‬social conflict,‭ ‬and environmental devastation have been the wages of mining.‭ ‬As the World Wildlife Federation has noted,‭ “‬Mining is one of the dirtiest industrial activities on the planet,‭ ‬in terms of both its immediate environmental impacts and its CO2‭ ‬emissions.‭”

Smelting and steel production

Once the raw materials for steel production are gathered,‭ ‬they must be combined.‭ ‬The first step is the smelting of iron ore in a blast furnace.‭ ‬The heat to melt iron ore usually comes from burning natural gas,‭ ‬coal or,‭ ‬more often coke.

‭“‬Coke is the most important raw material fed into the blast furnace in terms of its effect on blast furnace operation and hot metal quality,‭” ‬writes Hardarshan S.‭ ‬Valia,‭ ‬a scientist at Inland Steel‭ (‬now ArcelorMittal‭)‬.

Coking coal is a fuel and heat source that is essential to the production of steel.‭ ‬Coke,‭ ‬also known as metallurgical coal,‭ ‬is produced by baking coal in an airtight furnace at‭ ‬2,000-3,000‭ ‬°F.‭ ‬Generally,‭ ‬two tons of coal are baked to create one ton of coke.‭ ‬The process of creating coke toxifies large amounts of water,‭ ‬releases copious greenhouse gases and other toxic fumes,‭ ‬and requires large amounts of electricity.

‭“‬Air emissions such as coke oven gas,‭ ‬naphthalene,‭ ‬ammonium compounds,‭ ‬crude light oil,‭ ‬sulfur and coke dust are released from coke ovens,‭” ‬notes the Illinois Sustainable Technology Center,‭ “[‬and‭] ‬quenching water becomes contaminated with coke breezes and other compounds.‭”

At this stage of the process,‭ ‬ground up limestone‭ ‬or‭ ‬other carbon-rich rock is added to the molten iron ore to balance the acidity of coke and coal.‭ ‬This is called reduction.‭ ‬While a small portion of the carbon content of the limestone and coal or coke is adsorbed into the molten metal and adds strength to the steel,‭ ‬the bulk of this carbon is released to the atmosphere as CO2.

At current rates,‭ ‬around‭ ‬1.9‭ ‬metric tons of CO2‭ ‬are released for every metric ton of steel production.‭ ‬Overall,‭ ‬the International Energy Agency estimates that‭ ‬4-5%‭ ‬of global CO2‭ ‬emissions come from the iron and steel industry.

Once the smelting process in the blast furnace is complete,‭ ‬the result is an intermediate stage in steel production called pig iron.‭ ‬This molten pig iron is now prepared for the next step,‭ ‬which involves processing in a basic oxygen furnace.

In the basic oxygen furnace,‭ ‬molten pig iron is poured into a large ladle and scraps of recycled steel are added.‭ ‬Impurities of silicon,‭ ‬phosphorous,‭ ‬and sulfur are removed by means of a chemical reaction,‭ ‬and high purities of oxygen are blown into the vessel at velocities greater than the speed of sound.‭ ‬This superheats the mixture and‭ ‬removes further impurities.‭ ‬The molten metal is now steel.

The basic oxygen furnace is only the most common method of steel production,‭ ‬used for‭ ‬60%‭ ‬of global production with the process described above.‭ ‬This is called‭ “‬primary steel production‭”‬.‭ ‬Secondary steel,‭ ‬which requires less energy input but is a lower quality product,‭ ‬is made entirely from scrap steel using an electric arc furnace.‭ ‬Steel production from‭ ‬recycled‭ ‬scrap accounts for nearly half of all steel production in developed countries.

What is steel used for‭?

As noted above,‭ ‬steel is critical to the global economy.‭ ‬It is considered one of the basic raw materials for industrial development,‭ ‬and is used for the production of cranes,‭ ‬ships,‭ ‬trucks,‭ ‬trailers,‭ ‬cars,‭ ‬jacking platforms,‭ ‬underwater cables,‭ ‬electrical transmission towers and lines,‭ ‬rail cars,‭ ‬girders for buildings and bridges,‭ ‬home appliances,‭ ‬pots and pans,‭ ‬bicycles,‭ ‬guard rails,‭ ‬scaffolding‭ ‬-‭ ‬the list goes on‭ ‬endlessly.

While the role of steel and other polluting substances in many of these products and industries has been examined thoroughly,‭ ‬the same rigor has generally not been applied to alternative energy technologies.‭ ‬Wind turbines,‭ ‬for example,‭ ‬use a great deal of steel.‭ ‬As has been noted by the World Steel Association,‭ ‬the global trade group for the industry:‭ “‬every part of a wind turbine depends on iron and steel.‭”

Can steel be sustainable‭?

One of the most common wind turbines in the world today is a‭ ‬1.5‭ ‬megawatt design produced by General Electric.‭ ‬The nacelle‭ ‬-‭ ‬the portion of the turbine on top of the tower‭ ‬-‭ ‬weighs‭ ‬56‭ ‬tons,‭ ‬while the tower weighs in at‭ ‬71‭ ‬tons and the blades at‭ ‬36‭ ‬tons.‭ ‬A single turbine,‭ ‬at over‭ ‬60‭ ‬percent steel,‭ ‬requires over‭ ‬100‭ ‬tons of the material.‭

This‭ ‬1.5‭ ‬megawatt model is a smaller design by modern standards‭ ‬-‭ ‬the latest industrial turbines can require more than twice as much steel.

The production and installation of wind turbines also requires large amounts of concrete‭ (‬more than‭ ‬1,000‭ ‬tons for a standard wind turbine anchor platform‭) ‬and other materials such as copper,‭ ‬which is used for electrical cables and makes up some‭ ‬35%‭ ‬of the generator.‭ ‬About half of all copper mined worldwide is used for electrical wires and transmission‭ ‬cables.‭

Copper‭ ‬production is a large source of pollution and waste,‭ ‬starting with the exploration and development process,‭ ‬where roads and facilities are built,‭ ‬and ending with the toxic byproducts of copper refining.‭

Impacts of copper mining mirror steel production,‭ ‬and include land clearance,‭ ‬soil removal,‭ ‬erosion of soil and mine waste,‭ ‬toxic tailings,‭ ‬acid mine drainage,‭ ‬contaminant leaching,‭ ‬water extraction and contamination,‭ ‬the release of dust and particulate matter,‭ ‬air pollution from vehicles and machinery,‭ ‬mercury and other heavy metal contamination,‭ ‬habitat loss and fragmentation,‭ ‬soil and groundwater contamination,‭ ‬and greenhouse gas emissions.

The Bingham Canyon Copper Mine near Salt Lake City,‭ ‬Utah,‭ ‬is the largest man-made excavation in the world,‭ ‬and a good example of the toxic nature of extraction and refining‭ – ‬the Salt Lake Valley periodically registers the worst air quality in the United States.‭ ‬The mine is visible from space with the naked eye.

Global Trade

Beyond the direct impacts of‭ ‬steel production,‭ ‬the process of creating wind turbines must be assessed in context‭; ‬in this case,‭ ‬the context of global trade.‭ ‬Creating a wind turbine is a worldwide manufacturing operation,‭ ‬explains Brian Doughty of Puget Sound Energy,‭ ‬who manages a wind power installation in eastern Washington state.

‭“‬For this particular project,‭” ‬Doughty notes,‭ “‬these tower sections came from Vietnam,‭ ‬the nacelles and blades came from Denmark,‭ ‬everything was brought into the port of Vancouver WA,‭ ‬and brought up here‭ [‬to eastern Washington‭] ‬by truck.‭”

This global arrangement of shipping and transportation tangles‭ ‬wind turbines further in a vast,‭ ‬deadly‭ ‬net of fossil fuels,‭ ‬pollution,‭ ‬devastated ecosystems,‭ ‬“free trade‭” ‬agreements,‭ ‬and decimated communities.

Steel:‭ ‬the past,‭ ‬not the future‭?

The World Steel Association and other global entities are convinced that steel is a key material for the future of‭ ‬civilization.‭ ‬But as should be clear from the information presented above,‭ ‬steel is an industrial material for an industrial world‭ – ‬dirty,‭ ‬polluting,‭ ‬energy intensive.

There are‭ ‬many‭ ‬options for‭ ‬the human species moving forward.‭ ‬Steel lies along the industrial path that we have trodden before,‭ ‬dirty and littered with the bodies of the collaterally damaged.‭ ‬Which path is taken remains to be seen,‭ ‬but one thing is sure:‭ ‬before we can make the right decisions,‭ ‬we must have the facts.‭ ‬And with steel,‭ ‬the facts are grim.

References