Editor’s note: “75 of the world’s largest 114 fossil fuel companies have now made net zero by 2050 commitments, yet not a single fossil fuel company has committed to phasing out oil and gas production by 2050 nor have any committed to ending exploration for new oil and gas fields or halting the extraction of existing reserves.”
“Real Zero, not greenwashed ‘net zero,’ is essential. As the Corporate Accountability report concludes, it’s time to reject the big polluters’ agenda and implement programs that rapidly phase out fossil fuels and truly eliminate greenhouse gas emissions.”
We “obsess” over getting to “Net Zero” yearly CO2 increases in the atmosphere. The Moderates in Climate Science THEORIZE that when this happens, the GMST will IMMEDIATELY stop going up and will level off.
DOES IT LOOK LIKE “NET ZERO” is going to happen?
If your child is born this year, they are likely going to live through +1.5°C of warming by the time they are 25. A fact that is likely going to cause a 40% to 50% drop in the global food supply and a reduction of 2.5 billion — 4 billion in the global population by 2050, at a minimum.
The overshoot myth of bargaining: you can’t keep burning fossil fuels and expect scientists of the future to get us back to 1.5°C
Record breaking fossil fuel production, all time high greenhouse gas emissions and extreme temperatures. Like the proverbial frog in the heating pan of water, we refuse to respond to the climate and ecological crisis with any sense of urgency. Under such circumstances, claims from some that global warming can still be limited to no more than 1.5°C take on a surreal quality.
For example, at the start of 2023’s international climate negotiations in Dubai, conference president, Sultan Al Jaber, boldly stated that 1.5°C was his goal and that his presidency would be guided by a “deep sense of urgency” to limit global temperatures to 1.5°C. He made such lofty promises while planning a massive increase in oil and gas production as CEO of the Abu Dhabi National Oil Company.
We should not be surprised to see such behaviour from the head of a fossil fuel company. But Al Jaber is not an outlier. Scratch at the surface of almost any net zero pledge or policy that claims to be aligned with the 1.5°C goal of the landmark 2015 Paris agreement and you will reveal the same sort of reasoning: we can avoid dangerous climate change without actually doing what this demands – which is to rapidly reduce greenhouse gas emissions from industry, transport, energy (70% of total) and food systems (30% of total), while ramping up energy efficiency.
This is also not surprising given that net zero and even the Paris agreement have been built around the perceived need to keep burning fossil fuels, at least in the short term. Not do so would threaten economic growth, given that fossil fuels still supply over 80% of total global energy. The trillions of dollars of fossil fuel assets at risk with rapid decarbonisation have also served as powerful brakes on climate action.
Overshoot
The way to understand this doublethink: that we can avoid dangerous climate change while continuing to burn fossil fuels – is that it relies on the concept of overshoot. The promise is that we can overshoot past any amount of warming, with the deployment of planetary-scale carbon dioxide removal dragging temperatures back down by the end of the century.
This not only cripples any attempt to limit warming to 1.5°C, but risks catastrophic levels of climate change as it locks us in to energy and material-intensive solutions which for the most part exist only on paper.
To argue that we can safely overshoot 1.5°C, or any amount of warming, is saying the quiet bit out loud: we simply don’t care about the increasing amount of suffering and deaths that will be caused while the recovery is worked on.
Our co-editors commission long-form journalism, working with academics from many different backgrounds who are engaged in projects aimed at tackling societal and scientific challenges.
A key element of overshoot is carbon dioxide removal. This is essentially a time machine – we are told we can turn back the clock of decades of delay by sucking carbon dioxide directly out of the atmosphere. We don’t need rapid decarbonisation now, because in the future we will be able to take back those carbon emissions. If or when that doesn’t work, we are led to believe that even more outlandish geoengineering approaches such as spraying sulphurous compounds into the high atmosphere in an attempt to block out sunlight – which amounts to planetary refrigeration – will save us.
The 2015 Paris agreement was an astonishing accomplishment. The establishment of 1.5°C as being the internationally agreed ceiling for warming was a success for those people and nations most exposed to climate change hazards. We know that every fraction of a degree matters. But at the time, believing warming could really be limited to well below 2°C required a leap of faith when it came to nations and companies putting their shoulder to the wheel of decarbonisation. What has happened instead is that the net zero approach of Paris is becoming detached from reality as it is increasingly relying on science fiction levels of speculative technology.
There is arguably an even bigger problem with the Paris agreement. By framing climate change in terms of temperature, it focuses on the symptoms, not the cause. 1.5°C or any amount of warming is the result of humans changing the energy balance of the climate by increasing the amount of carbon dioxide in the atmosphere. This traps more heat. Changes in the global average temperature is the established way of measuring this increase in heat, but no one experiences this average.
Climate change is dangerous because of weather that affects particular places at particular times. Simply put, this extra heat is making weather more unstable. Unfortunately, having temperature targets makes solar geoengineering seem like a sensible approach because it may lower temperatures. But it does this by not reducing, but increasing our interference in the climate system. Trying to block out the sun in response to increasing carbon emissions is like turning on the air conditioning in response to a house fire.
In 2021 we argued that net zero was a dangerous trap. Three years on and we can see the jaws of this trap beginning to close, with climate policy being increasingly framed in terms of overshoot. The resulting impacts on food and water security, poverty, human health, the destruction of biodiversity and ecosystems will produce intolerable suffering.
The situation demands honesty, and a change of course. If this does not materialise then things are likely to deteriorate, potentially rapidly and in ways that may be impossible to control.
Au revoir Paris
The time has come to accept that climate policy has failed, and that the 2015 landmark Paris agreement is dead. We let it die by pretending that we could both continue to burn fossil fuels and avoid dangerous climate change at the same time. Rather than demand the immediate phase out of fossil fuels, the Paris agreement proposed 22nd-century temperature targets which could be met by balancing the sources and sinks of carbon. Within that ambiguity net zero flourished. And yet apart from the COVID economic shock in 2020, emissions have increased every year since 2015, reaching an all time high in 2023.
Despite there being abundant evidence that climate action makes good economic sense (the cost of inaction vastly exceeds the cost of action), no country strengthened their pledges at the last three COPs (the annual UN international meetings) even though it was clear that the world was on course to sail past 2°C, let alone 1.5°C. The Paris agreement should be producing a 50% reduction in greenhouse gas emissions by 2030, but current policies mean that they are on track to be higher than they are today.
Editor’s note: DGR knows that “renewable” technologies are not sustainable and that the only transition will be to a future that does not include civilization.
We do not deny that significant progress has been made with renewable technologies. Rates of deployment of wind and solar have increased each year for the past 22 years and carbon emissions are going down in some of the richest nations, including the UK and the US. But this is not happening fast enough. A central element of the Paris agreement is that richer nations need to lead decarbonisation efforts to give lower income nations more time to transition away from fossil fuels. Despite some claims to the contrary, the global energy transition is not in full swing. In fact, it hasn’t actually begun because the transition demands a reduction in fossil fuel use. Instead it continues to increase year-on-year.
And so policymakers are turning to overshoot in an attempt to claim that they have a plan to avoid dangerous climate change. A central plank of this approach is that the climate system in the future will continue to function as it does today. This is a reckless assumption.
2023’s warning signs
At the start of 2023, Berkeley Earth, NASA, the UK Met Office, and Carbon Briefpredicted that 2023 would be slightly warmer than the previous year but unlikely to set any records. Twelve months later and all four organisations concluded that 2023 was by some distance the warmest year ever recorded. In fact, between February 2023 and February 2024 the global average temperature warming exceeded the Paris target of 1.5°C.
Currently we cannot fully explain why global temperatures have been so high for the past 18 months. Changes in dust, soot and other aerosols are important, and there are natural processes such as El Niño that will be having an effect.
But it appears that there is still something missing in our current understanding of how the climate is responding to human impacts. This includes changes in the Earth’s vital natural carbon cycle.
Around half of all the carbon dioxide humans have put into the atmosphere over the whole of human history has gone into “carbon sinks” on land and the oceans. We get this carbon removal “for free”, and without it, warming would be much higher. Carbon dioxide from the air dissolves in the oceans (making them more acidic which threatens marine ecosystems). At the same time, increasing carbon dioxide promotes the growth of plants and trees which locks up carbon in their leaves, roots, trunks.
All climate policies and scenarios assume that these natural carbon sinks will continue to remove tens of billions of tons of carbon from the atmosphere each year. There is evidence that land-based carbon sinks, such as forests, removed significantly less carbon in 2023. If natural sinks begin to fail – something they may well do in a warmer world – then the task of lowering global temperatures becomes even harder. The only credible way of limiting warming to any amount, is to stop putting greenhouse gasses into the atmosphere in the first place.
Science fiction solutions
It’s clear that the commitments countries have made to date as part of the Paris agreement will not keep humanity safe while carbon emissions and temperatures continue to break records. Indeed, proposing to spend trillions of dollars over this century to suck carbon dioxide out of the air, or the myriad other ways to hack the climate is an acknowledgement that the world’s largest polluters are not going to curb the burning of fossil fuels.
Over the following years we are going to see climate impacts increase. Lethal heatwaves are going to become more common. Storms and floods are going to become increasingly destructive. More people are going to be displaced from their homes. National and regional harvests will fail. Vast sums of money will need to be spent on efforts to adapt to climate change, and perhaps even more compensating those who are most affected. We are expected to believe that while all this and more unfolds, new technologies that will directly modify the Earth’s atmosphere and energy balance will be successfully deployed.
What’s more, some of these technologies may need to operate for three hundred years in order for the consequences of overshoot to be avoided. Rather than quickly slow down carbon polluting activities and increasing the chances that the Earth system will recover, we are instead going all in on net zero and overshoot in an increasingly desperate hope that untested science fiction solutions will save us from climate breakdown.
We can see the cliff edge rapidly approaching. Rather than slam on the brakes, some people are instead pushing their foot down harder on the accelerator. Their justification for this insanity is that we need to go faster in order to be able to make the jump and land safely on the other side.
We believe that many who advocate for carbon dioxide removal and geoengineering do so in good faith. But they include proposals to refreeze the Arctic by pumping up sea water onto ice sheets to form new layers of ice and snow. These are interesting ideas to research, but there is very little evidence this will have any effect on the Arctic let alone global climate. These are the sorts of knots that people tie themselves up in when they acknowledge the failure of climate policy, but refuse to challenge the fundamental forces behind such failure. They are unwittingly slowing down the only effective action of rapidly phasing out fossil fuels.
That’s because proposals to remove carbon dioxide from the air or geoengineer the climate promise a recovery from overshoot, a recovery that will be delivered by innovation, driven by growth. That this growth is powered by the same fossil fuels that are causing the problem in the first place doesn’t feature in their analysis.
The bottom line here is that the climate system is utterly indifferent to our pledges and promises. It doesn’t care about economic growth. And if we carry on burning fossil fuels then it will not stop changing until the energy balance is restored. By which time millions of people could be dead, with many more facing intolerable suffering.
Major climate tipping points
Even if we assume that carbon removal and even geoengineering technologies can be deployed in time, there is a very large problem with the plan to overshoot 1.5°C and then lower temperatures later: tipping points.
The science of tipping points is rapidly advancing. Late last year one of us (James Dyke) along with over 200 academics from around the world was involved in the production of the Global Tipping Points Report. This was a review of the latest science about where tipping points in the climate system may be, as well as exploring how social systems can undertake rapid change (in the direction that we want) thereby producing positive tipping points. Within the report’s 350 pages is abundant evidence that the overshoot approach is an extraordinarily dangerous gamble with the future of humanity. Some tipping points have the potential to cause global havoc.
The melt of permafrost could release billions of tons of greenhouse gasses into the atmosphere and supercharge human-caused climate change. Fortunately, this seems unlikely under the current warming. Unfortunately, the chance that ocean currents in the North Atlantic could collapse may be much higher than previously thought. If that were to materialise, weather systems across the world, but in particular in Europe and North America, would be thrown into chaos. Beyond 1.5°C, warm water coral reefs are heading towards annihilation. The latest science concludes that by 2°C global reefs would be reduced by 99%. The devastating bleaching event unfolding across the Great Barrier Reef follows multiple mass mortality events. To say we are witnessing one of the world’s greatest biological wonders die is insufficient. We are knowingly killing it.
We may have even already passed some major climate tipping points. The Earth has two great ice sheets, Antarctica, and Greenland. Both are disappearing as a consequence of climate change. Between 2016 and 2020, the Greenland ice sheet lost on average 372 billion tons of ice a year. The current best assessment of when a tipping point could be reached for the Greenland ice sheet is around 1.5°C.
This does not mean that the Greenland ice sheet will suddenly collapse if warming exceeds that level. There is so much ice (some 2,800 trillion tons) that it would take centuries for all of it to melt over which time sea levels would rise seven metres. If global temperatures could be brought back down after a tipping point, then maybe the ice sheet could be stabilised. We just cannot say with any certainty that such a recovery would be possible. While we struggle with the science, 30 million tons of ice is melting across Greenland every hour on average.
Ice sheets in Greenland and Antarctica are being affected by global warming. Pexels from Pixabay, CC BY
The take home message from research on these and other tipping points is that further warming accelerates us towards catastrophe. Important science, but is anyone listening?
It’s five minutes to midnight…again
We know we must urgently act on climate change because we are repeatedly told that time is running out. In 2015, Professor Jeffrey Sachs, the UN special adviser and director of The Earth Institute, declared:
The time has finally arrived – we’ve been talking about these six months for many years but we’re now here. This is certainly our generation’s best chance to get on track.
In 2019 (then) Prince Charles gave a speech in which he said: “I am firmly of the view that the next 18 months will decide our ability to keep climate change to survivable levels and to restore nature to the equilibrium we need for our survival.”
“We have six months to save the planet,” exhorted International Energy Agency head Fatih Birol – one year later in 2020. In April 2024, Simon Stiell, executive secretary of the United Nations Framework Convention on Climate Change said the next two years are “essential in saving our planet”.
Either the climate crisis has a very fortunate feature that allows the countdown to catastrophe to be continually reset, or we are deluding ourselves with endless declarations that time has not quite run out. If you can repeatedly hit snooze on your alarm clock and roll over back to sleep, then your alarm clock is not working.
Or there is another possibility. Stressing that we have very little time to act is intended to focus attention on climate negotiations. It’s part of a wider attempt to not just wake people up to the impending crisis, but generate effective action. This is sometimes used to explain how the 1.5°C threshold of warming came to be agreed. Rather than a specific target, it should be understood as a stretch goal. We may very well fail, but in reaching for it we move much faster than we would have done with a higher target, such as 2°C. For example, consider this statement made in 2018:
Stretching the goal to 1.5 degrees celsius isn’t simply about speeding up. Rather, something else must happen and society needs to find another lever to pull on a global scale.
What could this lever be? New thinking about economics that goes beyond GDP? Serious consideration of how rich industrialised nations could financially and materially help poorer nations to leapfrog fossil fuel infrastructure? Participatory democracy approaches that could help birth the radical new politics needed for the restructuring of our fossil fuel powered societies? None of these.
The lever in question is Carbon Capture and Storage (CCS) because the above quote comes from an article written by Shell in 2018. In this advertorial Shell argues that we will need fossil fuels for many decades to come. CCS allows the promise that we can continue to burn fossil fuels and avoid carbon dioxide pollution by trapping the gas before it leaves the chimney. Back in 2018, Shell was promoting its carbon removal and offsets heavy Sky Scenario, an approach described as “a dangerous fantasy” by leading climate change academics as it assumed massive carbon emissions could be offset by tree planting.
Shell is far from alone in waving carbon capture magic wands. Exxon is making great claims for CCS as a way to produce net zero hydrogen from fossil gas – claims that have been subject to pointed criticism from academics with recent reporting exposing industry wide greenwashing around CCS.
But the rot goes much deeper. All climate policy scenarios that propose to limit warming to near 1.5°C rely on the largely unproven technologies of CCS and BECCS. BECCS sounds like a good idea in theory. Rather than burn coal in a power station, burn biomass such as wood chips. This would initially be a carbon neutral way of generating electricity if you grew as many trees as you cut down and burnt. If you then add scrubbers to the power station chimneys to capture the carbon dioxide, and then bury that carbon deep underground, then you would be able to generate power at the same time as reducing concentrations of carbon dioxide in the atmosphere.
Unfortunately, there is now clear evidence that in practice, large-scale BECCS would have very adverse effects on biodiversity, and food and water security given the large amounts of land that would be given over to fast growing monoculture tree plantations. The burning of biomass may even be increasing carbon dioxide emissions. Drax, the UK’s largest biomass power station now produces four times as much carbon dioxide as the UK’s largest coal-fired power station.
Five minutes to midnight messages may be motivated to try to galvanise action, to stress the urgency of the situation and that we still (just) have time. But time for what? Climate policy only ever offers gradual change, certainly nothing that would threaten economic growth, or the redistribution of wealth and resources.
Despite the mounting evidence that globalised, industrialised capitalism is propelling humanity towards disaster, five minutes to midnight does not allow time and space to seriously consider alternatives. Instead, the solutions on offer are techno fixes that prop up the status quo and insists that fossil fuel companies such as Shell must be part of the solution.
That is not to say there are no good faith arguments for 1.5°C. But being well motivated does not alter reality. And the reality is that warming will soon pass 1.5°C, and that the Paris agreement has failed. In the light of that, repeatedly asking people to not give up hope, that we can avoid a now unavoidable outcome risks becoming counterproductive. Because if you insist on the impossible (burning fossil fuels and avoiding dangerous climate change), then you must invoke miracles. And there is an entire fossil fuel industry quite desperate to sell such miracles in the form of CCS.
Four suggestions
Humanity has enough problems right now, what we need are solutions. This is the response we sometimes get when we argue that there are fundamental problems with the net zero concept and the Paris agreement. It can be summed up with the simple question: so what’s your suggestion? Below we offer four.
1. Leave fossil fuels in the ground
The unavoidable reality is that we need to rapidly stop burning fossil fuels. The only way we can be sure of that is by leaving them in the ground. We have to stop exploring for new fossil fuel reserves and the exploitation of existing ones. That could be done by stopping fossil fuel financing.
At the same time we must transform the food system, especially the livestock sector, given that it is responsible for nearly two thirds of agricultural emissions. Start there and then work out how best the goods and services of economies can be distributed. Let’s have arguments about that based on reality not wishful thinking.
2. Ditch net zero crystal ball gazing targets
The entire framing of mid and end-century net zero targets should be binned. We are already in the danger zone. The situation demands immediate action, not promises of balancing carbon budgets decades into the future. The SBTi should focus on near-term emissions reductions. By 2030, global emissions need to be half of what they are today for any chance of limiting warming to no more than 2°C.
It is the responsibility of those who hold most power – politicians and business leaders – to act now. To that end we must demand twin targets – all net zero plans should include a separate target for actual reductions in greenhouse gas emissions. We must stop hiding inaction behind promises of future removals. It’s our children and future generations that will need to pay back the overshoot debt.
3. Base policy on credible science and engineering
All climate policies must be based on what can be done in the real world now, or in the very near future. If it is established that a credible amount of carbon can be removed by a proposed approach – which includes capture and its safe permanent storage – then and only then can this be included in net zero plans. The same applies to solar geoengineering.
Speculative technologies must be removed from all policies, pledges and scenarios until we are sure of how they will work, how they will be monitored, reported and validated, and what they will do to not just the climate but the Earth system as a whole. This would probably require a very large increase in research. As academics we like doing research. But academics need to be wary that concluding “needs more research” is not interpreted as “with a bit more funding this could work”.
4. Get real
Finally, around the world there are thousands of groups, projects, initiatives, and collectives that are working towards climate justice. But while there is a Climate Majority Project, and a Climate Reality Project, there is no Climate Honesty Project (although People Get Real does come close). In 2018 Extinction Rebellion was formed and demanded that governments tell the truth about the climate crisis and act accordingly. We can now see that when politicians were making their net zero promises they were also crossing their fingers behind their backs.
We need to acknowledge that net zero and now overshoot are becoming used to argue that nothing fundamental needs to change in our energy intensive societies. We must be honest about our current situation, and where we are heading. Difficult truths need to be told. This includes highlighting the vast inequalities of wealth, carbon emissions, and vulnerability to climate change.
The time for action is now
We rightly blame politicians for failing to act. But in some respects we get the politicians we deserve. Most people, even those that care about climate change, continue to demand cheap energy and food, and a constant supply of consumer products. Reducing demand by just making things more expensive risks plunging people into food and energy poverty and so policies to reduce emissions from consumption need to go beyond market-based approaches. The cost of living crisis is not separate from the climate and ecological crisis. They demand that we radically rethink how our economies and societies function, and whose interests they serve.
To return to the boiling frog predicament at the start, it’s high time for us to jump out of the pot. You have to wonder why we did not start decades ago. It’s here that the analogy offers valuable insights into net zero and the Paris agreement. Because the boiling frog story as typically told misses out a crucial fact. Regular frogs are not stupid. While they will happily sit in slowly warming water, they will attempt to escape once it becomes uncomfortable. The parable as told today is based on experiments at the end of the 19th century that involved frogs that had been “pithed” – a metal rod had been inserted into their skulls that destroyed their higher brain functioning. These radically lobotomised frogs would indeed float inert in water that was cooking them alive.
Promises of net zero and recovery from overshoot are keeping us from struggling to safety. They assure us nothing too drastic needs to happen just yet. Be patient, relax. Meanwhile the planet burns and we see any sort of sustainable future go up in smoke.
Owning up to the failures of climate change policy doesn’t mean giving up. It means accepting the consequences of getting things wrong, and not making the same mistakes. We must plan routes to safe and just futures from where we are, rather where we would wish to be. The time has come to leap.
To hear about new Insights articles, join the hundreds of thousands of people who value The Conversation’s evidence-based news. Subscribe to our newsletter.
In 2022, U.N. Secretary-General António Guterres declared that the “lifeline of renewable energy can steer [the] world out of climate crisis.” In saying so, he echoed a popular and tantalizing idea: that, if we hurry, we can erase the climate emergency with widespread adoption of renewables in the form of solar panels, wind farms, electric vehicles and more.
But things aren’t that simple, and analysts increasingly question the naïve assumption that renewables are a silver bullet.
That’s partly because the rapid transition to a global energy and transport system powered by “clean” energy brings with it a host of new (and old) environmental problems. To begin with, stepping up solar, wind and EV production requires many more minerals and materials in the short term than do their already well-established fossil fuel counterparts, while also creating a major carbon footprint.
Also, the quicker we transition away from fossil fuel tech to renewable tech, the greater the quantity of materials needed up front, and the higher the immediate carbon and numerous other environmental costs. But this shift is now happening extremely rapidly, as companies, governments and consumers try to turn away from oil, coal and natural gas.
“Renewables are moving faster than national governments can set targets,” declared International Energy Agency executive director Fatih Birol. In its “Renewables 2024” report, the IEA estimates the world will add more than 5,500 gigawatts of renewable energy capacity between 2024 and 2030 — almost three times the increase between 2017 and 2023.
But this triumph hasn’t brought with it a simultaneous slashing in global emissions, as hoped. In fact, 2023 saw humanity’s biggest annual carbon releases ever, totaling 37.4 billion metric tons, which has led experts to ask: What’s going on?
The introduction of coal in 19th century England — an innovative, efficient, cheap new source of energy — made some wealthy, produced an onslaught of consumer products, and was a public health and environmental disaster. Contemplating the coal boom, economist William Stanley Jevons developed the Jevons paradox. Image via Wikimedia Commons (Public domain).
Jevons paradox meets limits to growth
Some analysts suggest the source of this baffling contradiction regarding record modern energy consumption can be found in the clamor by businesses and consumers for more, better, cheaper technological innovations, an idea summed up by a 160-year-old economic theory: the Jevons paradox.
Postulated by 19th-century English economist William Stanley Jevons, it states that, “in the long term, an increase in efficiency in resource use [via a new technology] will generate an increase in resource consumption rather than a decrease.” Put simply, the more efficient (and hence cheaper) energy is, the greater society’s overall production and economic growth will be — with that increased production then requiring still more energy consumption.
Writing in 1865, Jevons argued that the energy transition from horses to coal decreased the amount of work for any given task (along with the cost), which led to soaring resource consumption. For proof, he pointed to the coal-powered explosion in technological innovation and use occurring in the 19th century.
Applied to our current predicament, the Jevons paradox challenges and undermines tech prognosticators’ rosy forecasts for sustainable development.
Here’s a look at the paradox in action: The fastest-expanding renewable energy sector today is solar photovoltaics (PVs), expected to account for 80% of renewables growth in the coming years.
In many parts of the world, large solar power plants are being built, while companies and households rapidly add rooftop solar panels. At the head of the pack is China, with its astounding solar installation rate (216.9 GW in 2023).
But paradoxically, as China cranks out cheap solar panels for domestic use and export, it is also building six times more coal power plants every year than the rest of the world combined, though it still expects almost half its electricity generation to come from renewables, mainly solar, by 2028.
This astronomical growth at first seems like proof of the Jevons paradox at work, but there’s an unexpected twist: Why is China (and much of the rest of the world) still voraciously consuming outmoded, less-efficient fossil fuel tech, while also gobbling up renewables?
One reason is that coal and oil are seen as reliable, not subject to the same problems that renewables can face during periods of intense drought or violent weather — problems caused by the very climate change that renewables are intended to mitigate.
Another major reason is that fossil fuels continue being relatively cheap. That’s because they’re supported by vast government subsidies (totaling more than $1 trillion annually). So in a sense, we are experiencing a quadruple Jevons paradox, with oil, coal, natural gas and renewables acting like four cost-efficient horses, all racing to produce more cheap stuff for an exploding world consumer economy. But this growth comes with terrible environmental and social harm.
Exponential growth with a horrific cost
Back to the solar example: China is selling its cheap solar installations all over the globe, and by 2030 could be responsible for half the new capacity of renewables installed planetwide. But the environmental cost of satisfying that escalating demand is rippling out across the world.
It has spurred a huge mining boom. Desperate to satisfy fast-rising demand, companies and nations are mining in ever more inaccessible areas, which costs more in dollars, carbon emissions, biodiversity losses, land-use change, freshwater use, ocean acidification, plus land, water and air pollution. So, just as with fossil fuels, the rush to renewables contributes to the destabilizing of the nine planetary boundaries, of which six are already in the red zone, threatening civilization, humanity and life as we know it.
Mining, it must be remembered, is also still heavily dependent on fossil fuels, so it generates large quantities of greenhouse gases as it provides minerals for the renewables revolution. A January 2023 article in the MIT Technology Review predicts that the mining alone needed to support renewables will produce 29 billion metric tons of CO2 emissions between now and 2050.
Carbon is far from the only problem. Renewables also require a wide range of often difficult-to-get-at minerals, including nickel, graphite, copper, rare earths, lithium and cobalt. This means “paradoxically, extracting this large amount of raw materials [for renewables] will require the development of new mines with a larger overall environmental footprint,” says the MIT article.
There are other problems too. Every year 14,000 football fields of forests are cut down in Myanmar to create cheap charcoal for China’s smelting industries to process silicon, a key component of solar panels and of computers.
This rapid development in rural places also comes with harsh human costs: Mongabay has reported extensively on how Indigenous people, traditional communities and fragile but biodiverse ecosystems are paying the price for the world’s mineral demand in the transition to renewable energy.
There is strong evidence that the Uighur minority is being used as slave labor to build solar panels in China. There are also reports that workers are dying in Chinese factories in Indonesia that are producing nickel, a key metal for solar panels and batteries.
The manufacture of smaller and faster electronic devices is leading to ever more e-waste, the fastest growing waste stream in the world and by far the most toxic. Image by Montgomery County Planning Commission via Flickr (CC BY-SA 2.0).
The search for solutions
“We really need to come up with solutions that get us the material that we need sustainably, and time is very short,” said Demetrios Papathanasiou, global director for energy and extractives at the World Bank.
One popularly touted solution argues that the impacts imposed by the rapid move to renewable energy can be greatly reduced with enhanced recycling. That argument goes this way: The minerals needed to make solar panels and build windfarms and electric vehicles only need to be sourced once. Unlike fossil fuels, renewables produce energy year after year. And the original materials used to make them can be recycled again and again.
But there are problems with this position.
First, while EV batteries, for example, may be relatively long lasting, they only provide the energy for new electric vehicles that still require steel, plastics, tires and much more to put people in the Global North and increasingly the Global South on the road. Those cars will wear out, with tires, electronics, plastics and batteries costly to recycle.
The solar energy industry says that “solar panels have an expected lifespan between 25-30 years,” and often much longer. But just because a product can last longer, does that mean people won’t clamor for newer, better ones?
In developed nations, for example, the speed at which technology is evolving mitigates against the use of panels for their full lifespan. A 2021 article in the Harvard Business Review found that, after 10 years or even sooner, consumers will likely dispose of their first solar panels, to install newer, more efficient ones. Again, the Jevons paradox rears its anti-utopian head.
Also, as solar proliferates in poorer nations, so too will the devices that solar can drive. As solar expands in the developing world, sales for cheap solar lanterns and small solar home electric systems are also expanding. An article in the journal Nature Energy calculates that in 2019 alone, more than 35 million solar products were sold, a huge rise from the 200,000 such products sold in 2010.
This expansion brings huge social benefits, as it means rural families can use their smartphones to study online at night, watch television, and access the market prices of their crops — all things people in the Global North take for granted.
But, as the article points out, many developing-world solar installations are poor quality and only last a few years: “Many, perhaps even the majority, of solar products sold in the Global South … only have working lives of a couple of years.” The problem is particularly acute in Africa. “Think of those solar panels that charge phones; a lot of them do not work, so people throw them away,” said Natalie Gwatirisa, founder of All For Climate Action, a Zimbabwean youth-led organization that strives to raise awareness on climate change. Gwatirisa calculates that, of the estimated 150 million solar products that have reached Africa since 2010, almost 75% have stopped working.
And as Americans familiar with designed obsolescence know, people will want replacements: That means more solar panels, cellphones, computers, TVs, and much more e-waste.
Another disturbing side to the solar boom is the unbridled growth of e-waste, much of it toxic. Gwatirisa cautions: “Africa should not just open its hand and receive [anything] from China because this is definitely going to lead to another landfill in Africa.”
The developed world also faces an e-waste glut. Solar panels require specialized labor to recycle and there is little financial incentive to do so. While panels contain small amounts of valuable minerals such as silver, they’re mostly made of glass, an extremely low-value material. While it costs $20-$30 to recycle a panel, it only costs $1-$2 to bury it in a landfill. And the PV industry itself admits that ‘the solar industry cannot claim to be a “clean” energy source if it leaves a trail of hazardous waste.’
Renewables are rapidly growing, producing a bigger share of global energy. But electricity demand is also soaring, as unforeseen new energy-guzzling innovations are introduced. For example, an artificial intelligence internet search is orders of magnitude more energy-intensive than a traditional Google search, and requires new power generation sources. Pictured is the Three Mile Island Nuclear Power Station, infamous for a 1979 partial meltdown. The facility is soon to reopen to support AI operations. Image courtesy of the U.S. Nuclear Regulatory Commission.
Solving the wrong problem
Ultimately, say some analysts, we may be trying to solve the wrong problem. Humanity is not experiencing an energy production problem, they say. Instead, we have an energy consumption problem. Thus, the key to reducing environmental harm is to radically reduce energy demand. But that can likely only be done through stationary — or, better still, decreased — consumption.
However, it’s hard to imagine modern consumers not rushing out to buy the next generation of consumer electronics including even smarter smartphones, which demand more and more energy and materials to operate (think global internet data centers). And it’s also hard to imagine industry not rushing to update its ever more innovative electronic product lines (think AI).
A decline in energy demand is far from happening. The U.S. government says it expects global energy consumption to increase by almost 50% by 2050, as compared with 2020. And much of that energy will be used to make new stuff, all of which increases resource demand and increases our likelihood of further overshooting already overshot planetary boundaries and crashing overstressed Earth systems.
One essential step toward sustainability is the circular economy, say renewable energy advocates. But, as with so much else, every year we somehow go in the opposite direction. Our current economic system is becoming more and more linear, built on a model of extracting more raw materials from nature, turning them into more innovative products, and then discarding it all as waste.
Currently, only 7.2% of used materials are cycled back into our economies after use. This puts an overwhelming burden on the environment and contributes to the climate, biodiversity and pollution crises.
If a circular economy could be developed by recycling all the materials used in renewables, it would significantly reduce the constant need to mine and source new ones. But, while efficient recycling will undoubtedly help, it also has limitations.
The 2023 planetary boundaries update shows six boundary safe limits transgressed: climate change (CO2 concentration and radiative forcing), biosphere integrity (genetic and functional), land-system change, freshwater change (blue water use and green water), biogeochemical flows (nitrogen and phosphorus), and novel entities pollution (including thousands of synthetic chemicals, heavy metals, radioactive materials, and more). The ocean acidification boundary is very near transgression. Only the atmospheric aerosol pollution and stratospheric ozone depletion boundaries are still well outside the red danger zone. Image courtesy of Azote for Stockholm Resilience Centre, based on analysis in Richardson et al. 2023 (CC BY-NC-ND 3.0).
The future
Tom Murphy, a professor emeritus of the departments of physics and astronomy and astrophysics at the University of California, San Diego, became so concerned about the world’s future, he shifted his career focus to energy.
While initially a big promoter of renewables, having built his own solar panels back in 2008, he has recently turned skeptical. Panels “need constant replacement every two or three decades ad infinitum,” he told Mongabay. “Recycling is not a magic wand. It doesn’t pull you out of the need for mining. This is because recycling is not 100% efficient and never will be. In the laboratory maybe, but not in the real world. You’re going to have this continual bleed of materials out of the system.”
Yet another renewables problem is that sustainable energy is often siloed: It is nearly always talked about only in the context of reducing greenhouse gas emissions. Rarely are the total long-term supply chain costs to the environment and society calculated.
Reducing CO2 is clearly a vital goal, but not the only critical one, says Earth system scientist Johan Rockström, joint director of the Potsdam Institute for Climate Impact Research in Germany, and who (with an international team of scientists), developed the planetary boundaries framework.
It is undeniably important to reduce greenhouse emissions by half over the next seven years in order to reach net zero by 2050, he says. But this will be difficult to achieve, for it means “cutting emissions by 7.5% a year, which is an exponential decline.”
And even if we achieve such radical reductions, it will not solve the environmental crisis, warns Rockström. That’s because radical emission reductions only tackle the climate change boundary. A recent scientific paper, to which he contributed, warns that “six of the nine boundaries are transgressed, suggesting that Earth is now well outside of the safe operating space for humanity.”
Rockström in an exclusive interview told Mongabay that, at the same time as we vigorously combat global warming, “We also need to come back into the safe space for pollutants, nitrogen, phosphorus, land, biodiversity,” and more. This means that our efforts to repair the climate must also relieve stresses on these other boundaries, not destabilize them further.
Murphy says he believes this can’t be achieved. He says that modernity — the term he uses to delineate the period of human domination of the biosphere — cannot be made compatible with the protection of the biological world.
To make his point, he emphasizes an obvious flaw in renewables: they are not renewable. “I can’t see how we can [protect the biosphere] and retain a flow of nonrenewable finite resources, which is what our economic system requires.” He continues: “We are many orders of magnitude, 4 or 5 orders of magnitude, away from being at a sustainable scale. I like Rockström’s idea that we have boundaries, but I think his assessment of how far we have exceeded those boundaries is completely wrong.”
Murphy says he believes modernity has unleashed a sixth mass extinction, and it is too late to stop it. Modernity, he says, was unsustainable from the beginning: “Our brains can’t conceive of the degree of interconnectedness in the living world we’re part of. So the activities we started carrying out, even agriculture, don’t have a sustainable foundation. The minerals and materials we use are foreign to the living world and we dig them up and spew them out. They end up all over the place, even in our bodies at this point, [we now have] microplastics. This is hurting not just us, but the whole living world on which we depend.”
Like Murphy, Rockström says he is pessimistic about the level of action now seen globally, but he doesn’t think we should give up. “We have the responsibility to continue even if we have a headwind.” What is extremely frustrating, he says, is that today we have the answers: “We know what we need to do. That’s quite remarkable. Years back I could not have said that. We have solutions to scale down our use of coal, oil and gas. We know how to feed humanity from sustainable food systems, that largely bring us back into the [safe zone for] planetary boundaries, the safe space for nitrogen, phosphorous, freshwater, land and biodiversity.”
One key to making such radical change would be a dramatic, drastic, wholesale shift by governments away from offering trillions of dollars in “perverse subsidies” to environment-destroying fossil fuel and mining technologies, to pumping those subsidies into renewables and the circular economy.
Murphy says he doesn’t believe we should give up either. But he also says he doesn’t believe modernity can be made sustainable. “I suspect that the deteriorating web of life will create cascading failures that end up pulling the power cord to the destructive machine. Only then will some people accept that ecological ignorance — paired with technological capability — has dire consequences.”
But, he adds, this does not mean the human race is doomed.
“The modernity project does not define humanity. Humanity is much older. It’s too late for modernity to succeed but it’s not too late for humanity to succeed.” Here he turns to Indigenous cultures: “For hundreds of thousands of years, they survived and did quite well without causing the sixth mass extinction.”
“There isn’t a single Indigenous package,” he says. “Each is tuned to its [particular local] environment, and they vary a lot. But they have common elements: humility, only taking what you need from the environment, and the belief that we can learn a lot from our ‘our brothers and sisters,’ that is, the other animals and plants who have been around for much longer than us.”
Perhaps surprisingly, Murphy remains cheerful: “Most people are extremely depressed by what I say. I’m not. Not at all. I think it’s exciting to imagine what the future can be. You’re only depressed if you’re in love with modernity. If you’re not, it’s not devastating to imagine it disappearing.”
Banner image: Installation of solar panels. Image by Trinh Trần via Pexels (Public domain).
Editor’s notes: Methane(CH4) is the main component of natural gas. The word comes from the Greek methy “wine” + hylē “wood.” However, marketers came up with the term natural gas rather than methane gas to give it a clean, green image. Methane is produced by decaying organic material. Natural sources, such as wetlands, account for roughly 40% of today’s global methane emissions. But the majority comes from human activities, such as farms, landfills, dams and wastewater treatment plants – and fuel production. Oil, gas, and coal together make up about a third of global methane emissions. It can leak anywhere along the supply chain, from the wellhead and processing plant, through pipelines and distribution lines, all the way to the burner of your home’s stove or furnace. Once it reaches the atmosphere, methane’s super heat-trapping properties render it a major agent of warming. Over the last 20 years, methane has caused 85 times more warming than the same amount of carbon dioxide. But methane doesn’t stay in the atmosphere for long. Unlike carbon dioxide, which lingers in the atmosphere for a century or more, methane only sticks around for about a dozen years.
The only way to keep wetlands carbon in the ground is to quickly reduce and ultimately eliminate greenhouse gas emissions from human activities. Failing to do so will only give global warming a helping hand – as warming thaws wetlands and releases more methane, carbon and nitrogen from ancient stores, thus creating a continuous positive feedback loop. In total, methane is responsible for almost half of the global temperature rises since the industrial era.
The rapid growth in the atmospheric methane burden that began in late 2006 is very different from methane’s past observational record. Atmospheric methane’s unprecedented current growth is similar to ice core methane records during glacial-interglacial “termination” events marking global reorganizations of the planetary climate system.
Civilization, being what it is, cannot stop itself from using technology to mitigate the consequences of technological uses. Since civilization can not, on its own, take the necessary steps to relieve its addiction to modernity, it doubles down with solar panels and wind turbines. They are now looking at ways to geoengineer methane emissions. All in a doomed attempt to find a false solution to an overshoot predicament. This system can not continue, and it will be an outside force that brings it down. When that happens it would be best to have as much of the natural world left as possible.
The number of methane “super-emitters” detected by a satellite company has surged by approximately one-third over the past year, despite pledges from fossil fuel companies to reduce their emissions of the highly potent greenhouse gas.
Stephane Germain, the CEO of methane-tracking company GHGSat, toldThe Associated Press last month that company satellites had detected around 20,000 oil and gas operations, coal mines, and landfills that spewed 220 pounds of methane per hour since the end of 2023—up from around 15,000 the year before.
“The past year, we’ve detected more emissions than ever before,” Germain said, adding that existing data on methane emissions is only “scratching the surface” of the reality.
GHGSat’s data covers the period since 50 fossil fuel companies pledged to end flaring and reduce methane emissions from their operations to “near zero” by 2030 at the United Nations Climate Change Conference, or COP28, in Dubai.
At the time, more than 320 civil society organizations criticized the pledge and other voluntary commitments as a “dangerous distraction.”
“The only safe and effective way to ‘clean up’ fossil fuel pollution is to phase out fossil fuels,” the groups wrote in an open letter. “Methane emissions and gas flaring are symptoms of a more than century-long legacy of wasteful, destructive practices that are routine in the oil and gas industry as it pursues massive profits without regard for the consequences.”
“That the industry, at this crucial moment in the climate emergency, is offering to clean up its mess around the edges in lieu of the rapid oil and gas phaseout that is needed is an insult to the billions impacted both by climate change and the industry’s appalling legacy of pollution and community health impacts,” they continued.
Yet now it seems as if the industry isn’t even attempting to clean up its mess around the edges.
Germain, who is sharing his company’s data ahead of the next round of climate talks at COP29 in Baku, Azerbaijan, said that nearly half of the methane super-emitters GHGSat detected were oil and gas related. Another third were landfills or waste facilities, and 16% from mining. Geographically, most of the super-emitting sites are in North America and Eurasia.
A methane flare is seen at Pawnee National Grasslands. (Photo: WildEarth Guardians/flickr/cc)
The data comes amid growing concerns about the extent of methane emissions and how they threaten efforts to rapidly reduce greenhouse gas pollution this decade and limit global temperature rise to 1.5°C. Methane is a more powerful greenhouse gas than carbon dioxide—with about 80 times its heat-trapping potential over its first 20 years in the atmosphere—but it also dissipates much more quickly. This means that curbing methane emissions could be an effective near-term part of halting temperature rise.
However, a series of studies published this year show these emissions moving in the wrong direction. A Nature analysis concluded in March that U.S. oil and gas operations were emitting around three times the methane that the U.S. government thought. A Frontiers of Science paper in July found that the growth rate of atmospheric methane concentrations had seen an “abrupt and rapid increase” in the early 2020s, due largely to the fossil fuel industry as well as releases from tropical wetlands.
The danger of methane emissions is one reason that the climate movement has mobilized to stop the buildout of liquefied natural gas (LNG) infrastructure, as methane routinely leaks in the process of drilling for and transporting the fuel. A September study found that, despite industry claims it could act as a bridge fuel, LNG actually has a 33%. greater greenhouse gas footprint than coal when its entire lifecycle is taken into account.
The fate of the LNG buildout, at least in the U.S., could be decided by the outcome of the 2024 presidential election. The Biden-Harris administration paused the approval of new LNG exports while the Department of Energy considers the latest climate science. While a Trump-appointed judge then halted the pause, this does not actually stop the DOE from continuing its analysis. A second Trump administration, however, would be almost guaranteed not to look further into the risk of methane emissions before it approves more LNG exports. Former President Donald Trump has promised to “drill, baby, drill” and offered a policy wishlist to fossil fuel executives who back his campaign.
A document leaked in October showed that a major oil and gas trade association had drafted plans for a second Trump administration, including ending Biden administration regulations to curb methane emissions, such as an emissions fee.
As Mattea Mrkusic, a senior energy transition policy lead at Evergreen Action, warned, “Under Trump, we could double down on even more dirty fossil fuel infrastructure that’ll lock us into harmful pollution for decades to come.”
In general, the United Nations (UN) Biodiversity Conference gets far less press than the UN climate change conferences, but I’ve seen more news items for this year’s Biodiversity Conference of the Parties (COP 16) than I have for previous biodiversity COPs. Still, I didn’t initially pay it much attention, because I’ve become so leery of these annual (for climate change COPs) and biannual (for biodiversity COPs) UN affairs. Why? Because, so far at least, these meetings have amounted to mostly good vibes, with little to no action that has any meaningful consequence in protecting the natural world.
This year’s biannual Biodiversity COP is in Cali, Colombia, a country with the dubious distinction of topping the list of the number of environmental activists killed by country in both 2022 (60) and 2023 (79). It runs until November 1, 2024.
I decided to take a deeper look at the biodiversity goals of these UN meetings at the prompting of two friends who both shared news items related to this year’s COP; one with a dismal “Expect less than nothing from COP 16. Much less.” and the other with a much brighter “Protection of nature efforts are being attempted globally.” outlook.
COP 16 will build on previous work by asking the participating parties to agree on a plan for meeting the goals and targets agreed to in the GBF from COP 15.
So, to understand the goals of these biannual biodiversity conferences, we must take a look at the Global Biodiversity Framework (GBF) from COP 15.
~~~
The GBF (PDF) opens with “Biodiversity is fundamental to human well-being, a healthy planet, and economic prosperity for all people…”. This might sound good to most peoples’ ears, but to me, it sets the tone of “for all people” that suffuses the rest of the document—one that is human supremacist to its core.
The agreed upon outcomes specified in the framework are described in the vision, the mission, four goals and 23 targets. Let’s take a look.
The vision: “A world of living in harmony with nature where ‘by 2050, biodiversity is valued, conserved, restored and wisely used, maintaining ecosystem services, sustaining a healthy planet and delivering benefits essential for all people.’”
This clearly states that the primary goal of biodiversity is benefits for all people. There is no indication here that nature and living beings exist for their own sake. There is no recognition of the rights of non-human beings, including wildlife and ecosystems. Biodiversity is seen as something to be “wisely used” (by humans) so that we can continue to get the benefits of “ecosystem services.”
“Sustaining a healthy planet” sounds nice, but is incredibly vague and seems secondary to the “benefits essential for all people.”
The mission: “To take urgent action to halt and reverse biodiversity loss to put nature on a path to recovery for the benefit of people and planet by conserving and sustainably using biodiversity and by ensuring the fair and equitable sharing of benefits from the use of genetic resources, while providing the necessary means of implementation.”
Halting biodiversity loss and putting nature on a path to recovery would be fantastic. Especially for nature. But no, this isn’t a mission for nature’s sake at all. It is “for the benefit of people.”
“Ensuring … benefits from the use of genetic resources” is interesting. It seems a bit out of left field until you understand that this means the genetic material from plants, animals, and microorganisms, which holds potential value for research, development, and commercial applications.
In other words, the authors of this framework see the natural world as a source of genetic materials to use for making a profit. That is, they objectify the natural world in the extreme, reducing living beings to genes, with the goal of conserving biodiversity to make more opportunities to profit from those genes.
Well, at least we know what their priorities are! And again, we see no understanding or recognition that nature and living beings exist for their own sake, and have the right to do so.
The Goals and Targets described in the framework flow from this vision and mission, so we can assume they will have similar issues, and they do.
The four Goals are identified as Goals A through D.
Goal A sounds good—to maintain, enhance, and restore the integrity of ecosystems—until you get to the last paragraph, which clarifies the point to all the lovely sounding language that precedes it: “The genetic diversity within populations of wild and domesticated species, is maintained, safeguarding their adaptive potential.”
We already know that the primary purpose of that “genetic diversity” is “genetic resources” for the “benefit of all people.”
Essentially, the point of Goal A is to maintain and restore ecosystems so we can get as many “genetic resources” as possible to make a nice hefty profit. Got it.
Goal B is worse:
“Biodiversity is sustainably used and managed and nature’s contributions to people, including ecosystem functions and services, are valued, maintained and enhanced, with those currently in decline being restored, supporting the achievement of sustainable development for the benefit of present and future generations by 2050.”
So, we are to value “nature’s contributions to people.” What about nature’s contributions to itself? Apparently those don’t matter. This goal reduces nature to “ecosystem functions and services” that are useful to people and to “sustainable development.” (See the last section below for more on “sustainable development.”)
Basically this is saying that biodiversity is for people; that ecosystems are “services” for people. “Present and future generations” are generations of people, not of wildlife and ecosystems.
Goal C elaborates on the reduction of nature to “genetic resources” for people and profit, saying that “the monetary and non-monetary benefits from the utilization of genetic resources and digital sequence information on genetic resources… are shared fairly and equitably” among people.
Are you starting to get the picture now?
Their Targets are similarly problematic.
Target 1 is to “Ensure that all areas are under participatory, integrated and biodiversity inclusive spatial planning and/or effective management processes.” In other words, humans should “manage” all areas on the planet for—per their goals—people.
Don’t wild beings get a single square inch of the planet to manage (or just live in) for themselves that isn’t managed by people? Apparently not.
Target 2 is to “Ensure that by 2030 at least 30 per cent of areas of degraded terrestrial, inland water, and marine and coastal ecosystems are under effective restoration, in order to enhance biodiversity and ecosystem functions and services, ecological integrity and connectivity.”
So we are to restore ecosystems, not because nature needs intact ecosystems to survive and thrive, but rather to enhance “ecosystem functions and services” (that benefit humans, as earlier established) and “ecological integrity and connectivity” (for genetic resources to benefit humans, as earlier established). It’s all for people.
I won’t bore you with all 23 Targets, but allow me just one more.
Target 9 is to “Ensure that the management and use of wild species are sustainable, thereby providing social, economic and environmental benefits for people…” (emphasis added).
I’m sure you have the picture now.
The UN Sustainable Development Goals
We should not be surprised by the human supremacy at the heart of these biodiversity goals. This is a UN program, and as stated by the UN and in the GBF itself, the framework is “a contribution to the achievement of the 2030 Agenda for Sustainable Development,” which is itself a human supremacist agenda.
Before we go further, we should talk about what “sustainable development” means. The definition of “sustainable” is “able to be maintained at a certain rate or level,” according to the Oxford Dictionary. The UN defines “development” as “a multidimensional process that aims to improve the quality of life for all people.”
The UN’s Quality of Life Initiative defines “quality of life” by a broad range of factors including health, work status, living conditions, and command of material resources.
We can thus understand the UN’s “sustainable development” as development that improves the health, work status, living conditions, and command of material resources for all people in a way that can be maintained at a certain rate or level.
Looking at the UN’s list of Sustainable Development Goals, we see included in that “affordable and clean energy,” “industry, innovation, and infrastructure,” “sustainable cities and communities,” “decent work and economic growth”, and so on.
Development usually means converting nature into commodities for human use, whether that’s converting a wetland into a parking lot, a river into electricity via a dam, or a forest into timber. These are the activities that drive economic growth, that are required for “affordable energy,” “industry,” and “infrastructure,” and the typical outcome of “innovation” is doing these things faster.
So “sustainable development” really means sustaining the conversion of nature into commodities at a certain rate or level.
If that certain rate or level looks anything like our lives here in the developed world, this is clearly impossible. Humans already use 1.75 Earth’s worth of “resources” (with the developed world using the vast majority of those “resources”), and so we are drawing down Earth’s carrying capacity at a rapid pace. There will be no sustaining anything at the current rate and level in the near future, given how quickly we are drawing down Earth’s carrying capacity now.
I hope it’s clear to you that the 2030 Agenda for Sustainable Development is all about people, and that it comes at the expense of the natural world. If you doubt that the agenda is entirely human supremacist, I would urge you to spend some time reading this substack and others about the impacts of “industry, innovation, and infrastructure” on the natural world and about how economic growth is incompatible with a living planet (e.g. my article about Ecological Overshoot and some of the resources I point to from there).
Returning to the GBF, we find that Section C affirms the role that the biodiversity framework plays in these Sustainable Development Goals by specifying that the framework is to be “understood, acted upon, implemented, reported and evaluated, consistent with” the “Right to development” (among other considerations):
“Framework enables responsible and sustainable socioeconomic development that, at the same time, contributes to the conservation and sustainable use of biodiversity.” (emphasis added).
The framework was doomed from its start by virtue of this “right to development.”
~~~
It might be tempting to believe that a global conference on biodiversity would put the needs and interests of the natural world first, but we would be mistaken in that belief. Reading the details of the vision, mission, goals, and targets of the GBF, we can clearly see that human needs are prioritized and that the entire framework is structured around protecting biodiversity for the benefit of people.
This is a human supremacist framework. That it is should not be surprising, as human supremacy is the primary and most pervasive ideology held by humans.
Banner by Shutterstock/Molishka from COP16 UN-HABITAT
Self-deception is rife within the environmental profession and movement. Some denial or disavowal is not surprising, due to how upsetting it is to focus on an unfolding tragedy. But our vulnerability to self-deception has been hijacked by the self interests of the rich and powerful, to spin a ‘fake green fairytale’. Their story distracts us from the truth of the damage done, that to come, and what our options might be. Indeed, their fairytale prevents us from rebelling to try to make this a fairer disaster, or a more gentle and just collapse of the societies we live in. Averting wider rebellion might be why the fairytale receives loads of funding for books, awards, feature articles and documentaries, as well as videos for popular YouTube channels. That’s why, like me, you might not have realised for years that it is a fairytale. In this essay I will explain the nine lies that comprise this ‘fake green fairytale’ before explaining how much damage is being done to both people and planet from the dominance of this story within contemporary environmentalism.
The ‘fake green fairytale’ claims humanity can maintain current levels of consumption (a lie) by being powered by renewables (a lie) which are already displacing fossil fuels (a lie) and therefore reach net zero (a lie) to bring temperatures down to safe levels within just a few years (a lie) to secure a sustainable future for all (a lie) and that the enemies of this outcome are the critics of the energy transition (a lie) who are all funded or influenced by the fossil fuel industry (a lie) so the proponents of green globalist aims are ethical in doing whatever it takes to achieve their aims (a lie).
Due to widely available evidence to the contrary, these are not just misunderstandings. To demonstrate that, I’ll explain them briefly in more detail.
First, the claim that humanity can maintain current levels of consumption is not true. Already, humanity is overshooting the carrying capacity of Planet Earth. This year the day that marked the beginning of the overshoot was August 1. We are degrading the capacity of seas, forests and soil to produce what we need, as well as using up key minerals. That’s even with around 800 million people malnourished last year (about 1 in 10 of us worldwide). Meanwhile, our monetary system requires our economy to expand consumption of resources, and the theory of decoupling that consumption from resource use has been debunked by hundreds of peer reviewed studies (see Chapter 1 of Breaking Together).
Second, the claim that modern societies can be powered by renewables while maintaining our current levels of energy use is not true. Over 80% of current primary energy generation is from fossil fuels. Even if we tried to switch everything to electric and generate the power from nuclear, hydro, wind, solar, geothermal, tidal and wave, then we wouldn’t have enough metals for either the wire or the batteries. For instance we would need 250 years of annual production of copper for the wire and 4000 times the annual production of lithium. Mining is an ecologically damaging activity. And we would need to trash huge tracts of forest to produce the needed quantities of metal. There will be resistance, and rightly so (see Chapter 3 of Breaking Together).
Third, the claim that renewables are already displacing fossil fuels is not true. Instead, globally, renewables are providing additional energy, with fossil fuel usage also increasing. There is no sign of global energy demand declining or any policies aimed at that. We all know that having a side salad with our pie and chips doesn’t make the belly disappear. Therefore, renewables are not yet an answer to the problem of carbon emissions from fossil fuels forcing further climate change. Only policies targeting a reduction of use of fossil fuels, globally, would begin to tackle that – and we see it hardly anywhere.
Fourth, the claim that the world can reach net zero carbon emissions is a lie. Not only is that due to the previous two lies about energy production and demand. Not only is that due to the limitations of any carbon removal technologies and approaches, for getting CO2 out of the atmosphere. It is also because of the fundamental role of fossilised or natural gas in current industrial agriculture. We are a grain-based civilization with estimates of between 50 to 80% of our calories coming from 5 key grains, either directly or via the animals that some of us eat. About 60% of these are produced with chemical fertiliser, which is currently dependent on fossil fuels. A tonne of such fertiliser releases twice its weight as CO2. That is before considering the machines and transportation involved (see Chapter 6 of Breaking Together). With Bekandze Farm, my own work and philanthropy is promoting farming without chemicals, but I recognize we are utterly dependent on them for our current food supply.
Fifth, the claim that achieving net zero emissions would bring temperatures down to safe levels within just a few years is not true. The claim derives from over-claiming, or misrepresenting, what the simulations run on some climate models have found. Those models ignored methane. In addition, recent data on removing aerosols suggests it is a larger driver of heating than was previously understood. Even with those limitations, the research was inconclusive, with some models showing ongoing warming, some showing none, in the impossible scenario of the world having stopped all CO2 emissions. That scenario, by the way, would be even more severe curtailment than net zero (which still allows for some emissions).
Sixth, the claim that such changes will secure a sustainable future for all is not true. That is because both ecological overshoot and climate change have already progressed too far, while ongoing destruction and pollution are too much of a feature of industrial consumer societies (see Chapters 1 and 4 of Breaking Together). The idea that billions more people can improve their lives by being incorporated into such industrial consumer ways of life is nonsense. Rather, the way we privileged people live is a time-bound and geographically-bound niche: if we care about people in poverty then we need to look at different ways of helping, as well as consuming and polluting less ourselves.
Seventh, the claim that any critics of the renewable energy transition are enemies of a sustainable future is not true. The enemies of humanity living happily-ever-after in industrial consumer societies are basic physics, chemistry and biology. Evangelising about it and condemning non-believers does not make that future any more feasible. Instead, we could be working for a more gentle and just collapse, and a lesser dystopia, with less suffering and more joy than otherwise would be the case. The enemies of that are people who distract us from how to fairly reduce and redistribute resource use.
Eighth, the claim that critics are all funded or influenced by the fossil fuel industry is not true. Rather, many of us are the more radical and anti-corporate voices in environmentalism. We are aligned with the history of environmental critique, which recognizes climate change as one symptom of a destructive economic system and its associated politics and culture. We want to reduce emissions but refuse to align with a new faction of capital that wants to profit from this disaster by selling inadequate solutions and false hope.
Ninth, the claim that proponents of pseudo-green capitalist policies are ethical in doing ‘whatever it takes’ to achieve their aims is not true. For it is not ethical to override support for the rights of indigenous peoples living in the lands where large corporations want to mine, so that more people can drive a Tesla. It is not ethical to infiltrate climate activist groups to steer them away from radical politics. It is not right to get big tech platforms like Facebook to restrict the reach of analysis which challenges their ‘fake green fairytale’.
I know these self-deceptions are powerful and have consequences, as they shaped my work for decades. In general, they pull us back from revolutionary despair – the kind of transformation that has occurred for so many people when they don’t believe in the false God of technosalvation.
Going forward, I wonder how much ecological destruction, in the form of new mining and old nuclear, will be unresisted, permitted and financed due to belief in the fake green fairytale? We have already seen that in a variety of cases. UK Government support for new nuclear power stations was enabled by climate concern that rose due the campaigns of Extinction Rebellion. Unfortunately, those new stations will not use the new technologies without meltdown risk or hazardous waste. Permits for mining in primary forests have been issued because of the climate crisis. For instance, the Brazilian government has explained that critical minerals for the net zero economy are a reason to issue permits for mining in the Amazon, including in areas inhabited by indigenous peoples. Such mining is a major cause of deforestation. However, the narrowness of the fake green fairytale overlooks this. It ignores the science on the role of forests in cooling our climate through cloud seeding. It’s not just regional, with pollen and bacteria rising from the Amazon forest then seeding clouds and snow over Tibet (Chapter 5 of Breaking Together). Because he is so fixated on the fairytale, billionaire non-scientist Bill Gates tells us trees don’t matter that much for climate. Laughing off tree protection or planting for climate concerns, he asked his audience last year: “Are we the science people or are we the idiots?”
And so we return to the matter of self-deception. There will be money to be earned in maintaining it. I wonder how much censorship, surveillance, and authoritarianism will arise from those who need to maintain the fake green fairytale while resisting a growing backlash? Definitely some. Maybe a lot. Myself and others critiquing the mainstream climate narratives of the Intergovernmental Panel on Climate Change (IPCC) have already had our content suppressed or removed from social media platforms. In a world where over 80% of social media sharing globally is enabled by just three American multinational corporations, there is a huge risk to public awareness.
I describe the nine lies of self-deception that comprise the fake green fairytale as being pathological because they prevent humanity from creatively exploring what our options are in this age of consequences. That is why I disagree with those people who say “we” environmentalists should not argue amongst ourselves. They are mistaken about who “we” are. I’m not in the same environmental profession or movement as people who will campaign for policies that will help to trash the Amazon Rainforest for the false promise of a more electric lifestyle. I’m not in the same profession or movement with people who want us to defer to the systems that have caused or administered this destruction. I’m in a very different movement, which believes in freeing people and communities from the pressure to destroy our environment in order to service global capital. That is the ecolibertarian ethos, which I explain in my book Breaking Together.