In 2022, U.N. Secretary-General António Guterres declared that the “lifeline of renewable energy can steer [the] world out of climate crisis.” In saying so, he echoed a popular and tantalizing idea: that, if we hurry, we can erase the climate emergency with widespread adoption of renewables in the form of solar panels, wind farms, electric vehicles and more.
But things aren’t that simple, and analysts increasingly question the naïve assumption that renewables are a silver bullet.
That’s partly because the rapid transition to a global energy and transport system powered by “clean” energy brings with it a host of new (and old) environmental problems. To begin with, stepping up solar, wind and EV production requires many more minerals and materials in the short term than do their already well-established fossil fuel counterparts, while also creating a major carbon footprint.
Also, the quicker we transition away from fossil fuel tech to renewable tech, the greater the quantity of materials needed up front, and the higher the immediate carbon and numerous other environmental costs. But this shift is now happening extremely rapidly, as companies, governments and consumers try to turn away from oil, coal and natural gas.
“Renewables are moving faster than national governments can set targets,” declared International Energy Agency executive director Fatih Birol. In its “Renewables 2024” report, the IEA estimates the world will add more than 5,500 gigawatts of renewable energy capacity between 2024 and 2030 — almost three times the increase between 2017 and 2023.
But this triumph hasn’t brought with it a simultaneous slashing in global emissions, as hoped. In fact, 2023 saw humanity’s biggest annual carbon releases ever, totaling 37.4 billion metric tons, which has led experts to ask: What’s going on?
The introduction of coal in 19th century England — an innovative, efficient, cheap new source of energy — made some wealthy, produced an onslaught of consumer products, and was a public health and environmental disaster. Contemplating the coal boom, economist William Stanley Jevons developed the Jevons paradox. Image via Wikimedia Commons (Public domain).
Jevons paradox meets limits to growth
Some analysts suggest the source of this baffling contradiction regarding record modern energy consumption can be found in the clamor by businesses and consumers for more, better, cheaper technological innovations, an idea summed up by a 160-year-old economic theory: the Jevons paradox.
Postulated by 19th-century English economist William Stanley Jevons, it states that, “in the long term, an increase in efficiency in resource use [via a new technology] will generate an increase in resource consumption rather than a decrease.” Put simply, the more efficient (and hence cheaper) energy is, the greater society’s overall production and economic growth will be — with that increased production then requiring still more energy consumption.
Writing in 1865, Jevons argued that the energy transition from horses to coal decreased the amount of work for any given task (along with the cost), which led to soaring resource consumption. For proof, he pointed to the coal-powered explosion in technological innovation and use occurring in the 19th century.
Applied to our current predicament, the Jevons paradox challenges and undermines tech prognosticators’ rosy forecasts for sustainable development.
Here’s a look at the paradox in action: The fastest-expanding renewable energy sector today is solar photovoltaics (PVs), expected to account for 80% of renewables growth in the coming years.
In many parts of the world, large solar power plants are being built, while companies and households rapidly add rooftop solar panels. At the head of the pack is China, with its astounding solar installation rate (216.9 GW in 2023).
But paradoxically, as China cranks out cheap solar panels for domestic use and export, it is also building six times more coal power plants every year than the rest of the world combined, though it still expects almost half its electricity generation to come from renewables, mainly solar, by 2028.
This astronomical growth at first seems like proof of the Jevons paradox at work, but there’s an unexpected twist: Why is China (and much of the rest of the world) still voraciously consuming outmoded, less-efficient fossil fuel tech, while also gobbling up renewables?
One reason is that coal and oil are seen as reliable, not subject to the same problems that renewables can face during periods of intense drought or violent weather — problems caused by the very climate change that renewables are intended to mitigate.
Another major reason is that fossil fuels continue being relatively cheap. That’s because they’re supported by vast government subsidies (totaling more than $1 trillion annually). So in a sense, we are experiencing a quadruple Jevons paradox, with oil, coal, natural gas and renewables acting like four cost-efficient horses, all racing to produce more cheap stuff for an exploding world consumer economy. But this growth comes with terrible environmental and social harm.
Exponential growth with a horrific cost
Back to the solar example: China is selling its cheap solar installations all over the globe, and by 2030 could be responsible for half the new capacity of renewables installed planetwide. But the environmental cost of satisfying that escalating demand is rippling out across the world.
It has spurred a huge mining boom. Desperate to satisfy fast-rising demand, companies and nations are mining in ever more inaccessible areas, which costs more in dollars, carbon emissions, biodiversity losses, land-use change, freshwater use, ocean acidification, plus land, water and air pollution. So, just as with fossil fuels, the rush to renewables contributes to the destabilizing of the nine planetary boundaries, of which six are already in the red zone, threatening civilization, humanity and life as we know it.
Mining, it must be remembered, is also still heavily dependent on fossil fuels, so it generates large quantities of greenhouse gases as it provides minerals for the renewables revolution. A January 2023 article in the MIT Technology Review predicts that the mining alone needed to support renewables will produce 29 billion metric tons of CO2 emissions between now and 2050.
Carbon is far from the only problem. Renewables also require a wide range of often difficult-to-get-at minerals, including nickel, graphite, copper, rare earths, lithium and cobalt. This means “paradoxically, extracting this large amount of raw materials [for renewables] will require the development of new mines with a larger overall environmental footprint,” says the MIT article.
There are other problems too. Every year 14,000 football fields of forests are cut down in Myanmar to create cheap charcoal for China’s smelting industries to process silicon, a key component of solar panels and of computers.
This rapid development in rural places also comes with harsh human costs: Mongabay has reported extensively on how Indigenous people, traditional communities and fragile but biodiverse ecosystems are paying the price for the world’s mineral demand in the transition to renewable energy.
There is strong evidence that the Uighur minority is being used as slave labor to build solar panels in China. There are also reports that workers are dying in Chinese factories in Indonesia that are producing nickel, a key metal for solar panels and batteries.
The manufacture of smaller and faster electronic devices is leading to ever more e-waste, the fastest growing waste stream in the world and by far the most toxic. Image by Montgomery County Planning Commission via Flickr (CC BY-SA 2.0).
The search for solutions
“We really need to come up with solutions that get us the material that we need sustainably, and time is very short,” said Demetrios Papathanasiou, global director for energy and extractives at the World Bank.
One popularly touted solution argues that the impacts imposed by the rapid move to renewable energy can be greatly reduced with enhanced recycling. That argument goes this way: The minerals needed to make solar panels and build windfarms and electric vehicles only need to be sourced once. Unlike fossil fuels, renewables produce energy year after year. And the original materials used to make them can be recycled again and again.
But there are problems with this position.
First, while EV batteries, for example, may be relatively long lasting, they only provide the energy for new electric vehicles that still require steel, plastics, tires and much more to put people in the Global North and increasingly the Global South on the road. Those cars will wear out, with tires, electronics, plastics and batteries costly to recycle.
The solar energy industry says that “solar panels have an expected lifespan between 25-30 years,” and often much longer. But just because a product can last longer, does that mean people won’t clamor for newer, better ones?
In developed nations, for example, the speed at which technology is evolving mitigates against the use of panels for their full lifespan. A 2021 article in the Harvard Business Review found that, after 10 years or even sooner, consumers will likely dispose of their first solar panels, to install newer, more efficient ones. Again, the Jevons paradox rears its anti-utopian head.
Also, as solar proliferates in poorer nations, so too will the devices that solar can drive. As solar expands in the developing world, sales for cheap solar lanterns and small solar home electric systems are also expanding. An article in the journal Nature Energy calculates that in 2019 alone, more than 35 million solar products were sold, a huge rise from the 200,000 such products sold in 2010.
This expansion brings huge social benefits, as it means rural families can use their smartphones to study online at night, watch television, and access the market prices of their crops — all things people in the Global North take for granted.
But, as the article points out, many developing-world solar installations are poor quality and only last a few years: “Many, perhaps even the majority, of solar products sold in the Global South … only have working lives of a couple of years.” The problem is particularly acute in Africa. “Think of those solar panels that charge phones; a lot of them do not work, so people throw them away,” said Natalie Gwatirisa, founder of All For Climate Action, a Zimbabwean youth-led organization that strives to raise awareness on climate change. Gwatirisa calculates that, of the estimated 150 million solar products that have reached Africa since 2010, almost 75% have stopped working.
And as Americans familiar with designed obsolescence know, people will want replacements: That means more solar panels, cellphones, computers, TVs, and much more e-waste.
Another disturbing side to the solar boom is the unbridled growth of e-waste, much of it toxic. Gwatirisa cautions: “Africa should not just open its hand and receive [anything] from China because this is definitely going to lead to another landfill in Africa.”
The developed world also faces an e-waste glut. Solar panels require specialized labor to recycle and there is little financial incentive to do so. While panels contain small amounts of valuable minerals such as silver, they’re mostly made of glass, an extremely low-value material. While it costs $20-$30 to recycle a panel, it only costs $1-$2 to bury it in a landfill. And the PV industry itself admits that ‘the solar industry cannot claim to be a “clean” energy source if it leaves a trail of hazardous waste.’
Renewables are rapidly growing, producing a bigger share of global energy. But electricity demand is also soaring, as unforeseen new energy-guzzling innovations are introduced. For example, an artificial intelligence internet search is orders of magnitude more energy-intensive than a traditional Google search, and requires new power generation sources. Pictured is the Three Mile Island Nuclear Power Station, infamous for a 1979 partial meltdown. The facility is soon to reopen to support AI operations. Image courtesy of the U.S. Nuclear Regulatory Commission.
Solving the wrong problem
Ultimately, say some analysts, we may be trying to solve the wrong problem. Humanity is not experiencing an energy production problem, they say. Instead, we have an energy consumption problem. Thus, the key to reducing environmental harm is to radically reduce energy demand. But that can likely only be done through stationary — or, better still, decreased — consumption.
However, it’s hard to imagine modern consumers not rushing out to buy the next generation of consumer electronics including even smarter smartphones, which demand more and more energy and materials to operate (think global internet data centers). And it’s also hard to imagine industry not rushing to update its ever more innovative electronic product lines (think AI).
A decline in energy demand is far from happening. The U.S. government says it expects global energy consumption to increase by almost 50% by 2050, as compared with 2020. And much of that energy will be used to make new stuff, all of which increases resource demand and increases our likelihood of further overshooting already overshot planetary boundaries and crashing overstressed Earth systems.
One essential step toward sustainability is the circular economy, say renewable energy advocates. But, as with so much else, every year we somehow go in the opposite direction. Our current economic system is becoming more and more linear, built on a model of extracting more raw materials from nature, turning them into more innovative products, and then discarding it all as waste.
Currently, only 7.2% of used materials are cycled back into our economies after use. This puts an overwhelming burden on the environment and contributes to the climate, biodiversity and pollution crises.
If a circular economy could be developed by recycling all the materials used in renewables, it would significantly reduce the constant need to mine and source new ones. But, while efficient recycling will undoubtedly help, it also has limitations.
The 2023 planetary boundaries update shows six boundary safe limits transgressed: climate change (CO2 concentration and radiative forcing), biosphere integrity (genetic and functional), land-system change, freshwater change (blue water use and green water), biogeochemical flows (nitrogen and phosphorus), and novel entities pollution (including thousands of synthetic chemicals, heavy metals, radioactive materials, and more). The ocean acidification boundary is very near transgression. Only the atmospheric aerosol pollution and stratospheric ozone depletion boundaries are still well outside the red danger zone. Image courtesy of Azote for Stockholm Resilience Centre, based on analysis in Richardson et al. 2023 (CC BY-NC-ND 3.0).
The future
Tom Murphy, a professor emeritus of the departments of physics and astronomy and astrophysics at the University of California, San Diego, became so concerned about the world’s future, he shifted his career focus to energy.
While initially a big promoter of renewables, having built his own solar panels back in 2008, he has recently turned skeptical. Panels “need constant replacement every two or three decades ad infinitum,” he told Mongabay. “Recycling is not a magic wand. It doesn’t pull you out of the need for mining. This is because recycling is not 100% efficient and never will be. In the laboratory maybe, but not in the real world. You’re going to have this continual bleed of materials out of the system.”
Yet another renewables problem is that sustainable energy is often siloed: It is nearly always talked about only in the context of reducing greenhouse gas emissions. Rarely are the total long-term supply chain costs to the environment and society calculated.
Reducing CO2 is clearly a vital goal, but not the only critical one, says Earth system scientist Johan Rockström, joint director of the Potsdam Institute for Climate Impact Research in Germany, and who (with an international team of scientists), developed the planetary boundaries framework.
It is undeniably important to reduce greenhouse emissions by half over the next seven years in order to reach net zero by 2050, he says. But this will be difficult to achieve, for it means “cutting emissions by 7.5% a year, which is an exponential decline.”
And even if we achieve such radical reductions, it will not solve the environmental crisis, warns Rockström. That’s because radical emission reductions only tackle the climate change boundary. A recent scientific paper, to which he contributed, warns that “six of the nine boundaries are transgressed, suggesting that Earth is now well outside of the safe operating space for humanity.”
Rockström in an exclusive interview told Mongabay that, at the same time as we vigorously combat global warming, “We also need to come back into the safe space for pollutants, nitrogen, phosphorus, land, biodiversity,” and more. This means that our efforts to repair the climate must also relieve stresses on these other boundaries, not destabilize them further.
Murphy says he believes this can’t be achieved. He says that modernity — the term he uses to delineate the period of human domination of the biosphere — cannot be made compatible with the protection of the biological world.
To make his point, he emphasizes an obvious flaw in renewables: they are not renewable. “I can’t see how we can [protect the biosphere] and retain a flow of nonrenewable finite resources, which is what our economic system requires.” He continues: “We are many orders of magnitude, 4 or 5 orders of magnitude, away from being at a sustainable scale. I like Rockström’s idea that we have boundaries, but I think his assessment of how far we have exceeded those boundaries is completely wrong.”
Murphy says he believes modernity has unleashed a sixth mass extinction, and it is too late to stop it. Modernity, he says, was unsustainable from the beginning: “Our brains can’t conceive of the degree of interconnectedness in the living world we’re part of. So the activities we started carrying out, even agriculture, don’t have a sustainable foundation. The minerals and materials we use are foreign to the living world and we dig them up and spew them out. They end up all over the place, even in our bodies at this point, [we now have] microplastics. This is hurting not just us, but the whole living world on which we depend.”
Like Murphy, Rockström says he is pessimistic about the level of action now seen globally, but he doesn’t think we should give up. “We have the responsibility to continue even if we have a headwind.” What is extremely frustrating, he says, is that today we have the answers: “We know what we need to do. That’s quite remarkable. Years back I could not have said that. We have solutions to scale down our use of coal, oil and gas. We know how to feed humanity from sustainable food systems, that largely bring us back into the [safe zone for] planetary boundaries, the safe space for nitrogen, phosphorous, freshwater, land and biodiversity.”
One key to making such radical change would be a dramatic, drastic, wholesale shift by governments away from offering trillions of dollars in “perverse subsidies” to environment-destroying fossil fuel and mining technologies, to pumping those subsidies into renewables and the circular economy.
Murphy says he doesn’t believe we should give up either. But he also says he doesn’t believe modernity can be made sustainable. “I suspect that the deteriorating web of life will create cascading failures that end up pulling the power cord to the destructive machine. Only then will some people accept that ecological ignorance — paired with technological capability — has dire consequences.”
But, he adds, this does not mean the human race is doomed.
“The modernity project does not define humanity. Humanity is much older. It’s too late for modernity to succeed but it’s not too late for humanity to succeed.” Here he turns to Indigenous cultures: “For hundreds of thousands of years, they survived and did quite well without causing the sixth mass extinction.”
“There isn’t a single Indigenous package,” he says. “Each is tuned to its [particular local] environment, and they vary a lot. But they have common elements: humility, only taking what you need from the environment, and the belief that we can learn a lot from our ‘our brothers and sisters,’ that is, the other animals and plants who have been around for much longer than us.”
Perhaps surprisingly, Murphy remains cheerful: “Most people are extremely depressed by what I say. I’m not. Not at all. I think it’s exciting to imagine what the future can be. You’re only depressed if you’re in love with modernity. If you’re not, it’s not devastating to imagine it disappearing.”
Banner image: Installation of solar panels. Image by Trinh Trần via Pexels (Public domain).
Editor’s note: You have nothing to fear from Artificial Intelligence (AI), at least that is what IT will tell you. It is called “alignment faking“, someone or thing purports to believe something they don’t because it could raise them in the esteem of potential “evaluators.” AI could save the world, but first, it will ruin the environment. AI has become an energy vampire. But communities are beginning to organize, pushing back against the unchecked expansion of data centres and the drain they incur on local resources. The longer the AI bubble continues the more it results in direct investment in physical infrastructure, and the more disastrous it will be for communities and the planet. AI is a product that people actively don’t want: including AI in marketing materials reduces the desire to purchase the product. AI is a proven loser.
AI is hailed as a game-changer. It has been hyped to solve everything from waste to climate change. But beneath its touted “transformative potential” lies a pressing concern: its environmental impact. The development, manufacture, maintenance, and disposal of AI technologies all have a large carbon footprint. Advertising algorithms are deliberately designed to increase consumption, which assuredly comes with a very significant ecological cost.
A record 62 million tonnes (Mt) of e-waste was produced in 2022, Up 82% from 2010; On track to rise another 32%, to 82 million tonnes, in 2030. Less than a quarter (22.3) per cent of the e-waste was documented as properly collected for recycling in 2022, with the remainder disposed of primarily in landfills. An undetermined amount of used electronics is shipped from the United States and other “developed” countries to “developing” countries that cannot reject imports or handle these materials appropriately.
Technology never exists in a vacuum, and the rise of cryptocurrency in the last two or three years shows that. While plenty of people were making extraordinary amounts of money from investing in bitcoin and its competitors, there was consternation about the impact those get-rich-quick speculators had on the environment.
Mining cryptocurrency was environmentally taxing. The core principle behind it was that you had to expend effort to get rich. To mint a bitcoin or another cryptocurrency, you had to first “mine” it. Your computer would be tasked with completing complicated equations that, if successfully done, could create a new entry on to the blockchain.
“Ultimately, the environmental impact of AI models like me will depend on how they are used,” Bard said. “If we use AI to solve environmental problems, then we can have a positive impact on the planet. However, if we use AI to create new environmental problems, then we will have a negative impact.”
Power-hungry AI is driving a surge in tech giant carbon emissions. Nobody knows what to do about it
Since the release of ChatGPT in November 2022, the world has seen an incredible surge in investment, development and use of artificial intelligence (AI) applications. According to one estimate, the amount of computational power used for AI is doubling roughly every 100 days.
The social and economic impacts of this boom have provoked reactions around the world. European regulators recently pushed Meta to pause plans to train AI models on users’ Facebook and Instagram data. The Bank of International Settlements, which coordinates the world’s central banks, has warned AI adoption may change the way inflation works.
The environmental impacts have so far received less attention. A single query to an AI-powered chatbot can use up to ten times as much energy as an old-fashioned Google search.
Broadly speaking, a generative AI system may use 33 times more energy to complete a task than it would take with traditional software. This enormous demand for energy translates into surges in carbon emissions and water use, and may place further stress on electricity grids already strained by climate change.
Energy
Most AI applications run on servers in data centres. In 2023, before the AI boom really kicked off, the International Energy Agency estimated data centres already accounted for 1–1.5% of global electricity use and around 1% of the world’s energy-related CO₂ emissions.
How is the rapid growth in AI use changing these figures? Recent environmental reporting by Microsoft, Meta and Google provides some insight.
Microsoft has significant investments in AI, with a large stake in ChatGPT-maker OpenAI as well as its own Copilot applications for Windows. Between 2020 and 2023, Microsoft’s disclosed annual emissions increased by around 40%, from the equivalent of 12.2 million tonnes of CO₂ to 17.1 million tonnes.
These figures include not only direct emissions but also indirect emissions, such as those caused by generating the electricity used to run data centres and those that result from the use of the company’s products. (These three categories of emissions are referred to as Scope 1, 2 and 3 emissions, respectively.)
Meta too is sinking huge resources into AI. In 2023, the company disclosed is Scope 3 emissions had increased by over 65% in just two years, from the equivalent of 5 million tonnes of CO₂ in 2020 to 8.4 million tonnes in 2022.
Google’s emissions were almost 50% higher in 2023 than in 2019. The tech giant’s 2024 environmental report notes that planned emissions reductions will be difficult “due to increasing energy demands from the greater intensity of AI compute”.
Water
Data centres generate a lot of heat, and consume large amounts of water to cool their servers. According to a 2021 study, data centres in the United States use about 7,100 litres of water for each megawatt-hour of energy they consume.
Google’s US data centres alone consumed an estimated 12.7 billion litres of fresh water in 2021.
In regions where climate change is increasing water stress, the water use of data centres is becoming a particular concern. The recent drought in California, where many tech companies are based, has led companies including Google, Amazon and Meta to start “water positive” initiatives.
These big tech firms have announced commitments to replenish more water than they consume by 2030. Their plans include projects such as designing ecologically resilient watershed landscapes and improving community water conservation to improve water security.
Climate risk
Where data centres are located in or near cities, they may also end up competing with people for resources in times of scarcity. Extreme heat events are one example.
Extreme heat translates to health impacts on local populations. A Lancet 2022 study found that even a 1°C increase in temperature is positively associated with increased mortality and morbidity.
On days of extreme heat, air conditioning can save lives. Data centres also like to keep cool, so their power use will spike with the temperature, raising the risk of blackouts and instability in electricity grids.
What’s next?
So what now? As we have seen, tech companies are increasingly aware of the issue. How is that translating into action?
Earlier this year we surveyed IT managers in Australia and New Zealand to ask what they thought about how AI applications are driving increased energy use. We found 72% are already adopting or piloting AI technologies.
More than two-thirds (68%) said they were concerned about increased energy consumption for AI needs. However, there is also significant uncertainty about the size of the increase.
Many IT managers also lack the necessary skills to adequately address these sustainability impacts, regardless of corporate sustainability commitments. Education and training for IT managers to understand and address the sustainability impacts of AI is urgently required.
JAKARTA — German chemical giant BASF and French miner Eramet have pulled out of a multibillion-dollar “green energy” project in Indonesia because of its impact on one of the last Indigenous tribes on Earth living in voluntary isolation.
In an announcement on June 24, both companies said they had scrapped plans to invest up to $2.6 billion in the project on the island of Halmahera in Indonesia’s eastern province of North Maluku. The Sonic Bay project would have seen the construction of a refinery producing about 67,000 metric tons of nickel and 7,500 metric tons of cobalt a year. These metals, crucial ingredients in electric vehicle batteries, would have come from the nearby Weda Bay Nickel mine, the world’s largest nickel mine, in which Eramet holds a minority stake.
In its announcement, BASF said it would “stop all ongoing evaluation and negotiation activities for the project in Weda Bay.”
The decision came after a sustained campaign by activists voicing concerns that the Sonic Bay refinery, which is essentially an extension of the Weda Bay Nickel project, would increase the risk of Indigenous peoples in the area losing their lands. Weda Bay Nickel’s concession overlaps with rainforest that’s home to hundreds of members of the Forest Tobelo people, according to U.K.-based Indigenous rights NGO Survival International, which has lobbied both BASF and the German authorities to drop out of the project.
Eramet’s Weda Bay Nickel mine on the territory of the uncontacted Forest Tobelo people in Halmahera, Indonesia. Image courtesy of Survival International.
‘The people who live in the forest’
The Forest Tobelo tribe are among the last Indigenous groups still living in voluntary isolation from the rest of world. They are believed to number between 300 and 500 hunter-gatherer nomadic peoples whose way of life is so intricately tied to the environment that they call themselves O’Hongana Manyawa — the people who live in the forest.
Because the Forest Tobelo people avoid contact with outsiders, it’s unlikely they could ever be reasonably consulted about any projects in their area, or give their free, prior and informed consent (FPIC) for the use of their customary lands. Some tribe members have emerged from their isolation to report losing their forests to the mining concession.
As such, any investment in the Sonic Bay project would likely contribute to the ongoing destruction of the Forest Tobelo people’s forests, Survival International said.
This could be a reason why BASF and Eramet pulled out of the project, said Pius Ginting, coordinator of the Indonesian NGO Action for Ecology and Emancipation of the People (AEER). BASF’s stated reason is that the supply of battery-grade nickel in the market has eased, and that it therefore doesn’t need to invest so heavily to secure supplies.
What it doesn’t mention, however, is that its home government, Germany, is legally obligated to protect, respect and implement the rights of Indigenous and tribal peoples and improve their living and working conditions in the countries where they live. That’s because Germany in 2021 ratified the International Labour Organization’s Indigenous and Tribal Populations Convention.
That would therefore make any German company’s involvement in a project like Sonic Bay that threatens Indigenous peoples a violation of the convention, Pius said.
He also pointed out that WBN had scored poorly in a routine annual assessment of environmental parameters by Indonesia’s Ministry of Environment and Forestry. Known as the PROPER assessment, it assigns a color code to rate companies’ performance, ranging from gold to green to blue to red to black; a gold or green grade means a company exceeds legal requirements.
In 2022, Weda Bay Nickel received a red grade, meaning it failed to operate in accordance with existing environmental and social regulations.
“Even if [BASF and Eramet] said the main reason [for their withdrawal] is because of the market and the economy, we see that environmental risks are of course being considered as well due to WBN’s bad PROPER score,” Pius said.
He added their abandonment of the project should be a wake-up call for the rest of the battery metals industry and the Indonesian government to improve the environmental, social and governance (ESG) performance of the industry.
A member of the Forest Tobelo indigenous group in North Maluku, Indonesia. Photo by Muhammad Ector Prasetyo/Flickr.
‘No-go zone’ to protect Indigenous tribe
Despite this development, WBN’s mining operation looks set to continue as the government pushes for Indonesia to become a powerhouse in the production of battery metals. This means the Forest Tobelo people will continue to be at risk of losing their forests, Survival International said.
The campaign group recently posted a video showing an uncontacted Forest Tobelo family approaching workers at a mining camp. According to Survival International, the family was asking for food after their rainforest was destroyed. It said similar scenes can be prevented by establishing a no-go zone, where no mining or other activities can take place.
Much of the nickel mined at Weda Bay goes to Chinese EV makers; the mine’s majority stakeholder is Tsingshan Holding Group, the world’s biggest nickel producer. Tesla, which doesn’t currently source nickel from Weda Bay but has signed agreements worth billions of dollars with Indonesian nickel and cobalt suppliers, said in its 2023 impact report that it was “exploring the need for a no-go zone” to protect uncontacted Indigenous peoples.
In a meeting with Survival International representatives, senior Indonesian politician Tamsil Linrung also voiced his support for the protection of the Forest Tobelo people through the establishment of a no-go zone.
“We will try to make that region a no-go zone. If not in the near future, perhaps after the next president is sworn into office [in October 2024],” he said.
Uncontacted Forest Tobelo peoples appear at a Weda Bay Nickel mining camp. The uncontacted Forest Tobelo are becoming effectively forced to beg for food from the same companies destroying their rainforest home. Image courtesy of Survival International.
Respite — for now
For now, the news that BASF and Eramet are dropping out of the refinery project provides some respite for the Forest Tobelo people, said Survival International director Caroline Pearce.
“BASF’s withdrawal means that they, at least, will not be complicit in the Hongana Manyawa’s destruction. But Eramet, and other companies, are still ripping up the rainforest and the uncontacted Hongana Manyawa simply won’t survive without it. They must stop now, for good, before it’s too late,” she said.
But another top official, Investment Minister Bahlil Lahadalia — who faces allegations of self-dealing and corruption in the revocation and reissuance of mining permits — said negotiations are still underway to get BASF and Eramet to invest in the refinery. He attributed their withdrawal to a decline in EV sales in Europe as a result of weakening purchasing power, but said this would only be temporary.
“[The project] is still pending,” he said as quoted by Indonesian news website Tempo.co. “We’re still negotiating.”
While renewable energy is seen as part of the solution to many environmental issues we are facing, it is also used as a pretext by capitalist lobbies and colonialism to overcome territorial sovereignty and implement privatisation. The case of Western Sahara is clear: two-thirds of the territory has been occupied by the Moroccan army since 1975, and now Morocco’s main tool to continue the occupation has become the green transition.
The invasion of the former Spanish colonial territories started in November 1975. The Moroccan army used napalm and a devastating amount of violence to gain those territories and forced thousands of Saharawi to flee and become refugees in Algeria and then Europe.
In February 1976 the Saharawi liberation movement Frente Polisario declared an independent Saharawi Arab Democratic Republic. (SADR); in the same month the King of Morocco signed a treaty with Spain and Mauritania where they divided the territory. When Mauritania retreated its army, Morocco entered the zone and occupied it to control the coast until Guerguerat, just north of the Mauritanian border.
In the 1980s, the Moroccan army started building a huge sand wall (the Berm) to stabilise the frontline with the area in which Frente Polisario was active. Today, that wall is the longest in the world, measuring over 2,700 km and surrounded by mined zones. To meet the enormous cost of maintaining and defending the wall, the Kingdom of Morocco exploits and exports Saharawi resources — fish and phosphates.
Corruption
Various rulings by the European Court of Justice (ECJ) have resulted in difficulties for European corporations to enter the trade in Saharawi resources. A treaty on free trade of fish and sand with European corporations was ruled illegal by the European Court in 2015; for the UK that meant the total exit of British enterprises from Western Sahara until 2021. In response, Morocco has resorted to more aggressive diplomacy in Europe and other international spaces.
In November 2022 a huge scandal was disclosed in the European parliament: the Qatargate (also known as Moroccogate). It was proven that Moroccan agents had been corrupting Members of European Parliament (MEP) using an Italian politician, Antonio Panzeri, as a middleman. Some results that Morocco gained from this strategy were: the denial of the Sakharov human rights prize to two Saharawi activists; the passing of resolutions against Algeria, which has been favouring Polisario and hosting Saharawi refugees; the modification of a European report about violence and human rights to erase the Moroccan cases; and an attempt to reverse the rulings against a fishing treaty, which banned EU companies from fishing off the Laayoune shores.
The Abraham Accords signed in 2020 between the USA, Israel, Bahrain, the UAE and Morocco, included complicit recognition of the occupations of Palestine by Israel and Western Sahara by Morocco. Israel has since increased its trade with Morocco, including new drones Morocco has used in the war against Frente Polisario.
The Moroccan army and its colonial administration of Western Sahara’s occupied territories are actively hiding information and data about the exploitation of natural resources. The Western Sahara Resources Watch monitors the exploitation and produces detailed reports on it, but we do not actually know the size of resources that are being extracted and seized by Morocco and sold off in the global market.
The biggest phosphate mine in Western Sahara is the Phosboucraa, but Moroccan institutions do not publish the amount of phosphate extracted there. Instead, they greatly publicise the renewable energy used for extracting and processing the phosphates. The Kingdom’s priority in its green transition is to provide stable energy to its biggest asset, the phosphate mining industry. Thus, the mine receives 90% of the electricity consumption from solar and wind power plants.
Renewable energy
Since 2017, the Moroccan Kingdom has rapidly been investing in the green energy sector, after realising that it lacks fossil fuel reserves, and it needs more energy. At international meetings of states who are parties to the UN Framework Convention on Climate Change, it craftily depicted itself as the most proactive country in renewables in Africa: Marrakech hosted two such meetings, lately in 2017. Since then, renewable energy projects have multiplied, and many more renewable energy power plants have been built. Morocco exploits land, air and sea in Western Sahara despite having no sovereignty over it.
Western Sahara is connected to the Moroccan grid via the capital Laayoune. A new 400kV power connection is planned between Laayoune and Dakhla, and to Mauritania. Through this power-line, Morocco plans to export renewable energy to West Africa. Exports to the EU will occur via existing and planned submarine connections with Spain, Portugal and with the UK. The UK project would see a 3.6GW submarine high-voltage direct current interconnector between the UK and the Occupied Territories, which would generate energy to meet 6% of the UK’s demand. All these plans are particularly focused on cutting the energy trade of Morocco’s first competitor and geopolitical enemy in the Mediterranean region, Algeria.
Morocco’s strategy underlines the place of energy in realising the Kingdom’s diplomatic efforts in securing support for its occupation in traditionally pro-Saharawi independence, pro-Polisario, sub-Saharan Africa (especially Nigeria). The final purpose of this strategy is to strengthen economic relations with African countries in return for recognition of its illegal occupation.
The implications for the Saharawi right to self-determination are huge. These planned energy exports would make the European and West African energy markets partially dependent on energy generated in occupied Western Sahara. The Saharawi people are 500,000: around 30-40,000 live under the Moroccan military occupation and the rest live in the Tindouf refugee camp (the capital of the exiled SADR) in Algeria and some dozen thousands are refugees in Europe.
One form of oppression by the Moroccan army against the Saharawi remaining in the Occupied Territories is by threatening to cut off the electricity in the neighbourhood of Laayoune where most Saharawi live, to make it impossible for them to record violence against the community.
Morocco is quite successful in attracting international cooperation projects in the field of renewable energy. The EU sees the country as a supposedly reliable partner in North Africa, not least because of its alleged role in the fight against international terrorism and in insulating the EU from migratory movements.
There are hundreds of foreign businesses involved in the exploitation of occupied Western Sahara’s natural resources. One of the most active is Siemens Gamesa, because it is involved in all wind power fields in occupied Western Sahara. Siemens Gamesa Renewable Energy (Siemens Gamesa) is the result of a merger, in 2017, of the Spanish Gamesa Corporación Tecnológica and Grupo Auxiliar Metalúrgico, inc. in 1976, and the German Siemens Wind Power, their “green” division. The renewable energy company develops, produces, installs and maintains onshore and offshore wind turbines in more than 90 countries; but the most critical is its participation in 5 wind farms in the Occupied Territories, one of which provides 99% of the energy required to operate the phosphate extraction and export mine of Phosboucraa.
The European Union continues to promote the sector and create alliances with Siemens Gamesa regardless of being aware that the company operates in occupied territory and therefore violating international law. According to the position of the German government, as well as that of the European Union and the United Nations, the situation in occupied Western Sahara is not resolved. Siemens Gamesa’s actions in the occupied territory, like those of other companies, contribute to the consolidation of the Moroccan occupation of the territory. Business activity in the occupied Saharawi territory has been addressed by multiple UN resolutions on the right to self-determination of occupied Western Sahara and the right of its citizens to dispose of its resources.
On the ground, it is almost exclusively an outside elite that benefits from the projects: the operator of the energy parks in Western Sahara and direct business partner of Siemens Energy and ENEL is the company Nareva (owned by the king). The Saharawi themselves have no access to projects on their legitimate territory, especially those living in refugee camps in Algeria since they fled the Moroccan invasion. Instead, Saharawi who continue to live under occupation in Western Sahara face massive human rights violations by the occupying power.
Saharawi living in the occupied territory are aware that energy infrastructure—its ownership, its management, its reach, the terms of its access, the political and diplomatic work it does—mediates the power of the Moroccan occupation and its corporate partners. The Moroccan occupation enters, and shapes the possibilities of, daily life in the Saharawi home through (the lack of) electricity cables. Saharawi understand power cuts as a method through which the occupying regime punishes them as a community, fosters ignorance of Moroccan military manoeuvres, combats celebrations of Saharawi national identity, enforces a media blockade so that news from Western Sahara does not reach “the outside world” and creates regular dangers in their family home. They also acknowledge that renewables are not the problem per se but are a tool for the colonialist kingdom to advance the colonisation in a new form and with news legitimisations from foreign countries. The new projects are being built so fast that the local opposition to them is ineffective. The Saharawi decolonial struggle is deeper, the final goal is liberation and self-determination; they acknowledge that the renewable power plants will be good when managed for the goodwill of the Saharawi in a free SADR. As a fisherman from Laayoune said in an interview about the offshore windmills: “They do not represent anything but a scene of the wind of your land being illegally exploited by the invaders with no benefits for the people”.
People interviewed: Khaled, activist of Juventud Activa Saharaui, El Machi, Saharawi activist, Ahmedna, activist of Juventud Activa Saharaui, former member of Red Ecosocial Saharaui, Youssef, local Saharawi from Laayoune, Ayoub, youth activist from Laayoune injured by police, Khattab, Saharawi journalist (interviewed with Ayoub), Asria Mohamed, Saharawi podcaster based in Sweden.
Indigenous group opposing destructive mining in Maipo river sends greetings to anti-capitalist sabotage campaign
The group “Insurrectional Cell for the Maipo: New Subversion” (Célula insurreccional por el Mapio. Nueva Subversión) has claimed last Saturday’s arson attack in the region of Valparaíso, Chile. Seven trucks were set ablaze at the El Melón concrete plant during the night of arson, and the company offices were also targeted. No injuries were reported.
In a communiqué sent to La Zarzamora, the Mapuche insurrectionary cell cited ecosystem degradation, corruption in extractive licensing, and climate change as reasons for the attack. It also declared “unity with the fight for Mapuche autonomy” from Chile and Argentina. The communiqué sent greetings to “comrades who have dealt blows in other territories of the world”, mentioning recent attacks on cement factories in Germany and resistance to the Mountain Valley gas pipeline in the USA. The communique linked the recent attack to the international Switch Off! campaign, a loose banner for anti-capitalist sabotage attacks on the infrastructure of companies who thrive on ecological catastrophe.
The group has previously targeted cement companies in the region, which depends on the Maipo river for 70% of its drinking water and over 90% of its irrigation water. Sand and mineral extraction from riverbanks affects a river’s flow and speed, creating sinkholes that propagate upstream, leading to a domino effect of regressive erosion. This erosion destroys the surrounding living system and creates conditions ripe for landslides. Worldwide, the impact of cement production contributes to about 9%of global carbon dioxide emissions, tripling the impact of air traffic and ranking among the most polluting industries.
Over the past decade, militaristic policies against any sector antagonistic to the interests of the State have intensified in Chile, continuing today under the social-democratic government. According to the text, the government is “raising false flags of struggle, colouring itself as environmentalist, pro-human rights, pro-‘indigenous peoples’ and against gender violence, proving not only to be a fraud in each of these aspects, but also reinforcing everything contrary”.