PETITION: Stop Deep Sea Mining
An emerging new industry could destroy this fragile and unique deep sea environment before we truly understand its importance.
FOR IMMEDIATE RELEASE
Organization: Save Long Beach Island, Inc. (Save LBI)
Contact: Bob Stern, Ph.D., President
Email: info@savelbi.org
Phone: 917-952-5016
Contact: Attorney – Thomas Stavola, Jr., Esq. Email: tstavolajr@stavolalaw.com
Phone: 732-539-7244
January 13, 2025
Save LBI Sues U.S. Agencies and Atlantic Shores Offshore Wind, Challenging Federal Approvals Greenlighting Marine Ecosystem Devastation, Including Risks to Critically Endangered Whales
LONG BEACH ISLAND (LBI), NEW JERSEY, January 13, 2025 – Save LBI, an organization that has been actively litigating issues surrounding marine mammal, human health, economic and other impacts connected to offshore wind industrialization off New Jersey since 2022, has filed suit against the U.S. Department of Commerce, National Marine Fisheries Service, Bureau of Ocean Energy Management, U.S. Department of Interior, and the Atlantic Shores Offshore Wind project for violations of a number of federal environmental statutes.
“This lawsuit serves as the first of its kind, launching a wide-ranging challenge against Atlantic Shores’ federal approvals, based on violations of environmental statutes such as the National Environmental Policy Act, the Endangered Species Act, the Marine Mammal Protection Act, the Outer Continental Shelf Lands Act, the Coastal Zone Management Act, and the Clean Air Act,” said Thomas Stavola, Jr., Esq., the attorney representing Save LBI. “We believe we have organized a compelling case that will demonstrate that these federal agencies were derelict in their respective duties to take critical information into account, and moreover, made arbitrary assumptions that entirely failed to disclose and consider the injurious impacts of the Atlantic Shores South project.”
Bob Stern, Ph.D., the primary plaintiff and president of Save LBI, further explained, “For example, “the agencies assume, incorrectly, that no North Atlantic right whales will suffer injury or death as a result of the Atlantic Shores South project. The evidence contradicts that assumption. In fact, our review and independent mathematical analyses shows a systemic underestimation of impact, and clearly indicate that the noise caused by pile driving, and, soon after, perpetual operational noise, will injure and kill high numbers of marine mammals — and, yes, injure and kill a number of North Atlantic right whales, a critically endangered animal that cannot afford to suffer any deaths given their numbers are now less than 340 total.”
The lawsuit ultimately seeks to have all federal approvals rescinded and the Atlantic Shores South project halted — stopping construction and preventing devastation to marine mammal life in the NJ/NY Bight regional waters. Eight other co-plaintiffs have joined Save LBI in this action, many of whom will be severely economically impacted due to the egregious harm to the marine ecosystem and the aesthetic, recreational blight imposed on the Jersey Shore via the circa 200 1,000-foot-plus high monstrosities slated to be constructed starting less than 9 miles east of Long Beach Island.
These inexcusable damages by the Atlantic Shores South project are not limited to marine mammal devastation, but also include significant impacts to tourism, shore economies, statewide energy bills, national defense, vessel navigation, and home values — all of which have been swept under the rug by much of the mainstream media, many elected officials, the Atlantic Shores company, and the federal agencies in their inexplicable haste to approve a project still in search of a clear purpose and need.
“We hope this lawsuit will serve as the vehicle to finally illuminate the damage being wrought here and to impose significant pressure on Atlantic Shores to withdraw, as their obfuscation of the project’s true effects are indefensible. The agencies simply cannot objectively argue that their approvals were made in accordance with the best science,” concluded Bob Stern.
This lawsuit was filed in federal court in the United States for the District of New Jersey on January 10, 2025.
About Save LBI
Save Long Beach Island (Save LBI) is an organization of citizens and businesses on and off the Island working together to protect the ocean and Long Beach Island and neighboring communities from the destructive impact of the Atlantic Shores project and potentially other offshore wind projects. As a not-for-profit, non-partisan entity, we do not endorse any political candidates but vigorously pursue policies and actions that protect the Island and New Jersey communities. The organization is led by Beach Haven resident Bob Stern, a Ph.D. engineer with
experience in environmental law who previously managed the U.S. Department of Energy’s office overseeing environment protection related to energy programs and projects.
Save LBI is fighting to stop the ill-conceived Atlantic Shores projects. Please visit SaveLBI.org to join the fight and consider making a donation.
ACK for Whales To File New Suits to Stop Environment-Destroying New England Wind Offshore Turbine Project
Grassroots Group Has sent Notices to Federal Government Warning of Litigation Because Government Broke Multiple Federal Laws
“We’re not going to stop fighting for the environment.”
NANTUCKET, MA, January 13, 2025 – ACK for Whales, the Nantucket grassroots group (formally known as Nantucket Residents Against Turbines) fighting to protect the environment from the devastation posed by New England Wind’s giant offshore wind project, said today that it has filed two Notices of Intent to sue the Department of Interior and other federal agencies for violating federal laws intended to protect the environment and endangered species.
The announcement comes as the group revealed the United States Supreme Court declined on Monday to hear the group’s petition for certiorari from lower court decisions on a different legal issue and involving a different project.
The new litigation is broader in scope than the suit previously filed against Vineyard Wind and seeks to halt and preclude construction by New England Wind of offshore wind turbines.
“New England Wind is an existential threat to our environment and while we are disappointed by the Court’s decision to not hear our appeal, we’re not going to stop fighting for the environment,” ACK for Whales President Vallorie Oliver said.
The Notices of Intent were sent Monday to the Departments of the Interior and Commerce, the Army Corps of Engineers, the Environmental Protection Agency, the Bureau of Ocean Energy Management (BOEM), and the National Oceanic and Atmospheric Administration and informed the federal agencies that decisions made to allow New England Wind’s project to build turbines off Nantucket and Martha’s Vineyard violate the Endangered Species, Marine Mammal Protection, National Historic Preservation, and Outer Continental Shelf Land Acts.
The letters warn that if the agencies do not reverse their approvals, ACK for Whales will proceed with its suits when the 60 day Notice period expires to prevent “substantial” harm to biological resources, including the endangered North Atlantic Right Whale, interference with economic activities in the high seas and territorial seas, including tourism, commercial fishing, and whale watching.
“The government continues to mislead the people of Massachusetts,” Oliver said, “making their usual false claims about offshore wind. The state’s press release claimed building these whale- killing monstrosities will ‘reduce the state’s carbon emissions by the equivalent of taking one million gas-powered cars off the road. Collectively, these projects will create thousands of jobs and generate billions of economic activity.’
“The State made the same false claims about Vineyard Wind and since that project was begun, BOEM has admitted building offshore wind will have no meaningful impact on reducing climate change, Vineyard Wind admits it’s not keeping track of the jobs it allegedly creates in Massachusetts, and its CEO admits that our power bills are going up.
“We can’t figure out why the government keeps giving away the store to foreign energy companies like Avangrid,” Oliver said. “We’re a non-partisan organization, we don’t do politics, but we hope Mr. Trump keeps his word and ends this madness on Day One of his Administration,” Oliver said.
About ACK for Whales
ACK for Whales is a group of Nantucket community members who are concerned about the negative impacts of offshore wind development off the south shores of our beloved Island. The Massachusetts/Rhode Island wind area is bigger than the state of Rhode Island and will ultimately be occupied by 2,400 turbines, each taller than the John Hancock building in Boston, connected by thousands of miles of high voltage cables. There are many unanswered questions, and the permitting of these massive utility projects has happened largely out of the public eye. We provide a community group of neighbors and friends, who all love the same place.
Contacts
Media: Mark Herr
203-517-8957
Mark@MarkHerrCommunications.net
Photo by Chloe Christine on Unsplash
By Olivia Rosane is a staff writer for Common Dreams from Dec 02, 2024
Environmental organizations cheered as Norway’s controversial plans to move forward with deep-sea mining in the vulnerable Arctic Ocean were iced on Sunday.
The pause was won in Norway’s parliament by the small Socialist Left (SV) Party in exchange for its support in passing the government’s 2025 budget.
“Today marks a monumental victory for the ocean, as the SV Party in Norway has successfully blocked the controversial plan to issue deep-sea mining licenses for the country’s extended continental shelf in the Arctic,” Steve Trent, CEO and founder of the Environmental Justice Foundation, said in a statement. “This decision is a testament to the power of principled, courageous political action, and it is a moment to celebrate for environmental advocates, ocean ecosystems, and future generations alike.”
Norway sparked outrage in January when its parliament voted to allow deep-sea mining exploration in a swath of its Arctic waters larger than the United Kingdom. Scientists have warned that mining the Arctic seabed could disturb unique hydrothermal vent ecosystems and even drive species to extinction before scientists have a chance to study them. It would also put additional pressure on all levels of Arctic Ocean life—from plankton to marine mammals—at a time when they are already feeling the impacts of rising temperatures and ocean acidification due to the burning of fossil fuels.
“The Arctic Ocean is one of the last pristine frontiers on Earth, and its fragile ecosystems are already under significant stress from the climate crisis,” Trent said. “The idea of subjecting these waters to the destructive, needless practice of deep-sea mining was a grave threat, not only to the marine life depending on them but to the global community as a whole.”
“Thankfully, this shortsighted and harmful plan has been halted, marking a clear victory in the ongoing fight to protect our planet’s blue beating heart,” Trent continued.
In June, Norway announced that it would grant the first exploratory mining licenses in early 2025. However, this has been put on hold by the agreement with the SV Party.
“This puts a stop to the plans to start deep-sea mining until the end of the government’s term,” party leader Kirsti Bergstø said, as The Guardian reported.
Norway next holds parliamentary elections in September 2025, so no licenses will be approved before then.
The move comes amid widespread opposition to deep-sea mining in Norway and beyond. A total of 32 countries and 911 marine scientistshave called for a global moratorium on the practice. More than 100 E.U. parliamentarians wrote a letter opposing Norway’s plans specifically, and the World Wide Fund for Nature (WWF) has sued to stop them.
“This is a major and important environmental victory!” WWF-Norway CEO Karoline Andaur said in a statement. “SV has stopped the process for deep seabed mining, giving Norway a unique opportunity to save its international ocean reputation and gain the necessary knowledge before we even consider mining the planet’s last untouched wilderness.”
Haldis Tjeldflaat Helle, the deep-sea mining campaigner at Greenpeace Nordic, called the decision “a huge win.”
“After hard work from activists, environmentalists, scientists, and fishermen, we have secured a historic win for ocean protection, as the opening process for deep-sea mining in Norway has been stopped,” Helle said in a statement. “The wave of protests against deep-sea mining is growing. We will not let this industry destroy the unique life in the deep sea, not in the Arctic nor anywhere else.”
However, Norway’s Arctic waters are not entirely safe yet.
Prime Minister Jonas Gahr Stoere, of the Labour Party, toldTV2, on Sunday, “This will be a postponement.”
The government said that other work to begin the process of deep-sea mining, such as drafting regulations and conducting environmental impact surveys, would move forward. Norway is currently governed by the Labour and Center parties. The two parties leading in polls for September’s elections—the Conservatives and Progress Party—also both back deep-sea mining, according toReuters.
“If a new government attempts to reopen the licensing round we will fight relentlessly against it,” Frode Pleym, who leads Greenpeace Norway, told Reuters.
Other environmental groups tempered their celebrations with calls for further action.
Trent of the Environmental Justice Foundation said that “while today is a cause for celebration, this victory must not be seen as the end of the struggle.”
“We urge Norway’s government, and all responsible global actors, to make this a lasting victory by enshrining protections for the Arctic Ocean and its ecosystems into law, and coming out in favor of a moratorium or ban on deep-sea mining,” Trent added. “It is only through a collective commitment to sustainability and long-term stewardship of our oceans that we can ensure the health of the marine environment for generations to come.”
Trent concluded: “Today, thanks to the SV Party and all those around the world who spoke up against this decision, the ocean has won. Now, let’s ensure this victory lasts.”
Andaur of WWF said that this was a “pivotal moment” for Norway to “demonstrate global leadership by prioritizing ocean health over destructive industry.”
As WWF called on Norway to abandon its mining plans, it also urged the nation to reconsider its exploitation of the ocean for oil and gas.
“Unfortunately, we have not seen similar efforts to curtail the Norwegian oil industry, which is still getting new licenses to operate in Norwegian waters, including very vulnerable parts of the Arctic,” Andaur said. “Norway needs to explore new ways to make money without extracting fossil fuels and destroying nature.”
Greenpeace also pointed to the role Norway’s pause could play in bolstering global opposition to deep-sea mining.
“Millions of people across the world are calling on governments to resist the dire threat of deep-sea mining to safeguard oceans worldwide,” Greenpeace International Stop Deep-Sea Mining campaigner Louisa Casson said. “This is a huge step forward to protect the Arctic, and now it is time for Norway to join over 30 nations calling for a moratorium and be a true ocean champion.”
Photo by Alain Rieder on Unsplash
By Liz Kimbrough / Mongabay
KLAMATH, CALIFORNIA—Brook M. Thompson was just 7 years old when she witnessed an apocalypse.
“A day after our world renewal ceremony, we saw all these fish lined up on the shores, just rotting in piles,” says Thompson, a Yurok tribal member who is also Karuk and living in present-day Northern California. “This is something that’s never happened in our oral history, since time immemorial.”
During the 2002 fish kill in the Klamath River, an estimated 30,000 to 70,000 salmon died when the U.S. Bureau of Reclamation diverted water to farms instead of letting it flow downstream. This catastrophic event catalyzed a movement to remove four dams that had choked the river for nearly a century.
Now, that decades-long tribal-led movement has finally come to fruition. As of Oct. 5, the four lower Klamath hydroelectric dams have been fully removed from the river, freeing 676 kilometers (420 miles) of the river and its tributaries. This is the largest dam-removal project in history.
“This has been 20-plus years in the making, my entire life, and why I went to university, why I’m doing the degrees I’m doing now,” says Thompson, who is an artist, a restoration engineer for the Yurok Tribe and pursuing a Ph.D. in environmental studies at the University of California, Santa Cruz.
“I feel amazing,” Thompson tells Mongabay at the annual Yurok Salmon Festival in Klamath, California, in late August, just weeks before the river was freed. “I feel like the weight of all that concrete is lifted off my shoulders.”
A river dammed
The Klamath River stretches 423 km (263 mi) from its headwaters in southern Oregon to the Pacific Ocean just south of Crescent City, California. It was once the third-largest salmon-producing river in the contiguous U.S., sustaining tribes for centuries and later also supporting a thriving recreational and commercial fishing industry.
Six Klamath River dams were built by the California Oregon Power Company (now Portland, Oregon-based electric company PacifiCorp) in the 20th century. The four lower dams, built to generate hydroelectric power, were Copco No. 1, completed in 1918, followed by Copco No. 2 in 1925, the J.C. Boyle Dam in 1958, and Iron Gate Dam in 1964.
At the time, they were seen as marvels of engineering and progress, promising cheap electricity to fuel the region’s growth. Together, these four dams could generate 163 megawatts of electricity, enough to power roughly 70,000 homes and drive development in the remote territory.

However, the dams came at a tremendous cost to the river’s ecosystem and the Karuk, Yurok, Shasta, Klamath and Modoc tribes who have depended on its salmon since time immemorial.
In the decades after dam construction, the river’s once-thriving ecosystem began to collapse and salmon populations plummeted. In 1997, coho salmon (Oncorhynchus kisutch) in the Klamath were listed under the federal Endangered Species Act.
The life cycle of salmon is tied to the free flow of rivers. These fish are born in freshwater streams and migrate to the ocean, where they spend most of their adult lives, and then return to their natal streams to spawn and die. This journey, which can span thousands of miles, is crucial for the genetic diversity and resilience of salmon populations.
Dams disrupt this natural cycle by blocking access to spawning habitat, altering water temperatures, and degrading water quality. On the Klamath, salmon lost hundreds of miles of habitat. Worldwide, not just salmon, but many other migratory fish species such as trout, herring, eels and sea lamprey are blocked by dams.


“The dams were like a blockage in the river’s arteries. They stopped the flow of life, not just for the fish, but for our people too,” Ron Reed, a traditional Karuk fisherman and cultural fire practitioner, tells Mongabay. He recalls the stark decline in fish populations during his lifetime.
“As I grew up, the fish catching down here became almost nonexistent. At some points I was catching maybe 100 fish in a year,” Reed says. “At the time the Karuk Tribe had more than 3,000 members. That’s not enough for anything. Not even everybody gets a bite.”
Commercial and recreational fishing also took a hit over the years. “Back in the mid-1900s, the Klamath River was known as the single most revered fly-fishing river in California,” Mark Rockwell, vice president of conservation for the Montana-based NGO Fly Fishers International, which supported the dam removal efforts, said in a statement. “Fly fishers came from all over the U.S. and other countries to experience the historic fishery. All that was lost because of the dams and the damage & disease they brought to the river.”

For the tribes, the impact of the dams went beyond fish. The dams created large reservoirs that flooded ancestral lands and cultural sites, particularly village sites and important ceremonial areas of the Shasta Indian Nation in the upper Klamath.
Reed also shared memories of the dangers posed by the dams farther downstream in Karuk territory. “When I was growing up, we were not allowed to go to the river. Before Iron Gate Dam was put up [to control flows from the Copco dams] you had that surge when they made electricity and that fluctuation was up to 3 feet,” he said. “We were losing people along the river. There are stories of our people drowning.”
The movement to undam the Klamath
The fight to remove the four lower Klamath dams began in earnest in the early 2000s, led by the Yurok, Karuk and Klamath tribes. After the 2002 fish kill made national news, the campaign to remove the dams grew beyond a local issue into a national movement supported by environmental NGOs and pro-fishing groups in California and beyond, such as American Rivers, Ridges to Riffles Conservation Group, California Trout, Save California Salmon, and the Native Fish Society.
In 2004, Tribal members and their allies traveled to Scotland to protest Scottish Power, which owned the dams at the time. The Scottish people rallied in support of the protesters, and in 2005 Scottish Power transferred ownership back to PacifiCorp, a subsidiary of Warren Buffett’s Berkshire Hathaway Energy. Protesters then took their message to shareholder meetings in Omaha, Nebraska.
Those in favor of dam removal argued that dams had been catastrophic for the ecosystem. The lower dams provided no irrigation, drinking water or flood control. Electricity from the dams did not go directly to local residents but was channeled into the Pacific power grid, which powers homes as far north as Vancouver, British Colombia, and as far south as Baja California. And finally, it would cost more to bring the dams up to modern standards than to remove them.
On the other hand, residents of the Copco community stood to lose the Copco Reservoir, a lake used for recreation and a tourism draw for the area. Others feared loss of energy and water quality problems. The campaign to remove the Klamath dams faced numerous challenges, including entrenched economic interests, local opposition, and complex regulatory hurdles.
Dam removal advocates overcame these obstacles through persistent grassroots organizing, alliances between tribes and environmental groups, and media campaigns that brought national attention to the scientific evidence about the dams’ negative impacts on salmon populations and water quality.
But what really made a difference was proving that removing the dams would cost less than fixing them up.
PacifiCorp and its parent company, Berkshire Hathaway Energy, initially resisted removal, but gradually shifted their stance as the financial and regulatory landscape changed. The turning point came when advocates demonstrated that removal could cap PacifiCorp’s liability and potentially save ratepayers money in the long term.
In 2016, after much negotiation, PacifiCorp agreed to transfer the dams to the Klamath River Renewal Corporation (KRRC), a nonprofit organization created specifically to take ownership of the dams and oversee their removal. By agreeing to transfer the dams to KRRC, PacifiCorp found a way to get rid of money-losing properties while avoiding uncertain future costs and risks.
In 2022, the Federal Energy Regulatory Commission (FERC) approved the plan, paving the way for the largest-ever dam removal and river restoration project not just in the U.S., but in the world.
Ultimately, dam removal and river restoration came with a price tag of approximately $450 million, funded through a combination of surcharges on PacifiCorp customers and California state bond money. Although Pacificorp hasn’t provided an official cost estimate, they have said it would have cost a great deal more to keep the dams operating safely.
Removing mountains of concrete and earth
Removing four massive dams is no small feat. The process involved years of planning, environmental impact studies, and complex engineering work.
“Removing a dam is like performing open-heart surgery on the landscape,” says Dan Chase, a fisheries biologist with Resource Environmental Solutions (RES), the company contracted to handle the restoration work. “You have to be incredibly careful and precise, or you risk causing more harm than good.”
The physical removal of the dams began in mid-2023 and concluded in October 2024. It was a carefully orchestrated process that involved slowly draining reservoirs, demolishing concrete structures, scooping away the earthen dams, and managing the release of decades of accumulated sediment.
The removal of the dams occurred in a staggered sequence, beginning with the smallest dam and progressing to the larger ones. Copco 2, the smallest, was the first to be fully removed, with the process completed in October 2023.
This was followed by the initiation of drawdown (the controlled release of water) for the large reservoirs behind the three remaining dams, Iron Gate, J.C. Boyle and Copco 1, in January 2024.
The first step was to breach the dam (either with explosives or using existing openings) and lower the water level in the reservoir behind it. This was done gradually to minimize erosion and downstream damage. Contractors used special water tunnels and diversions to control water release.

Ren Brownell, the public information officer for KRRC, describes the day she watched the waters of the Iron Gate reservoir, tinged electric green from toxic algal blooms, drain in just 17 hours.
“It was like watching 10,000 years of geology in a matter of a week. [The sediment] washed away and eventually the Klamath River was revealed,” Brownell, who grew up in the area, tells Mongabay. “I end up looking back on that period as one of my favorite times on the project, because I got to watch a river come back to life and just reveal itself.”
Decades worth of sediment had accumulated behind the dams, most of which was washed downstream by the draining of the reservoirs. Although the river was extra muddy and turbid after each dam removal, experts view this as a positive sign of the ecosystem reclaiming its natural state.

With the water levels lowered, heavy machinery moved in to begin breaking apart the concrete structures. Kiewit, the contractor KRRC hired to complete the deconstruction elements of the project, used hydraulic hammers, explosives, and other specialized equipment to demolish the dams, piece by piece.
According to KRRC, the concrete was buried onsite and the earthen material was returned to nearby areas, ideally where it had been originally removed from to build the dams. Hazardous materials were hauled offsite to appropriate facilities and metals were recycled.
Restoring an ecosystem
RES, who is overseeing restoration, now faces the monumental task of restoring the river channel and the 890 hectares (2,200 acres) of land that were once submerged beneath reservoirs.
“It’s not enough to just take out the dams,” says Chase, the RES fish biologist. “We need to help jump-start the ecosystem’s recovery.”
This effort began years before the dams were removed. In 2019, crews of primarily Yurok tribal members began a massive effort to gather seeds from native plants in the surrounding areas, including oak trees, poppies and various grasses.
“We had crews out collecting native seeds, with close to 100 different species collected from the area that we then took to commercial nurseries to grow and harvest and grow out again to the point where we’re now in the neighborhood of 17 to 19 billion native seeds,” says David Meurer, director of community affairs for RES.
A combination of hand seeding and helicopter seeding occurred at all three major reservoir footprints: Copco 1, Iron Gate and J.C. Boyle. (The smaller Copco 2 dam had impounded just a narrow, rocky area that only needed to be reshaped, according to RES.) The first round of seeding served to stabilize the sediment and improve soil. RES says this was a success, though there have been some challenges and surprises, including some rogue horses.
“We did not expect a huge and ever-increasing herd of horses who obviously are going to prefer our forage, which is green and lush, to what they saw in the surrounding hillside,” Meurer says. To address this unwanted grazing, RES is installing a rather long and costly fence around the planted areas.
As the dams came down, crews also began restoring the natural river channel. RES worked with a Yurok construction company to help direct the stream back toward its historic alignment. The team is still fine-tuning the river’s path, using plane-mounted lidar laser imaging to map and guide their work.

The return of the salmon
Down a gravel road in Northern California, through a thicket of willow trees, around big boulders, and over smooth cobbles, is the place the Karuk Tribe calls the center of the world. A massive wedge of stone, a mini-mountain, stands guard over a section of the Klamath River rife with riffles and rapids.
On the river’s edge, Reed sits atop a massive boulder, praying. A white bird traces slow circles overhead. It’s later summer, a season of ceremony for the tribes. The world renewal ceremony is tied to the upstream migration of salmon.
Reed, a tribal elder, hops spryly across boulders to the base of a small rapid. With practiced movements, he swoops the end of a traditional dip net, a 15-foot loop of willow tree branch with a net at the end, into the whitewater.

Within seconds, a fat salmon thrashes in the net. Reed and Sonny Mitchell Jr., a Karuk fisheries technician, let out shouts of celebration. This was the first fall Chinook salmon (Oncorhynchus tshawytscha) of the season. They carry the fish back to a congratulatory crew and carefully clean it in a trickle of fresh water.
“We’re eating well tonight,” Mitchell says.
Because of their cultural and economic status, restoration efforts cater largely to the needs of the fish. As the physical landscape transforms post-dam removal, eyes are on the river’s iconic salmon.
“We’re already seeing positive changes,” Toz Soto, fisheries program manager for the Karuk Tribe, said, just weeks before the dam removal was complete. “Water temperatures are more natural, sediment is moving downstream as it should, and we expect fish to start to explore areas they haven’t been able to reach in generations.”
This expectation has already become a reality. According to the Oregon Department of Fish and Wildlife, “On October 16, a fall-run Chinook salmon was identified by ODFW’s fish biologists in a tributary to the Klamath River above the former J.C. Boyle Dam, becoming the first anadromous fish to return to the Klamath Basin in Oregon since 1912 when the first of four hydroelectric dams was constructed, blocking migration.”
And a post by Swiftwater films, the official documentary crew for the project stated, “The first chinook salmon in over 60 years are officially spawning above the former Iron Gate dam on the Klamath, just two weeks after construction wrapped on dam removal…The fish are bright, strong and beautiful. What an incredible few days and a testament to the resilience of salmon.”

To improve salmon habitat, the RES team is adding structures to the river and its tributaries, such as fallen trees, to create pools and riffles the salmon require for spawning. They’re also installing what they call “beaver dam analogs,” structures of wood or rock pounded in along streams to slow the water down and catch sediment.
The removal of the Klamath dams will help many types of fish, says Shari Witmore, a fisheries biologist with the National Oceanic and Atmospheric Administration (NOAA), who is studying salmon and other fish in the river, told Mongabay. The coho salmon, which are threatened with extinction, will gain about 122 km (76 mi) of river to live in. The project might also bring back spring Chinook salmon, which used to be common in the upper river but have nearly disappeared.
“What we’ve seen in other dam removals is that it takes about three to four [salmon] generations for salmon populations to become sustainable,” Witmore says. “And so for Chinook salmon, that’s 15 to 20 years, and for coho salmon, that’s six to 12 years.”
Pacific lamprey (Entosphenus tridentatus), another culturally important species for the tribes, and steelhead (O. mykiss irideus) will gain access to an additional 644 km (400 mi) of river. These fish can swim in faster-moving water than salmon. With more places to live and breed, all these fish species should have a better chance of survival.
And, of course, the whole ecosystem will benefit, says Chase of RES. “We have northwestern pond turtle. We have freshwater mussels. There’s beaver out there. We’ve been seeing river otter foraging … it goes on and on.”

Tribal knowledge and collaboration
The restoration of the Klamath River has been aided by tribal knowledge, sometimes referred to as traditional ecological knowledge (TEK) or, as Reed calls it, “place-based Indigenous science.”
“Certainly, the place-based knowledge component has been vital to us,” Chase says. “Thinking about the species of plants to use, where they’re occurring on the landscape, what species are culturally significant and important that need to be included. That’s been an element of refining and improving our restoration work.”
On the fisheries side, Chase says, the tribes have shared an immense amount of information with the RES team on how fish move through the landscape, the habitats they use, and the ways the different life stages respond to various environmental factors.
One example is related to off-channel habitats, places off the main river stem where fish can go in the winters when stream flow is faster and in the warm summer when cover and food are critical. Tribal knowledge about how to create and enhance these features, and how fish interact with them, has helped RES to restore historic salmon habitats.
Healing rivers, healing people
“The decline of salmon has been linked to higher rates of diabetes and heart disease in our communities,” says Thompson, the Karuk and Yurok restoration engineer and Ph.D. student. “Their return is quite literally a matter of life and death for us.”
The removal of the Klamath dams is a step toward healing historical wounds inflicted on the Native American tribes of the region through decades of genocide and colonialism, according to Thompson and Reed.
However, the fight to remove the dams has taken a toll on those involved. Reed speaks candidly about the mental health challenges he and others have faced during the long struggle.
“I almost lost my family. You’re gone trying to fix the world. I’m going to Scotland. I’m going to wherever, whenever, however. It’s hustle, hustle, hustle. Meanwhile, my wife’s home with six children.” Eventually, he says, “I broke down, suffered depression … I just happened to have a good, strong family that allowed me to kind of come out of it.”
Reed and hundreds of others persevered. “We’re not just fighting for ourselves,” Reed says. “We’re fighting for our children, our grandchildren, and the salmon themselves.”
“These salmon were taken care of by my ancestors, who I had never met and never had contact with myself,” Thompson says. “The salmon are like love letters sent into the future where the love and effort put into the salmon were done so that I could have a good and healthy life.”
Challenges remain
For the Klamath region, the challenges are far from over. Climate change, wildfires, and the legacy of more than a century of colonialism and ecological disruption still pose significant threats.
“There’s been so much degradation over the last 100-plus years from agriculture, forestry, water diversion and grazing,” says Mark Buettner, director of the Klamath Tribe’s Ambodat Department, which is responsible for aquatic resource management in the Upper Klamath Basin.
There are still two smaller dams in the upper Klamath River in Oregon: the Keno and Link River dams. These aren’t hydropower dams, unlike the four that were removed; they provide flood control and water for agriculture, and there’s currently no plan to remove them.
“I want to emphasize that we’re happy that salmon will be back, but we’re not really ready for them,” Buettner adds. “Sure, the fish have free access to the upper basin, but the upper basin habitats aren’t optimal. Young fish could be diverted into irrigation diversions. The Keno dam needs a new fish ladder.”
As I pass through Karuk territory in late August, traveling west toward the ocean, the air is heavy with smoke and fire crews pass regularly in their trucks, serving as a stark reminder of the work that still lies ahead. This includes addressing more than 150 years of colonial fire suppression practices, Reed says.


“When settlers first arrived in the Klamath region of what is now Northern California, they found forests with enormous trees, wooden homes and structures, acorn orchards, abundant plants, berries, fish, wildlife and clean water. All of it was made possible by Indigenous peoples’ frequent use of fire on the landscape,” Russel Attebery, chair of the Karuk Tribe, writes in a opinion piece for news outlet CalMatters. “California is not just fire-adapted, it is fire dependent.”
However, these controlled or cultural burns were outlawed in 1850 and are still “unjustly criminalized,” Attebery writes. The lack of prescribed burns, coupled with warmer and drier conditions from climate change, has led to more severe and frequent wildfires.
Wildfires are taking a toll on the Klamath River. Debris flow from last year’s McKinney Fire killed thousands of fish. Fires can heat up the river, making it too warm for cold-water fish like salmon. They also send silt and ash into the water, which can choke fish and smother their eggs. Sometimes, the erosion from fires even changes the river’s path. The ecosystem evolved with fire, but not at the frequency and severity of modern fires.
Reed and other traditional fire practitioners are being asked by academics and fire-management agencies to advise on traditional burning practices, and restore balance.
The irony of Native peoples being asked to consult on how to restore the land that was stolen from them isn’t lost on Reed. “I think we’re leading the nation with teaching cultural fire, through a faith-based process and hopefully this co-production of knowledge,” he says. But, he adds, “it’s kind of like, OK, they took our gold, they took our timber, they took everything, and they’re still taking our knowledge.”

A cautionary tale
Many of the people I speak to cast the story of the Klamath dams as one of hope, but also as a cautionary tale for regions around the world considering large-scale dam projects.
While dams can provide benefits such as hydropower and water storage, they also levy significant environmental and social costs. Moreover, all dams have a finite lifespan, and their eventual removal is an expensive and complex process that planners often ignore.
“Dams were never meant to be pyramids,” says Ann Willis, California director of the NGO American Rivers. “They’re just infrastructure, and eventually, infrastructure ages. You can either be proactive about repairing, retrofitting or removing it, or you can deal with the far greater costs of a catastrophic failure after it happens. But there’s no question that one day it will fail.”
In many parts of the world, large dam projects are still being proposed and constructed. The lessons from the Klamath suggest these projects should be approached with caution, with full consideration given to long-term environmental and social impacts, as well as the inevitable costs of decommissioning at the end of the dam’s lifespan.

“No single agency is responsible for removing a dam, and [there’s] no requirement for dam owners to save funds for its removal,” Willis says. “The process of removing obsolete, disintegrating dams can take decades while people navigate a web of bureaucracy and look for funding. As time goes on, the risk of failure increases, which is incredibly dangerous as most dams would cause significant loss of human life and economic damage if they failed.”
As of February 2024, more than 2,000 dams have been removed across the U.S., most of them in the past 25 years, according to American Rivers. But more than 92,000 remain standing. Willis says she hopes the success of the Klamath dams’ removal and restoration project can serve as a blueprint for similar efforts around the world.
“The Klamath is significant not only because it is the biggest dam removal and river restoration effort in history, but because it shows that we can work towards righting historic wrongs and make big, bold dreams a reality for our rivers and communities,” Willis says. “Dam removal is the best way to bring a river back to life.”

‘Anything is possible now’
Amid the world’s tallest trees, where the Klamath River meets the Pacific Ocean, the annual Yurok Salmon Festival is in full swing when I arrive. On the main street, outside the Yurok Tribal Headquarters in the town of Klamath, California, dozens of booths are selling arts and crafts. There’s music, dancing, games, and a palpable sense of joy in the air.
But something’s missing this year: The salmon. Due to low numbers, both tribal and commercial fishing have been suspended this year.
Despite this absence, attendees express hope and a sense that change is coming. “We are delighted about the dam removal and hope for the return of the salmon,” says Yurok artist Paula Carrol. “We are salmon people. Without salmon, who are we?”
“This is still a celebration,” Thompson says, “and anything is possible now.”

Banner image by Patrick McCully, CC BY 2.0, via Wikimedia Commons
Liz Kimbrough is a staff writer for Mongabay and holds a Ph.D. in ecology and evolutionary biology from Tulane University, where she studied the microbiomes of trees. View more of her reporting here.
Editor’s note: Protecting the ocean means life protection, our ecosystems depend on intact and clean oceans. Even though the aim is to protect 30% of the planet, it’s not clear what conservation actually means worldwide. That leads to ineffective conservation measures and demands more knowledge about oceanic ecosystems and also implementing it. For the most part protected areas don’t need to be managed, they just need to have humans leave them alone.
There’s never been more momentum for protecting the ocean, but new research finds that many efforts fail to protect endangered species — or have barely gotten off the drawing board.
Ocean ecosystems and the marine wildlife that depend on them are under threat as never before. Between overfishing, climate change, plastic pollution, and habitat destruction, it’s a bad time to be a prawn, cod, seabird, or whale.
There’s no single silver bullet solution to the biodiversity crisis, but in recent years, many people in the environmental community have focused on the goal of “30 x 30”: protecting 30% of the planet by the year 2030. Many nations have made promises toward that goal, including the United States, which has adapted it into the “America the Beautiful” initiative.
Measurable goals like this provide nations with clear, quantifiable conservation goals that others in the international community can follow, verify, or use to identify shortfalls and push for more action.
At the same time, many experts warn that number-based targets like “protect 30%” lend themselves to incentives to arguably-kinda-sorta protect as much as possible, rather than protecting the most ecologically important areas. Governments, for instance, can use what’s euphemistically referred to as “creative accounting” — counting things as protected that probably should not be considered protected.
Two new research papers examine some of this creative accounting in the ocean. Together, they stress important things to keep in mind when creating protected areas and when assessing their usefulness.
A surprisingly common issue in area-based conservation happens when a government declares a new protected area to help save a threatened species of concern…without first checking to see if the species actually lives within those boundaries.
It happens more often than you might think. A new study published in the Journal of Animal Ecology looked at 89 marine protected areas in Europe that are supposed to protect diadromous fish species (those that migrate between ocean and fresh water, like salmon or some eels) of conservation concern.
Their findings are shocking: Many of these areas protect habitats where those fish species do not live, and very few of them protect the most important core habitat for any diadromous fish species.
“A marine protected area should be an area that protects part of the marine environment,” says Sophie Elliott of the Wildlife Conservation Trust, the study’s lead author. “I say ‘should’ because there are a lot of parks that don’t have enough thought put into them. Quite often things are done quickly without thinking or understanding the situation.”
Sometimes this happens because of limited resources for scientific study. In other words, according to Elliot, we simply don’t know enough about species’ habitat use to protect their key habitat, at least not yet. This is known as the rare-species paradox: Endangered species are often hard to find and study, especially in the vast ocean, so it can be hard to understand what habitat qualities they need to thrive, even if we can hypothesize that protecting certain regions will mitigate some of the threats the species face.
Other times government officials, in search of positive publicity, announce a new protected area that was studied but wasn’t intended to protect a species.
“We had a series of MPAs that were supposed to have measures in place to protect certain species,” Elliott says. “But then an extra species got tacked on to the stated goals of the MPA, and it wasn’t effective for that species.” She declined to identify examples, given the political sensitivities of some of these protected areas.
In addition to gathering more data and always basing protected-area design on the best available data, Elliott recommends a more holistic approach to designating future protected areas.
“When people think about putting MPAs in place, look at the whole range of biodiversity that exists within it, because there might be many endangered and protected species,” she says. “You need to know what’s in that MPA and do ecosystem-based management” — management focusing on the whole ecosystem and not just individual species. It’s the difference between protecting cod by establishing fishing quotas versus protecting cod by also managing their habitat and predators and food and other things that eat that food. “We’ve long been calling for that, but we aren’t really working toward it at all,” she says.
Another key issue in marine protected area management is what should count as “protected.”
Some areas restrict oil and gas extraction but allow any and all fishing. Some allow swimmers and other recreation, while others say people can’t even go scuba diving.
In one glaring recent example, the advocacy group Oceana U.K. found evidence that the United Kingdom allows bottom trawling in many of its MPAs. Bottom trawling is a fishing method that’s extremely destructive to sensitive habitat types; it’s been compared to clear-cutting forests to catch rabbits.
“At the end of the day … there’s no one clear definition of what conservation means around the world,” says Angelo Villagomez, a senior fellow at the Center for American Progress who has studied the issue. “One of the negative externalities of the global push to protect 30% of the ocean is that some governments are more concerned with being able to say that they protected 30% of the ocean than they are concerned with delivering meaningful biodiversity protections.”
Villagomez and his colleagues have identified another big issue: According to their new analysis in the journal Conservation Letters, fully one-quarter of the 100 largest marine protected areas — as cataloged in the United Nations and IUCN’s world database of protected areas — are announced but not yet implemented. Many have no clear timeline of when the formal protections might be put into place, or what those regulations might look like.
For now, those areas exist on paper but remain unprotected in the real world. For example, the paper cites the OSPAR MPA network covering 7% of the Northeast Atlantic, which currently appears to have no concrete protections.
This wide range of rules and inconsistent protections makes it harder to protect the ocean — or to count it toward 30×30 goals.
Governments are not supposed to submit anything to the world database of protected areas until something is designated, “but they do, and that’s just the reality,” says Villagomez.
But here’s the biggest problem: The study found that many of the world’s largest MPAs lack the scientific knowledge, funding, and political support to be effective.
“We know that MPAs work when they are well designed and provided the funding to operate,” Villagomez told me. “But for about one-third of the MPAs we studied, based on everything we know about protected area science, they will never result in positive outcomes for biodiversity.”
The conclusions of these two papers are clear: Too many marine protected areas are poorly designed and sited in places where the species they’re ostensibly trying to protect do not actually live. Also, too many allow destructive extractive industries to operate, limiting the benefits of any protection.
Despite these setbacks, Villagomez remains optimistic about the future of MPA-based protections.
“The good news is that this works really well about one-third of the time — if you play baseball and you hit the ball 300 out of 1,000 times, you’re going to the Hall of Fame,” he says. “There’s a ton of science that shows that well-designed well-implemented MPAs work, and for one-quarter of the MPAS we looked at, they’re well designed and are just lacking funding for implementation.”
Nick Young 26 July 2024 / Greenpeace Scientists have found a source of ‘dark oxygen’ 4,000 meters below the surface of the Pacific in the target zone for deep sea mining. The discovery could have far-reaching implications for science and the wannabe deep sea mining industry. It’s often said that we know more about the surface of the moon than we do about the deep ocean. This new discovery of dark oxygen shows how true that is, and underlines the need to stop a new deep sea mining industry from targeting its source.
What scientists mean by ‘dark oxygen’ is that – in the total darkness of the very deep ocean – around 4,000 meters below the surface of the Pacific Ocean – oxygen is being produced – in the dark.
It’s previously been thought that oxygen on Earth is produced on land and at the surface of the ocean, where sunlight makes plant photosynthesis possible.
Plants on land are the biggest producers of oxygen, but marine algae and phytoplankton also produce it. These microscopic organisms perform photosynthesis in the ocean, which covers about 70% of the Earth’s surface.
Blue-green algae – or cyanobacteria – are some of the oldest organisms on Earth and can also produce oxygen. They were among the first to do so through photosynthesis, and they also need sunlight.
The common factor in oxygen production is sunlight – until this discovery of dark oxygen showed that oxygen is also being produced in another way in the deep dark sea.
The dark oxygen discovery is being hailed as a groundbreaking scientific discovery, but it also has other implications.
Nick Owens, the director of the Scottish Association for Marine Science (SAMS) says: “The fact that we’ve got another source of oxygen on the planet other than photosynthesis has consequences and implications that are utterly profound.”
Andrew Sweetman, who was one of the SAMS scientists involved in the research, says in a video: “This research potentially sheds light on where life began on the planet. This discovery has shown that, well, maybe there was another source of oxygen a long time ago and aerobic life or life that breathes oxygen could have persisted before the rise of photosynthesis — and if it’s happening on our planet could it be happening on other planets too?”
But as well as those wider implications, the discovery has significant and immediate implications for the controversial deep sea mining industry which somewhat ironically sponsored the science.
Here’s the thing. This dark oxygen, instead of being produced by plants and sunlight, is being produced by strange potato-shaped metallic lumps found on the deep sea floor.
It turns out that these lumps – otherwise known as ‘polymetallic nodules’ – give off almost as much electricity as AA batteries! By reacting with salt water, their electrical charge produces oxygen way down there on the seabed of the deep ocean through a process known as ‘seawater electrolysis’ which splits seawater into hydrogen and oxygen.

So, these little metallic lumps, which the wannabe deep sea miners have been metaphorically calling ‘batteries in a rock’ actually turned out to be just that – and they’re producing dark oxygen that could play a critical role in the deep ocean ecology.
The discovery of metallic nodules producing dark oxygen has been a huge surprise to science which could even require a new way of thinking about how life first began on planet Earth.
But it could also be the final straw in the case against deep sea mining. It could stop the industry before they begin.
The discovery was made in the Clarion-Clipperton Zone (CCZ), a huge flat area of the seafloor that stretches between Hawaii and Mexico, where mining companies like The Metals Company have plans to start harvesting these very same nodules that turn out to be producing all this dark oxygen.
These oxygen-producing nodules could be supporting a whole range of known and unknown deep sea lifeforms. Dark oxygen could be a critical factor in the deep sea ecosystem!

Greenpeace and others have long said that this new extractive mining industry should not be allowed to start in the very deep ocean because the life there is so little understood, and the ecosystems are fragile and potentially vital for the health of the ocean and all life on Earth.
This new discovery underlines the point.
The timing is good because world governments are meeting in Jamaica right now to decide the fate of this new mining industry. They’ll be deciding whether or not to allow deep sea miners like The Metals Company to go ahead with their plans to drop giant mining robots onto the seafloor to start harvesting these life-sustaining nodules.
Greenpeace is in Jamaica arguing strongly that deep sea mining should not be allowed to go ahead – especially now that we know the deep ocean is another source of oxygen that could be vital for the health of the ocean and all of us who depend on it.
In the climate and biodiversity crisis, we know that nature, in all its diversity, must be protected.
PETITION: Stop Deep Sea Mining
An emerging new industry could destroy this fragile and unique deep sea environment before we truly understand its importance.
Photo by Jong Marshes on Unsplash
For more information contact Deep Sea Defenders.