By Timothy J. Brodribb, Jennifer Powers, Hervé Cochard and Brendan Choat.

The Living Foundations

Trees are the living foundations on which most terrestrial biodiversity is built. Central to the success of trees are their woody bodies, which connect their elevated photosynthetic canopies with the essential belowground activities of water and nutrient acquisition. The slow construction of these carbon-dense, woody skeletons leads to a slow generation time, leaving trees and forests highly susceptible to rapid changes in climate.

Other long-lived, sessile organisms such as corals appear to be poorly equipped to survive rapid changes, which raises questions about the vulnerability of contemporary forests to future climate change. The emerging view that, similar to corals, tree species have rather inflexible damage thresholds, particularly in terms of water stress, is especially concerning. This Review examines recent progress in our understanding of how the future looks for forests growing in a hotter and drier atmosphere.

Temperature and Atmospheric CO2

No tree species can survive acute desiccation. Despite this unambiguous constraint, predicting the death of trees during drought is complicated by the process of evolution, whereby the fitness of tree species may benefit equally from traits that either increase growth or enhance drought resilience. Complexity arises because improving either of these two beneficial states often requires the same key traits to move in opposite directions, which leads to important trade-offs in adaptation to water availability. This conflict promotes strategic diversity in different species’ adaptations to water availability, even within ecosystems.

Understanding how the diversity of tree species will be affected by future droughts requires a detailed knowledge of how the functions of different species interact with their environment. Temperature and atmospheric CO2 concentration are fundamental elements that affect the water relations of all tree species, and the rapid rise in both of these potent environmental drivers has the potential to markedly change the way trees behave during drought. The future of many forest systems will be dictated by how these atmospheric changes interact with tree function.

Rising temperature and drought

Ultimately, the impact of elevated CO2 on forest trees is likely to come down to the intensity of the CO2-associated temperature rise and its effect on trees’ water use. This is because the distributions of tree species, in terms of water availability, broadly reflect their intrinsic tolerance of water stress. In other words, species from rainforests to arid woodlands face similar exposure to stress or damage during periods of drought.

Hence, any increase in the rate of soil drying caused by elevated temperatures is likely to lead to increasing damage to standing forests during drought. Improved tree WUE could ameliorate the temperature effect, but this argument remains highly debatable because most reports of improvements in tree WUE with rising atmospheric CO2 refer to intrinsic WUE, a value that converts to real plant water use only with a knowledge of leaf temperature and atmospheric humidity.

Thus, rising atmospheric temperature and the associated increase in evaporative demand is likely to reverse the improvements in tree WUE that are proposed to result from higher CO2. Recent evidence suggests that this is the case, with observations of reduced global tree growth and vegetation health associated with enhanced evaporative gradients and warming temperatures.

Predicting Tree Mortality