“Climate Endgame”: New Peer-Reviewed Paper Explores Catastrophic Climate Change Scenarios

“Climate Endgame”: New Peer-Reviewed Paper Explores Catastrophic Climate Change Scenarios

Editor’s Note: Global warming is a serious threat to our planet, and, along with mass extinction, wildlife population collapse, habitat destruction, desertification, aquifer drawdown, oceanic dead zones, pollution, and other ecological issues, is one of the primary symptoms of overshoot and industrial civilization.

This paper, published last month in the Proceedings of the National Academy of Sciences, explores the prospect of catastrophic global warming, noting that “There is ample evidence that climate change could become catastrophic… at even modest levels of warming.”

With outcomes such as runaway global warming, oceanic hypoxia, and mass mortality becoming more certain with each passing day, the justifications for Deep Green Resistance are only becoming stronger.


By Luke Kemp, Chi Xu, Joanna Depledge, Kristie L. Ebi, Goodwin Gibbins, Timothy A. Kohler, JohanRockström, Marten Scheffer, Hans Joachim Schellnhuber, Will Steffen, and Timothy M. Lenton. Edited by Kerry Emanuel, Massachusetts Institute of Technology, Cambridge, MA; received May 20, 2021; accepted March 25, 2022

Proceedings of the National Academy of Sciences (USA). 2022 Aug 23;119(34):e2108146119.
doi: 10.1073/pnas.2108146119.

~~

Prudent risk management requires consideration of bad-to-worst-case scenarios. Yet, for climate change, such potential futures are poorly understood. Could anthropogenic climate change result in worldwide societal collapse or even eventual human extinction? At present, this is a dangerously underexplored topic. Yet there are ample reasons to suspect that climate change could result in a global catastrophe. Analyzing the mechanisms for these extreme consequences could help galvanize action, improve resilience, and inform policy, including emergency responses. We outline current knowledge about the likelihood of extreme climate change, discuss why understanding bad-to-worst cases is vital, articulate reasons for concern about catastrophic outcomes, define key terms, and put forward a research agenda. The proposed agenda covers four main questions: 1) What is the potential for climate change to drive mass extinction events? 2) What are the mechanisms that could result in human mass mortality and morbidity? 3) What are human societies’ vulnerabilities to climate-triggered risk cascades, such as from conflict, political instability, and systemic financial risk? 4) How can these multiple strands of evidence—together with other global dangers—be usefully synthesized into an “integrated catastrophe assessment”? It is time for the scientific community to grapple with the challenge of better understanding catastrophic climate change.

How bad could climate change get? As early as 1988, the landmark Toronto Conference declaration described the ultimate consequences of climate change as potentially “second only to a global nuclear war.” Despite such proclamations decades ago, climate catastrophe is relatively under-studied and poorly understood.

The potential for catastrophic impacts depends on the magnitude and rate of climate change, the damage inflicted on Earth and human systems, and the vulnerability and response of those affected systems. The extremes of these areas, such as high temperature rise and cascading impacts, are underexamined. As noted by the Intergovernmental Panel on Climate Change (IPCC), there have been few quantitative estimates of global aggregate impacts from warming of 3 °C or above (1). Text mining of IPCC reports similarly found that coverage of temperature rises of 3 °C or higher is underrepresented relative to their likelihood (2). Text-mining analysis also suggests that over time the coverage of IPCC reports has shifted towards temperature rise of 2 °C and below https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2022EF002876. Research has focused on the impacts of 1.5 °C and 2 °C, and studies of how climate impacts could cascade or trigger larger crises are sparse.

A thorough risk assessment would need to consider how risks spread, interact, amplify, and are aggravated by human responses (3), but even simpler “compound hazard” analyses of interacting climate hazards and drivers are underused. Yet this is how risk unfolds in the real world. For example, a cyclone destroys electrical infrastructure, leaving a population vulnerable to an ensuing deadly heat wave (4). Recently, we have seen compound hazards emerge between climate change and the COVID-19 pandemic (5). As the IPCC notes, climate risks are becoming more complex and difficult to manage, and are cascading across regions and sectors (6).

Why the focus on lower-end warming and simple risk analyses? One reason is the benchmark of the international targets: the Paris Agreement goal of limiting warming to well below 2 °C, with an aspiration of 1.5 °C. Another reason is the culture of climate science to “err on the side of least drama” (7), to not to be alarmists, which can be compounded by the consensus processes of the IPCC (8). Complex risk assessments, while more realistic, are also more difficult to do.

This caution is understandable, yet it is mismatched to the risks and potential damages posed by climate change. We know that temperature rise has “fat tails”: low-probability, high-impact extreme outcomes (9). Climate damages are likely to be nonlinear and result in an even larger tail (10). Too much is at stake to refrain from examining high-impact low-likelihood scenarios. The COVID-19 pandemic has underlined the need to consider and prepare for infrequent, high-impact global risks, and the systemic dangers they can spark. Prudent risk management demands that we thoroughly assess worst-case scenarios.

Our proposed “Climate Endgame” research agenda aims to direct exploration of the worst risks associated with anthropogenic climate change. To introduce it, we summarize existing evidence on the likelihood of extreme climate change, outline why exploring bad-to-worst cases is vital, suggest reasons for catastrophic concern, define key terms, and then explain the four key aspects of the research agenda.

Worst-Case Climate Change

Despite 30 y of efforts and some progress under the United Nations Framework Convention on Climate Change (UNFCCC) anthropogenic greenhouse gas (GHG) emissions continue to increase. Even without considering worst-case climate responses, the current trajectory puts the world on track for a temperature rise between 2.1 °C and 3.9 °C by 2100 (11). If all 2030 nationally determined contributions are fully implemented, warming of 2.4 °C (1.9 °C to 3.0 °C) is expected by 2100. Meeting all long-term pledges and targets could reduce this to 2.1 °C (1.7 °C to 2.6 °C) (12). Even these optimistic assumptions lead to dangerous Earth system trajectories. Temperatures of more than 2 °C above preindustrial values have not been sustained on Earth’s surface since before the Pleistocene Epoch (or more than 2.6 million years ago) (13).

Even if anthropogenic GHG emissions start to decline soon, this does not rule out high future GHG concentrations or extreme climate change, particularly beyond 2100. There are feedbacks in the carbon cycle and potential tipping points that could generate high GHG concentrations (14) that are often missing from models. Examples include Arctic permafrost thawing that releases methane and CO2 (15), carbon loss due to intense droughts and fires in the Amazon (16), and the apparent slowing of dampening feedbacks such as natural carbon sink capacity (17, 18). These are likely to not be proportional to warming, as is sometimes assumed. Instead, abrupt and/or irreversible changes may be triggered at a temperature threshold. Such changes are evident in Earth’s geological record, and their impacts cascaded across the coupled climate–ecological–social system (19). Particularly worrying is a “tipping cascade” in which multiple tipping elements interact in such a way that tipping one threshold increases the likelihood of tipping another (20). Temperature rise is crucially dependent on the overall dynamics of the Earth system, not just the anthropogenic emissions trajectory.

The potential for tipping points and higher concentrations despite lower anthropogenic emissions is evident in existing models. Variability among the latest Coupled Model Intercomparison Project Phase 6 (CMIP6) climate models results in overlap in different scenarios. For example, the top (75th) quartile outcome of the “middle-of-the-road” scenario (Shared Socioeconomic Pathway 3-7.0, or SSP3-7.0) is substantially hotter than the bottom (25th) quartile of the highest emissions (SSP5-8.5) scenario. Regional temperature differences between models can exceed 5 °C to 6 °C, particularly in polar areas where various tipping points can occur (https://www.pnas.org/doi/10.1073/pnas.2108146119#supplementary-materials).

There are even more uncertain feedbacks, which, in a very worst case, might amplify to an irreversible transition into a “Hothouse Earth” state (21) (although there may be negative feedbacks that help buffer the Earth system). In particular, poorly understood cloud feedbacks might trigger sudden and irreversible global warming (22). Such effects remain underexplored and largely speculative “unknown unknowns” that are still being discovered. For instance, recent simulations suggest that stratocumulus cloud decks might abruptly be lost at CO2 concentrations that could be approached by the end of the century, causing an additional ∼8 °C global warming (23). Large uncertainties about dangerous surprises are reasons to prioritize rather than neglect them.

Recent findings on equilibrium climate sensitivity (ECS) (14, 24) underline that the magnitude of climate change is uncertain even if we knew future GHG concentrations. According to the IPCC, our best estimate for ECS is a 3 °C temperature rise per doubling of CO2, with a “likely” range of (66 to 100% likelihood) of 2.5 °C to 4 °C. While an ECS below 1.5 °C was essentially ruled out, there remains an 18% probability that ECS could be greater than 4.5 °C (14). The distribution of ECS is “heavy tailed,” with a higher probability of very high values of ECS than of very low values.

There is significant uncertainty over future anthropogenic GHG emissions as well. Representative Concentration Pathway 8.5 (RCP8.5, now SSP5-8.5), the highest emissions pathway used in IPCC scenarios, most closely matches cumulative emissions to date (25). This may not be the case going forward, because of falling prices of renewable energy and policy responses (26). Yet, there remain reasons for caution. For instance, there is significant uncertainty over key variables such as energy demand and economic growth. Plausibly higher economic growth rates could make RCP8.5 35% more likely (27).

Why Explore Climate Catastrophe?

Why do we need to know about the plausible worst cases? First, risk management and robust decision-making under uncertainty requires knowledge of extremes. For example, the minimax criterion ranks policies by their worst outcomes (28). Such an approach is particularly appropriate for areas characterized by high uncertainties and tail risks. Emissions trajectories, future concentrations, future warming, and future impacts are all characterized by uncertainty. That is, we can’t objectively prescribe probabilities to different outcomes (29). Climate damages lie within the realm of “deep uncertainty”: We don’t know the probabilities attached to different outcomes, the exact chain of cause and effect that will lead to outcomes, or even the range, timing, or desirability of outcomes (, 30). Uncertainty, deep or not, should motivate precaution and vigilance, not complacency.

Catastrophic impacts, even if unlikely, have major implications for economic analysis, modeling, and society’s responses (31, 32). For example, extreme warming and the consequent damages can significantly increase the projected social cost of carbon (31). Understanding the vulnerability and responses of human societies can inform policy making and decision-making to prevent systemic crises. Indicators of key variables can provide early warning signals (33).

Knowing the worst cases can compel action, as the idea of “nuclear winter” in 1983 galvanized public concern and nuclear disarmament efforts. Exploring severe risks and higher-temperature scenarios could cement a recommitment to the 1.5 °C to 2 °C guardrail as the “least unattractive” option (34).

Understanding catastrophic climate scenarios can also inform policy interventions, including last-resort emergency measures like solar radiation management (SRM), the injection of aerosols into the stratosphere to reflect sunlight (35).

Whether to resort to such measures depends on the risk profiles of both climate change and SRM scenarios. One recent analysis of the potential catastrophic risk of stratospheric aerosol injection (SAI) found that the direct and systemic impacts are under-studied (36). The largest danger appears to come from “termination shock”: abrupt and rapid warming if the SAI system is disrupted. Hence, SAI shifts the risk distribution: The median outcome may be better than the climate change it is offsetting, but the tail risk could be worse than warming (36).

There are other interventions that a better understanding of catastrophic climate change could facilitate. For example, at the international level, there is the potential for a “tail risk treaty”: an agreement or protocol that activates stronger commitments and mechanisms when early-warning indicators of potential abrupt change are triggered.

The Potential for Climate Catastrophe

There are four key reasons to be concerned over the potential of a global climate catastrophe. First, there are warnings from history. Climate change (either regional or global) has played a role in the collapse or transformation of numerous previous societies (37) and in each of the five mass extinction events in Phanerozoic Earth history (38). The current carbon pulse is occurring at an unprecedented geological speed and, by the end of the century, may surpass thresholds that triggered previous mass extinctions (39, 40). The worst-case scenarios in the IPCC report project temperatures by the 22nd century that last prevailed in the Early Eocene, reversing 50 million years of cooler climates in the space of two centuries (41).

This is particularly alarming, as human societies are locally adapted to a specific climatic niche. The rise of large-scale, urbanized agrarian societies [editors note: civilization] began with the shift to the stable climate of the Holocene ∼12,000 y ago (42). Since then, human population density peaked within a narrow climatic envelope with a mean annual average temperature of ∼13 °C. Even today, the most economically productive centers of human activity are concentrated in those areas (43). The cumulative impacts of warming may overwhelm societal adaptive capacity.

Second, climate change could directly trigger other catastrophic risks, such as international conflict, or exacerbate infectious disease spread, and spillover risk. These could be potent extreme threat multipliers.

Third, climate change could exacerbate vulnerabilities and cause multiple, indirect stresses (such as economic damage, loss of land, and water and food insecurity) that coalesce into system-wide synchronous failures. This is the path of systemic risk. Global crises tend to occur through such reinforcing “synchronous failures” that spread across countries and systems, as with the 2007–2008 global financial crisis (44). It is plausible that a sudden shift in climate could trigger systems failures that unravel societies across the globe.

The potential of systemic climate risk is marked: The most vulnerable states and communities will continue to be the hardest hit in a warming world, exacerbating inequities. Fig. 1 shows how projected population density intersects with extreme >29 °C mean annual temperature (MAT) (such temperatures are currently restricted to only 0.8% of Earth’s land surface area). Using the medium-high scenario of emissions and population growth (SSP3-7.0 emissions, and SSP3 population growth), by 2070, around 2 billion people are expected to live in these extremely hot areas. Currently, only 30 million people live in hot places, primarily in the Sahara Desert and Gulf Coast (43).


Fig. 1.

Overlap between future population distribution and extreme heat. CMIP6 model data [from nine GCM models available from the WorldClim database (45)] were used to calculate MAT under SSP3-7.0 during around 2070 (2060–2080) alongside Shared SSP3 demographic projections to ∼2070 (46). The shaded areas depict regions where MAT exceeds 29 °C, while the colored topography details the spread of population density.

Extreme temperatures combined with high humidity can negatively affect outdoor worker productivity and yields of major cereal crops. These deadly heat conditions could significantly affect populated areas in South and southwest Asia (47).

Fig. 2 takes a political lens on extreme heat, overlapping SSP3-7.0 or SSP5-8.5 projections of >29 °C MAT circa 2070, with the Fragile States Index (a measurement of the instability of states). There is a striking overlap between currently vulnerable states and future areas of extreme warming. If current political fragility does not improve significantly in the coming decades, then a belt of instability with potentially serious ramifications could occur.


Fig. 2.

Fragile heat: the overlap between state fragility, extreme heat, and nuclear and biological catastrophic hazards. GCM model data [from the WorldClim database (45)] was used to calculate mean annual warming rates under SSP3-7.0 and SSP5-8.5. This results in a temperature rise of 2.8 °C in ∼2070 (48) for SSP3-7.0, and 3.2 °C for SSP5-8.5. The shaded areas depict regions where MAT exceeds 29 °C. These projections are overlapped with the 2021 Fragile State Index (FSI) (49). This is a necessarily rough proxy because FSI only estimates current fragility levels. While such measurements of fragility and stability are contested and have limitations, the FSI provides one of the more robust indices. This Figure also identifies the capitals of states with nuclear weapons, and the location of maximum containment Biosafety Level 4 (BS4) laboratories which handle the most dangerous pathogens in the world. These are provided as one rough proxy for nuclear and biological catastrophc hazards.

Finally, climate change could irrevocably undermine humanity’s ability to recover from another cataclysm, such as nuclear war. That is, it could create significant latent risks (Table 1): Impacts that may be manageable during times of stability become dire when responding to and recovering from catastrophe. These different causes for catastrophic concern are interrelated and must be examined together.


Table 1. Defining key terms in the Climate Endgame agenda

Term Definition
Latent risk Risk that is dormant under one set of conditions but becomes active under another set of conditions.
Risk cascade Chains of risk occurring when an adverse impact triggers a set of linked risks (3).
Systemic risk The potential for individual disruptions or failures to cascade into a system-wide failure.
Extreme climate change Mean global surface temperature rise of 3 °C or more above preindustrial levels by 2100.
Extinction risk The probability of human extinction within a given timeframe.
Extinction threat A plausible and significant contributor to total extinction risk.
Societal fragility The potential for smaller damages to spiral into global catastrophic or extinction risk due to societal vulnerabilities, risk cascades, and maladaptive responses.
Societal collapse Significant sociopolitical fragmentation and/or state failure along with the relatively rapid, enduring, and significant loss capital, and systems identity; this can lead to large-scale increases in mortality and morbidity.
Global catastrophic risk The probability of a loss of 25% of the global population and the severe disruption of global critical systems (such as food) within a given timeframe (years or decades).
Global catastrophic threat A plausible and significant contributor to global catastrophic risk; the potential for climate change to be a global catastrophic threat can be referred to as “catastrophic climate change”.
Global decimation risk The probability of a loss of 10% (or more) of global population and the severe disruption of global critical systems (such as food) within a given timeframe (years or decades).
Global decimation threat A plausible and significant contributor to global decimation risk.
Endgame territory Levels of global warming and societal fragility that are judged sufficiently probable to constitute climate change as an extinction threat.
Worst-case warming The highest empirically and theoretically plausible level of global warming.

Defining the Key Terms

Although bad-to-worst case scenarios remain underexplored in the scientific literature, statements labeling climate change as catastrophic are not uncommon. UN Secretary-General António Guterres called climate change an “existential threat.” Academic studies have warned that warming above 5 °C is likely to be “beyond catastrophic” (50), and above 6 °C constitutes “an indisputable global catastrophe” (9).Current discussions over climate catastrophe are undermined by unclear terminology. The term “catastrophic climate change” has not been conclusively defined. An existential risk is usually defined as a risk that cause an enduring and significant loss of long-term human potential (51, 52). This existing definition is deeply ambiguous and requires societal discussion and specification of long-term human values (52). While a democratic exploration of values is welcome, it is not required to understand pathways to human catastrophe or extinction (52). For now, the existing definition is not a solid foundation for a scientific inquiry.We offer clarified working definitions of such terms in Table 1. This is an initial step toward creating a lexicon for global calamity. Some of the terms, such as what constitutes a “plausible” risk or a “significant contributor,” are necessarily ambiguous. Others, such as thresholding at 10% or 25% of global population, are partly arbitrary (10% is intended as a marker for a precedented loss, and 25% is intended as an unprecedented decrease; see SI Appendix for further discussion). Further research is needed to sharpen these definitions. The thresholds for global catastrophic and decimation risks are intended as general heuristics and not concrete numerical boundaries. Other factors such as morbidity, and cultural and economic loss, need to be considered.

We define risk as the probability that exposure to climate change impacts and responses will result in adverse consequences for human or ecological systems. For the Climate Endgame agenda, we are particularly interested in catastrophic consequences. Any risk is composed of four determinants: hazard, exposure, vulnerability, and response (3).

We have set global warming of 3 °C or more by the end of the century as a marker for extreme climate change. This threshold is chosen for four reasons: Such a temperature rise well exceeds internationally agreed targets, all the IPCC “reasons for concern” in climate impacts are either “high” or “very high” risk between 2 °C and 3 °C, there are substantially heightened risks of self-amplifying changes that would make it impossible to limit warming to 3 °C, and these levels relate to far greater uncertainty in impacts.

Key Research Thus Far

The closest attempts to directly study or comprehensively address how climate change could lead to human extinction or global catastrophe have come through popular science books such as The Uninhabitable Earth (53) and Our Final Warning (10). The latter, a review of climate impacts at different degrees, concludes that a global temperature rise of 6 °C “imperils even the survival of humans as a species” (10).

We know that health risks worsen with rising temperatures (54). For example, there is already an increasing probability of multiple “breadbasket failures” (causing a food price shock) with higher temperatures (55). For the top four maize-producing regions (accounting for 87% of maize production), the likelihood of production losses greater than 10% jumps from 7% annually under a 2 °C temperature rise to 86% under 4 °C (56). The IPCC notes, in its Sixth Assessment Report, that 50 to 75% of the global population could be exposed to life-threatening climatic conditions by the end of the century due to extreme heat and humidity (6). SI Appendix provides further details on several key studies of extreme climate change.

The IPCC reports synthesize peer-reviewed literature regarding climate change, impacts and vulnerabilities, and mitigation. Despite identifying 15 tipping elements in biosphere, oceans, and cryosphere in the Working Group 1 contribution to the Sixth Assessment Report, many with irreversible thresholds, there were very few publications on catastrophic scenarios that could be assessed. The most notable coverage is the Working Group II “reasons for concern” syntheses that have been reported since 2001. These syntheses were designed to inform determination of what is “dangerous anthropogenic interference” with the climate system, that the UNFCCC aims to prevent. The five concerns are unique and threatened ecosystems, frequency and severity of extreme weather events, global distribution and balance of impacts, total economic and ecological impact, and irreversible, large-scale, abrupt transitions. Each IPCC assessment found greater risks occurring at lower increases in global mean temperatures. In the Sixth Assessment Report, all five concerns were listed as very high for temperatures of 1.2 °C to 4.5 °C. In contrast, only two were rated as very high at this temperature interval in the previous Assessment Report (6). All five concerns are now at “high” or “very high” for 2 °C to 3 °C of warming (57).

A Sample Research Agenda: Extreme Earth System States, Mass Mortality, Societal Fragility, and Integrated Climate Catastrophe Assessments

We suggest a research agenda for catastrophic climate change that focuses on four key strands:

  • Understanding extreme climate change dynamics and impacts in the long term
  • Exploring climate-triggered pathways to mass morbidity and mortality
  • Investigating social fragility: vulnerabilities, risk cascades, and risk responses
  • Synthesizing the research findings into “integrated catastrophe assessments”

Our proposed agenda learns from and builds on integrated assessment models that are being adapted to better assess large-scale harms. A range of tipping points have been assessed (58–60), with effects varying from a 10% chance of doubling the social cost of carbon (61) up to an eightfold increase in the optimal carbon price (60). This echoes earlier findings that welfare estimates depend on fat tail risks (31). Model assumptions such as discount rates, exogenous growth rates, risk preferences, and damage functions also strongly influence outcomes.

There are large, important aspects missing from these models that are highlighted in the research agenda: longer-term impacts under extreme climate change, pathways toward mass morbidity and mortality, and the risk cascades and systemic risks that extreme climate impacts could trigger. Progress in these areas would allow for more realistic models and damage functions and help provide direct estimates of casualties (62), a necessary moral noneconomic measure of climate risk. We urge the research community to develop integrated conceptual and semiquantitative models of climate catastrophes.

Finally, we invite other scholars to revise and improve upon this proposed agenda.

Extreme Earth System States.

We need to understand potential long-term states of the Earth system under extreme climate change. This means mapping different “Hothouse Earth” scenarios (21) or other extreme scenarios, such as alternative circulation regimes or large, irreversible changes in ice cover and sea level. This research will require consideration of long-term climate dynamics and their impacts on other planetary-level processes. Research suggests that previous mass extinction events occurred due to threshold effects in the carbon cycle that we could cross this century (40, 63). Key impacts in previous mass extinctions, such as ocean hypoxia and anoxia, could also escalate in the longer term (40, 64).

Studying potential tipping points and irreversible “committed” changes of ecological and climate systems is essential. For instance, modeling of the Antarctic ice sheet suggests there are several tipping points that exhibit hysteresis (65). Irreversible loss of the West Antarctic ice sheet was found to be triggered at ∼2 °C global warming, and the current ice sheet configuration cannot be regained even if temperatures return to present-day levels. At a 6 °C to 9 °C rise in global temperature, slow, irreversible loss of the East Antarctic ice sheet and over 40 m of sea level rise equivalent could be triggered (65). Similar studies of areas such as the Greenland ice sheet, permafrost, and terrestrial vegetation would be helpful. Identifying all the potential Earth system tipping elements is crucial. This should include a consideration of wider planetary boundaries, such as biodiversity, that will influence tipping points (66), feedbacks beyond the climate system, and how tipping elements could cascade together (67).

Mass Morbidity and Mortality.

There are many potential contributors to climate-induced morbidity and mortality, but the “four horsemen” of the climate change end game are likely to be famine and undernutrition, extreme weather events, conflict, and vector-borne diseases. These will be worsened by additional risks and impacts such as mortality from air pollution and sea level rise.

These pathways require further study. Empirical estimates of even direct fatalities from heat stress thus far in the United States are systematically underestimated (68). A review of the health and climate change literature from 1985 to 2013 (with a proxy review up to 2017) found that, of 2,143 papers, only 189 (9%) included a dedicated discussion of more-extreme health impacts or systemic risk (relating to migration, famine, or conflict) (69). Models also rarely include adaptive responses. Thus, the overall mortality estimates are uncertain.

How can potential mass morbidity and mortality be better accounted for? 1) Track compound hazards through bottom-up modeling of systems and vulnerabilities (70) and rigorously stress test preparedness (71). 2) Apply models to higher-temperature scenarios and longer timelines. 3) Integrate risk cascades and systemic risks (see the following section) into health risk assessments, such as by incorporating morbidity and mortality resulting from a climate-triggered food price shock.

Societal Fragility: Vulnerabilities, Risk Cascades, and Risk Responses.

More-complex risk assessments are generally more realistic. The determinants of risk are not just hazards, vulnerabilities, and exposures, but also responses (3, 72). A complete risk assessment needs to consider climate impacts, differential exposure, systemic vulnerabilities, responses of societies and actors, and the knock-on effects across borders and sectors (73), potentially resulting in systemic crises. In the worst case(s), a domino effect or spiral could continuously worsen the initial risk.

Societal risk cascades could involve conflict, disease, political change, and economic crises. Climate change has a complicated relationship with conflict, including, possibly, as a risk factor (74) especially in areas with preexisting ethnic conflict (75). Climate change could affect the spread and transmission of infectious diseases, as well as the expansion and severity of different zoonotic infections (76), creating conditions for novel outbreaks and infections (6,77). Epidemics can, in turn, trigger cascading impacts, as in the case of COVID-19. Exposure to ecological stress and natural disasters are key determinants for the cultural “tightness” (strictness of rules, adherence to tradition, and severity of punishment) of societies (78). The literature on the median economic damages of climate change is profuse, but there is far less on financial tail risks, such as the possibility of global financial crises.

Past studies could be drawn upon to investigate societal risk. Relatively small, regional climate changes are linked to the transformation and even collapse of previous societies (79, 80). This could be due to declining resilience and the passing of tipping points in these societies. There is some evidence for critical slowing down in societies prior to their collapse (81, 82). However, care is needed in drawing lessons from premodern case studies. Prehistory and history should be studied to determine not just how past societies were affected by specific climate hazards but how those effects differ as societies change with respect to, for example, population density, wealth inequality, and governance regime. Such framing will allow past and current societies to be brought under a single system of analysis (37).

The characteristics and vulnerabilities of a modern globalized world where food and transport distribution systems can buffer against traumas will need to feature in work on societal sensitivity. Such large, interconnected systems bring their own sources of fragility, particularly if networks are relatively homogeneous, with a few dominant nodes highly connected to everyone else (83). Other important modern-day vulnerabilities include the rapid spread of misinformation and disinformation. These epistemic risks are serious concerns for public health crises (84) and have already hindered climate action. A high-level and simplified depiction of how risk cascades could unfold is provided in Fig. 3.

Fig. 3.

Cascading global climate failure. This is a causal loop diagram, in which a complete line represents a positive polarity (e.g., amplifying feedback; not necessarily positive in a normative sense) and a dotted line denotes a negative polarity (meaning a dampening feedback). See SI Appendix for further information.

Integrated Catastrophic Assessments.

Climate change will unfold in a world of changing ecosystems, geopolitics, and technology. Could we even see “warm wars”—technologically enhanced great power conflicts over dwindling carbon budgets, climate impacts, or SRM experiments? Such developments and scenarios need to be considered to build a full picture of climate dangers. Climate change could reinforce other interacting threats, including rising inequality, demographic stresses, misinformation, new destructive weapons, and the overshoot of other planetary boundaries (85). There are also natural shocks, such as solar flares and high-impact volcanic eruptions, that present possible deadly synchronicities (86). Exploring these is vital, and a range of “standardized catastrophic scenarios” would facilitate assessment.

Expert elicitation, systems mapping, and participatory scenarios provide promising ways of understanding such cascades (73). There are also existing research agendas for some of these areas that could be funded (87).

Integration can be approached in several ways. Metareviews and syntheses of research results can provide useful data for mapping the interactions between risks. This could be done through causal mapping, expert elicitation, and agent-based or systems dynamics modeling approaches. One recent study mapped the evidence base for relationships between climate change, food insecurity, and contributors to societal collapse (mortality, conflict, and emigration) based on 41 studies (88).

A particularly promising avenue is to repurpose existing complex models to study cascading risks. The resulting network could be “stress tested” with standardized catastrophic scenarios. This could help estimate which areas may incur critical shortages or disruptions, or drastic responses (such as food export bans). Complex models have been developed to help understand past large-scale systemic disasters, such as the 2007–2008 global financial crisis (89). Some of these could be repurposed for exploring the potential nature of a future global climate crisis.

Systems failure is unlikely to be globally simultaneous; it is more likely to begin regionally and then cascade up. Although the goal is to investigate catastrophic climate risk globally, incorporating knowledge of regional losses is indispensable.

The potentially catastrophic risks of climate change are difficult to quantify, even within models. Any of the above-mentioned modeling approaches should provide a greater understanding of the pathways of systemic risk, and rough probabilistic guides. Yet the results could provide the foundation for argumentation-based tools to assess the potential for catastrophic outcomes under different levels of temperature rise (90). These should be fed into open deliberative democratic methods that provide a fair, inclusive, and effective approach to decision-making (91). Such approaches could draw on decision-making tools under uncertainty, such as the minimax principle or ranking decisions by the weighted sum of their best and worst outcomes, as suggested in the Dasgupta review of biodiversity (92).

An IPCC Special Report on Catastrophic Climate Change

The IPCC has yet to give focused attention to catastrophic climate change. Fourteen special reports have been published. None covered extreme or catastrophic climate change. A special report on “tipping points” was proposed for the seventh IPCC assessment cycle, and we suggest this could be broadened to consider all key aspects of catastrophic climate change. This appears warranted, following the IPCC’s decision framework (93). Such a report could investigate how Earth system feedbacks could alter temperature trajectories, and whether these are irreversible.

A special report on catastrophic climate change could help trigger further research, just as the “Global warming of 1.5 °C” special report (94) did. That report also galvanized a groundswell of public concern about the severity of impacts at lower temperature ranges. The impact of a report on catastrophic climate change could be even more marked. It could help bring into focus how much is at stake in a worst-case scenario. Further research funding of catastrophic and worst-case climate change is critical.

Effective communication of research results will be key. While there is concern that fear-invoking messages may be unhelpful and induce paralysis (95), the evidence on hopeful vs. fearful messaging is mixed, even across metaanalyses (96, 97). The role of emotions is complex, and it is strategic to adjust messages for specific audiences (98). One recent review of the climate debate highlighted the importance of avoiding political bundling, selecting trusted messengers, and choosing effective frames (99). These kinds of considerations will be crucial in ensuring a useful and accurate civic discussion.

Conclusions

There is ample evidence that climate change could become catastrophic. We could enter such “endgames” at even modest levels of warming. Understanding extreme risks is important for robust decision-making, from preparation to consideration of emergency responses. This requires exploring not just higher temperature scenarios but also the potential for climate change impacts to contribute to systemic risk and other cascades. We suggest that it is time to seriously scrutinize the best way to expand our research horizons to cover this field. The proposed “Climate Endgame” research agenda provides one way to navigate this under-studied area. Facing a future of accelerating climate change while blind to worst-case scenarios is naive risk management at best and fatally foolish at worst.


This open-access scientific paper was published in the Proceedings of the National Academy of Sciences under a Creative Commons Attribution-NonCommercial-NoDerivatives (CC BY-NC-ND) or a Creative Commons Attribution (CC BY) license.

Appendix and references available here: https://www.pnas.org/doi/abs/10.1073/pnas.2108146119

Photo by Malcolm Lightbody on Unsplash.

Krill, The Most Abundant Species on Earth and Key Food Source for Whales, Are in Trouble

Krill, The Most Abundant Species on Earth and Key Food Source for Whales, Are in Trouble

Editor’s note: By biomass, krill are the most abundant species in the world and the main food source for all baleen whales — including blue whales, the largest animals on the planet and the largest ever known to have existed.

Regardless of how abundant it is — see Passenger Pigeons, Buffalo, or Great Auks — any species that becomes economically valuable in a growth economy will likely experience decline and collapse. That is the nature of endless growth.

Krill are no different. Between overfishing that has more than quadrupled in 15 years and global climate destabilization that has already warmed the Antarctic by 2.5° C since the 1940s, Krill, like all life on Earth, are in trouble —  yet another sign that industrial civilization is driving an ongoing ecological collapse and accelerating us deeper into the 6th mass extinction (an extermination, in this case) of life on Earth.


by / Mongabay

  • Antarctic krill are one of the most abundant species in the world in terms of biomass, but scientists and conservationists are concerned about the future of the species due to overfishing, climate change impacts and other human activities.
  • Krill fishing has increased year over year as demand rises for the tiny crustaceans, which are used as feed additives for global aquaculture and processed for krill oil.
  • Experts have called on the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR), the group responsible for protecting krill, to update its rules to better protect krill; others are calling for a moratorium on krill fishing.
  • Antarctic krill play a critical role in maintaining the health of our planet by storing carbon and providing food for numerous species.

Antarctic krill — tiny, filter-feeding crustaceans that live in the Southern Ocean — have long existed in mind-boggling numbers. A 2009 study estimated that the species has a biomass of between 300 million and 500 million metric tons, which is more than any other multicellular wild animal in the world. Not only are these teensy animals great in number, but they’re known to lock away large quantities of carbon through their feeding and excrement cycles. One study estimates that krill remove 23 million metric tons of carbon each year — about the amount of carbon produced by 35 million combustion-engine cars — while another suggests that krill take away 39 million metric tons each year. Krill are also a main food source for many animals for which Antarctica is famous: whales, seals, fish, penguins, and a range of other seabirds.

But Antarctic krill (Euphausia superba) are not “limitless,” as they were once described in the 1960s; they’re a finite resource under an increasing amount of pressure due to overfishing, pollution, and climate change impacts like the loss of sea ice and ocean acidification. While krill are nowhere close to being threatened with extinction, the 2022 report from the Intergovernmental Panel on Climate Change indicated that there’s a high likelihood that climate-induced stressors would present considerable risks for the global supply of krill.

“Warming that is occurring along the Antarctic Peninsula and Scotia Sea has caused the krill stocks in those areas to shrink and the center of that population has moved southwards,” Kim Bernard, a marine ecologist at Oregon State University, wrote to Mongabay via email while stationed in the Antarctic Peninsula. “This tells us already that krill numbers aren’t endless.”

Concerns are amassing around one place in particular: a krill hotspot and nursery at the tip of the Antarctic Peninsula known as “Area 48,” which harbors about 60 million metric tons of krill. Not only has this area become a key foraging ground for many species that rely on krill, but it also attracts about a dozen industrial fishing vessels each year. The amount of krill they catch has been steadily increasing over the years. In 2007, vessels caught 104,728 metric tons in Area 48; in 2020, they caught 450,781 metric tons.

The Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR), the group responsible for protecting krill, has imposed rules to try and regulate krill fishing in the Southern Ocean, but many conservationists and scientists say the rules need to be updated to reflect the changing dynamics of the marine environment. That said, many experts argue that the Antarctic krill fishery can be sustainable if managed correctly.

krill

Antarctic krill are under pressure due to overfishing, pollution, and climate change impacts like the loss of sea ice and ocean acidification. Image courtesy of Dan Costa.

Approaching krill ‘trigger level’

Fishing nations started casting their nets for Antarctic krill in the 1970s, believing these small crustaceans could provide a valuable source of animal protein that would alleviate world hunger. But in the 1980s, interest in krill fishing waned, partly because no one was sure how to remove the high levels of fluoride in their exoskeletons. It was also generally difficult to process krill into food fit for human consumption and to successfully sell these foods to consumers.

But krill fishing never really stopped. In fact, it’s been gaining momentum ever since krill was identified as a suitable animal feed. Now krill is mainly used as a feed additive in the global aquaculture industry, as well as to produce krill oil that goes into omega-3 dietary supplements.

In 1982, the CCAMLR was established to address concerns that the Antarctic krill fishery could have a substantial impact on the marine ecosystem of the Southern Ocean. In 2010, the CCAMLR established a rule limiting catches to 5.61 million metric tons across four subsections of Area 48 where krill fishing was concentrated. The rule also dictated that krill fishing in these areas must stop if the total combined catch reached a “trigger level” of 620,000 metric tons.

So far, total catches have not exceeded this boundary. But krill fishing nations, which currently include Norway, China, South Korea, Ukraine and Chile, are inching closer to it as they expand their operations.

“As long as catches were significantly below the trigger level, I think people felt like, ‘Oh, we don’t need to be too worried,’” Claire Christian, executive director of the Antarctic and Southern Ocean Coalition (ASOC), told Mongabay. “They’re still not there yet, but as they’ve been getting closer, there’s been more pressure on CCAMLR scientists and policymakers to look at the fishery and develop a more comprehensive management system.”

Stuart Corney, an Antarctic krill expert at the University of Tasmania, said a primary concern is that most krill fishing is concentrated at the tip of the Antarctic Peninsula, where krill are known to spawn, creating “localized depletion.”

“If we overexploit the krill in that region, it can have significant implications for the population in a greater area of Antarctica …  so it needs to be carefully managed efficiently,” Corney told Mongabay.

Another issue with the current catch limits is that they don’t consider the impacts of climate change, according to Bernard.

“This is particularly important at the Antarctic Peninsula where the fishing effort is greatest because the Antarctic Peninsula is one of the most rapidly warming regions on the planet,” Bernard said. “There is also evidence that areas along the Antarctic Peninsula such as the Gerlache Strait are important overwintering grounds for Antarctic krill, particularly for the juveniles and larvae that shelter in the bays and fjords along the Peninsula at that time of year. There is no seasonal closure on the krill fishery and because of delayed sea ice formation in the region around the Gerlache Strait the fishery can extend into winter. When that happens, the fishery could remove massive numbers from the next reproductive cohort of the population.”

Krill are known to lock away large amounts of carbon through their feeding and excrement cycles. Image courtesy of Aker.

Not only will global heating deplete the sea ice that krill depend upon, but research has suggested that warming waters will impact krill growth, possibly leading to a 40% decline in the mass of individual krill by the end of the century. Other research has argued that ocean acidification, another impact of climate change, will reduce krill development and hatchling rate and lead to an eventual collapse in 2300.

Progress and setbacks

In 2019, CCAMLR members agreed on a scientific work plan with the view of adopting new conservation measures based on it in 2021. This process was delayed due to COVID-19, but CCAMLR members are expected to reinvigorate these discussions at the next meeting in October, said Nicole Bransome, a marine ecologist at Pew Bertarelli Ocean Legacy.

“Hopefully, the scientists will have been able to put all of the science together … and come up with a new measure that spreads the catch out in space to reduce the impacts on predators,” Bransome told Mongabay. However, she said she’s concerned about a possible move to increase krill catch limits, which was discussed at last year’s meeting.

“Preliminary analysis suggests that the overall catch level could go up, but as of last year’s meeting, there were still a lot of uncertainties with that model and the parameters used in that model,” she said. “We would rather see that if the catch limits change, they’re based on a robust model and good science.”

While many experts say krill fishing can be sustainable if managed correctly, others call for stronger measures to protect krill.

Over the past decade, conservationists and scientists have been proposing the establishment of three new marine protected areas (MPAs) in East Antarctica, the Antarctic Peninsula and the Weddell Sea, ranging over 4 million square kilometers (1.5 million square miles) of the Southern Ocean, which would help protect krill with no-take zones.

“There is now strong scientific evidence that we need strict protection of at least 30% of the global ocean to effectively protect it,” said Christian of ASOC.

Yet the CCAMLR, which makes decisions based on consensus, has rejected the MPA proposal year after year.

Sophie Nodzenski, a senior campaigner at the Changing Markets Foundation, an NGO that works to expose irresponsible corporate practices and to foster sustainability, said the CCAMLR’s continued rejection of the MPAs had led her organization to call for a moratorium on krill fishing. (The Bob Brown Foundation, an Australian NGO that works to protect the natural world, has previously called for a similar ban on krill fishing to be put in place.)

“We are aware it’s a strong stand,” Nodzenski told Mongabay. “But there is a climate emergency, and there is a worry about how krill fishing is exacerbating the threats from climate change. So why don’t we just put a moratorium in place?”

In a report released Aug. 11 — for the first World Krill Day — the Changing Market Foundation details concerns for the planned expansion of the krill industry, which could push catch limits past the current trigger points. It also reveals how Norwegian company Aker Biomarine dominates the industry, supplying krill feed for farmed salmon operations around the world.

Consumers could alleviate pressure on krill “by pushing for a change in the way we are harvesting krill,” Nodzenski said. “If there’s less demand for products, eventually you could see a knock-on effect on the krill harvesting.”

krill

Krill is fished so it can be used as a feed additive in the global aquaculture industry, as well as to produce krill oil that goes into omega-3 dietary supplements. Image courtesy of Pete Harmsen.

Is change coming?

The report also casts doubt on the CCAMLR’s ability to make timely decisions to protect krill.

“This is because CCAMLR’s decision-making process is based on consensus; as long as some members oppose changes to the status quo (in this regard, China and Russia), decisions cannot go ahead,” the authors write. “This means that, for the foreseeable future, it is difficult to envisage how management measures regarding krill can evolve and adapt to our rapidly changing climate.”

Yet other experts say the CCAMLR has the capacity to authorize effective changes.

“CCAMLR has a range of mechanisms it can use to further ecosystem protection,” Bransome of Pew Bertarelli Ocean Legacy said. “Lots of progress has been made … and we are looking to CCAMLR to achieve additional protections at the upcoming CCAMLR meeting.”

Corney from the University of Tasmania said he believes it’s important for fishing nations to continue working together through the CCAMLR to protect the Southern Ocean.

“If some nations started pulling out of CCAMLR … they’re not bound by the rules [and] they can do their thing,” Corney said. “We want all nations to remain in CCAMLR. We want them to sign up for the agreements that are reached. That means we have to accept the structure that is there.”

While opinions differ about how to manage the krill fishery, experts tend to agree on one thing: krill are too valuable to lose in this moment of climate crisis.

krill

Antarctic krill are also a main food source for many animals, including whales, seals, fish, penguins, and a range of other seabirds. Image by Brett Wilks /Australian Antarctic Division.

“Even though Antarctic krill are seemingly far removed from our lives, some of that excess carbon dioxide we’ve pumped into the air is exported to the sea floor by krill, where it will remain for thousands of years,” Bernard said. “Without Antarctic krill, Earth would be even hotter than it already is.”


Citations:

Atkinson, A., Siegel, V., Pakhomov, E. A., Jessopp, M. J., & Loeb, V. (2009). A re-appraisal of the total biomass and annual production of Antarctic krill. Deep Sea Research Part I: Oceanographic Research Papers56(5), 727-740. doi:10.1016/j.dsr.2008.12.007

Tarling, G. A., & Thorpe, S. E. (2017). Oceanic swarms of Antarctic krill perform satiation sinking. Proceedings of the Royal Society B: Biological Sciences284(1869), 20172015. doi:10.1098/rspb.2017.2015

Belcher, A., Henson, S. A., Manno, C., Hill, S. L., Atkinson, A., Thorpe, S. E., … Tarling, G. A. (2019). Krill faecal pellets drive hidden pulses of particulate organic carbon in the marginal ice zone. Nature Communications10(1). doi:10.1038/s41467-019-08847-1

Spiller, J. (2016). Frontiers for the American century: Outer space, Antarctica, and cold war nationalism. Springer.

Pörtner, H., Roberts, D. C., Tignor, M., Poloczanska, E. S., Mintenbeck, K., Alegría, A., … Rama, B. (Eds.) (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability. Retrieved from IPCC website: https://www.ipcc.ch/report/ar6/wg2/

Klein, E. S., Hill, S. L., Hinke, J. T., Phillips, T., & Watters, G. M. (2018). Impacts of rising sea temperature on krill increase risks for predators in the Scotia Sea. PLOS ONE13(1), e0191011. doi:10.1371/journal.pone.0191011

Kawaguchi, S., Ishida, A., King, R., Raymond, B., Waller, N., Constable, A., … Ishimatsu, A. (2013). Risk maps for Antarctic krill under projected Southern Ocean acidification. Nature Climate Change3(9), 843-847. doi:10.1038/nclimate1937

Changing Markets Foundation. (2022). Krill, Baby, Krill: The corporations profiting from plundering Antarctica. Retrieved from https://changingmarkets.org/portfolio/fishing-the-feed/

Banner image caption: Antarctic krill. Image courtesy of Dan Costa.

Elizabeth Claire Alberts is a staff writer for Mongabay. Follow her on Twitter @ECAlberts.

Mining for Renewable Energy Could Harm Biodiversity More Than Global Warming

Mining for Renewable Energy Could Harm Biodiversity More Than Global Warming

Editor’s note: Fossil fuels are highly polluting, their extraction is linked to human rights abuses, and their continued use is killing the planet. However, renewable energy technologies also have massive unrecognized costs. Our conclusion is that resistance to both of these industries is a moral imperative.

In this article we highlight two scientific studies examining these harms. It is critical that we act proactively to defend threatened land before development plans are cemented and it becomes too late.


Renewable energy production will exacerbate mining threats to biodiversity

by University of Queensland

Researchers have warned that mining threats to biodiversity caused by renewable energy production could surpass those averted by climate change mitigation.

A University of Queensland study found protected areas, key biodiversity areas and the world’s remaining wilderness would be under growing pressure from mining the minerals required for a clean energy transition.

UQ’s Dr. Laura Sonter said renewable energy production was material-intensive—much more so than fossil fuels—and mining these materials would increase as fossil fuels were phased out.

“Our study shows that mining the materials needed for renewable energy such as lithium, cobalt, copper, nickel and aluminum will create further pressure on the biodiversity located in mineral-rich landscapes,” Dr. Sonter said.

The research team mapped the world’s mining areas, according to an extensive database of 62,381 pre-operational, operational and closed mining properties, targeting 40 different commodities.

They found that areas with potential mining activity covered 50 million square kilometers of the planet—35 percent of the Earth’s terrestrial land surface excluding Antarctica—and many of these areas coincided with places critical for biodiversity conservation.

“Almost 10 percent of all mining areas occur within currently protected sites, with plenty of other mining occurring within or nearby sites deemed a priority for future conservation of many species,” Dr. Sonter said.

“In terms of mining areas targeting materials needed specifically for renewable energy production, the story is not much better. We found that 82 percent of mining areas target materials needed for renewable energy production, of which, 12 percent coincide with protected areas, 7 percent with key biodiversity areas and 14 percent with wilderness. And, of the mining areas that overlapped protected areas and wilderness, those that targeted materials for renewable energy contained a greater density of mines than the mining areas that targeted other materials.”

Professor James Watson, from UQ’s Center for Biodiversity and Conservation Science and the Wildlife Conservation Society, said the impacts of a green energy future on biodiversity were not considered in international climate policies.

“New mining threats aren’t seriously addressed in current global discussions about the post-2020 United Nation’s Strategic Plan for Biodiversity,” Professor Watson said.

The research team said careful strategic planning was urgently needed.

“Mining threats to biodiversity will increase as more mines target materials for renewable energy production,” Dr. Sonter said.

“Combine this risk with the extensive spatial footprint of renewable energy infrastructure, and the risks become even more concerning.”

More information

Laura J. Sonter et al. Renewable energy production will exacerbate mining threats to biodiversity, Nature Communications (2020). DOI: 10.1038/s41467-020-17928-5

A University of Queensland study found protected , key areas and the world’s remaining wilderness would be under growing pressure from mining the minerals required for a clean energy transition.

UQ’s Dr. Laura Sonter said renewable energy production was material-intensive—much more so than —and mining these materials would increase as fossil fuels were phased out.

“Our study shows that mining the materials needed for renewable energy such as lithium, cobalt, copper, nickel and aluminum will create further pressure on the biodiversity located in mineral-rich landscapes,” Dr. Sonter said.

The research team mapped the world’s mining areas, according to an extensive database of 62,381 pre-operational, operational and closed mining properties, targeting 40 different commodities.

They found that areas with potential mining activity covered 50 million square kilometers of the planet—35 percent of the Earth’s terrestrial land surface excluding Antarctica—and many of these areas coincided with places critical for .

“Almost 10 percent of all mining areas occur within currently protected sites, with plenty of other mining occurring within or nearby sites deemed a priority for future conservation of many species,” Dr. Sonter said.

“In terms of mining areas targeting materials needed specifically for renewable energy production, the story is not much better. We found that 82 percent of mining areas target materials needed for renewable energy production, of which, 12 percent coincide with protected areas, 7 percent with key biodiversity areas and 14 percent with wilderness. And, of the mining areas that overlapped protected areas and wilderness, those that targeted materials for renewable energy contained a greater density of mines than the mining areas that targeted other materials.”

Professor James Watson, from UQ’s Center for Biodiversity and Conservation Science and the Wildlife Conservation Society, said the impacts of a green future on biodiversity were not considered in international climate policies.

“New threats aren’t seriously addressed in current global discussions about the post-2020 United Nation’s Strategic Plan for Biodiversity,” Professor Watson said.

The research team said careful strategic planning was urgently needed.

“Mining threats to biodiversity will increase as more mines target materials for ,” Dr. Sonter said.

“Combine this risk with the extensive spatial footprint of infrastructure, and the risks become even more concerning.”

The research is published in Nature Communications.

Photo by Antonio Garcia on Unsplash


Renewable energy developments threaten biodiverse areas


More information: Laura J. Sonter et al. Renewable energy production will exacerbate mining threats to biodiversity, Nature Communications(2020). DOI: 10.1038/s41467-020-17928-5

Journal information: Nature Communications


A World at Risk: Aggregating Development Trends to Forecast Global Habitat Conversion

Oakleaf et. al.  / Published in PLOS ONE
Abstract
A growing and more affluent human population is expected to increase the demand for resources and to accelerate habitat modification, but by how much and where remains unknown. Here we project and aggregate global spatial patterns of expected urban and agricultural expansion, conventional and unconventional oil and gas, coal, solar, wind, biofuels and mining development. Cumulatively, these threats place at risk 20% of the remaining global natural lands (19.68 million km2) and could result in half of the world’s biomes becoming >50% converted while doubling and tripling the extent of land converted in South America and Africa, respectively. Regionally, substantial shifts in land conversion could occur in Southern and Western South America, Central and Eastern Africa, and the Central Rocky Mountains of North America. With only 5% of the Earth’s at-risk natural lands under strict legal protection, estimating and proactively mitigating multi-sector development risk is critical for curtailing the further substantial loss of nature.
More information
Oakleaf JR, Kennedy CM, Baruch-Mordo S, West PC, Gerber JS, Jarvis L, et al. (2015) A World at Risk: Aggregating Development Trends to Forecast Global Habitat Conversion. PLoS ONE 10(10): e0138334. https://doi.org/10.1371/journal.pone.0138334
Greenland’s government bans oil drilling, leads indigenous resistance to extractive capitalism

Greenland’s government bans oil drilling, leads indigenous resistance to extractive capitalism

This story first appeared in Opendemocracy.

The young indigenous leadership of Múte Bourup Egede is battling for green sovereignty in a time of climate collapse.

By Adam Ramsay and Aaron White


In 2016, Greenland’s then minister responsible for economic development, Vittus Qujaukitsoq, welcomed the appointment of Rex Tillerson, the former CEO of Exxon Mobil, as US secretary of state. Despite representing the centre-Left party Siumut (Forward) and being surrounded by some of the most visible consequences of the warming world, Qujaukitsoq and his colleagues saw the growing potential for mining and drilling brought by the melting glaciers on the world’s biggest island as an opportunity to bring in the cash which would allow the long-desired independence from Denmark.

They aren’t alone. While the melting of Arctic ice is causing the world’s oceans to overflow and disrupting its weather systems, it has also unleashed a whole new geopolitical race. Earlier this year, the US Geological Survey estimated that the region’s rocks contain 13% of the world’s undiscovered oil, and 30% of undiscovered gas – carbon sinks which have been greedily eyed up by states and oil companies alike. And many of these reserves lie in the seas west of Greenland – where there are an estimated 17.5 billion undiscovered barrels of oil, enough to supply the whole planet for six months, at current usage rates.

And because the Arctic is the fastest warming part of the planet, the ice shielding these prehistoric deposits from prying drills is thinning, and disappearing, at an alarming rate.

But if some see this as an opportunity, others understand the absurdity of using climate change as a means to extract more fossil fuels and further change the climate. And this, alongside broader questions about mining, have shaped politics in the country this year.

In the spring, the governing Siumut party split, and its liberal coalition partners, the Democrats, resigned from the government, triggering a snap election in May.

The winner was the eco-socialist party Inuit Ataqatigiit. And in June, the new government banned all future oil and gas exploration from Greenland’s territory.

“The price of oil extraction is too high. This is based upon economic calculations, but considerations of the impact on climate and the environment also play a central role in the decision,” the government stated in July.

It’s not just oil and gas drilling that are contentious. When Donald Trump notoriously inquired about purchasing the island in 2019, he’d just had a briefing on its deposits of a number of minerals, many of which are likely to play a crucial role in the geopolitics of the coming decades. Among these are large quantities of uranium, and what are thought to be the world’s second biggest reserves of rare earth minerals – demand for which has soared in recent years because of their use in batteries for electric cars, computer chips and other tools of the high tech, low carbon economy.

Seen that way, Trump’s statement was probably less a random outburst and more a crude expression of the reality of Greenland’s role in the future of global geopolitics.

Biden, as ever, works in more subtle ways. In February, in discussion with tech giants like Alphabet (Google) and Facebook, he signed an executive order instigating a review of the supply chain of rare earth metals due to a global shortage and China’s dominance of the market. It seems implausible that the review won’t have produced significant discussion in US intelligence circles about the world’s largest deposits outside China, just a few hundred miles from Maine.

In March, the Polar Research and Policy Initiative expressed concerns about “the security implications of China’s near monopoly of rare earths and other minerals for the UK and its North American, European and Pacific allies”, especially given their significance to “strategically important sectors such as defence and security, green energy and technology”. The think tank called on the ‘five eyes’ intelligence alliance between the US, UK, Australia, New Zealand and Canada to team up with Greenland as part of a strategic resources partnership.

Greenland, says the website Mining Technology, “could be vital for tipping the scales in a trade war between global superpowers”.

In the midst of this global gallop for Greenland, with the world’s major powers, billionaire investors and intelligence agencies getting in on the act, the country has had some coverage in the global media of late.

What is often left out of the conversation, however, is the fascinating domestic dynamics among this Arctic island’s 57,000 people. Greenlanders’ struggle for sovereignty in the context of global capitalism, extractivism and climate collapse is an inspiring example of 21st-century indigenous resistance.

A young socialist indigenous climate leader

“There are two issues that have been important in this election campaign: people’s living conditions is one. And then there is our health and the environment,” Inuit Ataqatigiit leader Múte Bourup Egede told the Greenlandic public broadcaster KNR following his election victory in April.

Egede, 34, is the youngest prime minister Greenland’s had since it achieved a degree of home rule in the 1970s, and has led the democratic socialist and pro-independence party since 2018.

This [election] has sent shivers down the spine of many mining executives

In the recent election, the party, known as IA, centred its campaign on its opposition to an international mining project by Greenland Minerals, an Australian-based and Chinese-owned company that is seeking to extract uranium and neodymium from the Kvanefjeld mine in the south of the country. Neodymium is a crucial component of a broad range of technologies, from some kinds of wind turbine to electric cars, because it can be used to make small, lightweight, but powerful and permanent magnets, while uranium is used for both nuclear power and nuclear weapons.

“We must listen to the voters who are worried. We say no to uranium mining,” Egede told the KNR. His party also promised to ban all explorations of radioactive deposits, and, while it does not oppose the mining of rare earth minerals in principle, it insists it must be better regulated.

Egede and the IA won 37% of the vote, ending the tenure of Siumut, the party which had been in power for most of the time since 1979. Siumut was supportive of the Kvanefjeld mining project, assisting Greenland Minerals to gain preliminary approval and ending a previous zero tolerance policy for uranium mining.

There is now a bill being debated in the Greenland parliament to ban the uranium mining project and all mining that contains radioactive by-products.

According to Mark Nuttall, an anthropologist at the University of Alberta and the head of the Climate and Society research programme at the Greenland Climate Research Centre: “This [election] has sent shivers down the spine of many mining executives as to what kind of future mining would take place in Greenland.”

Under the direction of Egede, the IA-led government has also taken several significant steps in recent months to curb fossil fuel production.

Last week in Glasgow, Egede announced that Greenland will be joining the Paris Agreement. In 2016, under the leadership of Siumut, Greenland had invoked a territorial exemption to the climate agreement when Denmark joined.

Greenland, which is technically a self-governing territory of Denmark, claimed at the time that the country was dependent on its oil, gas and natural mineral reserves for its economy.

“The Arctic region is one of the areas on our planet where the effects of global warming are felt the most, and we believe that we must take responsibility collectively. That means that we, too, must contribute our share,” Egede said last week.

Egede’s government also pledged to develop its renewable energy capability, especially hydropower: “Greenland has hydropower resources that exceed our country’s needs. These large hydropower resources can be utilised in collaboration with national and international investors who need large amounts of cheap and renewable energy.”

The Northwest Passage

The rush for the rare earth minerals vital to so many low carbon technologies isn’t the only way that climate change is moving the country from the periphery of global geopolitics to its core. When the huge container ship the Ever Given blocked the Suez Canal in March, the world was reminded how much of its trade passes through its two major transcontinental waterways – Suez and Panama.

As much of the Arctic Ocean becomes ice-free for greater parts of the year, new potential trade routes open up, most significantly, the Northwest Passage across the top of North America, and the Northern Sea Route, above Eurasia.

The vast majority of Greenland’s settlements – including the capital, Nuuk – lie on the west coast of the country, along the Labrador Sea and Baffin Bay. When travelling from Asia or western North America to Europe or the east coast of North America through the Northwest Passage, this is the final stretch, positioning Nuuk as a potential hub on a future major shipping route.

The struggle for sovereignty

Nearly 90% of the population of Greenland are indigenous Inuit people, who have inhabited the island for thousands of years. Although they’ve been colonised for the last thousand years by Nordic powers, they have maintained their own language and culture.

Norsemen first settled on the island in the tenth century, and in 1261 Greenland formally became part of Norway. In 1814 Greenland became a Danish territory – and in 1953 the island became fully integrated into the Danish state. (During World War II, when Denmark was conquered by the Nazis, Greenland was de facto under US control.)

“The official Danish view was that Greenland was actually a dependency; it wasn’t a colony in the sense of its colonies in the West Indies and other places,” Nuttall explained. This, he said, was “because of this historic view that Greenland had long been part of this Nordic Commonwealth from the Norse settlements of the tenth century onwards”.

But the Inuit people don’t always see it that way. During the Black Lives Matter global movement in 2020, younger Greenlanders, including the 21-year-old hip hop artist Josef Tarrak-Petrussen, called for the removal of Danish colonial statues in Nuuk.

Denmark finally granted home rule in 1979. And in 2008 Greenland voted in favour of the Self-Government Act, which transferred more power to the island’s government – and effectively marked the beginning of state formation.

This self rule act recognises Greenland as a nation with the right to independence if it chooses it. Currently Greenland has nearly full sovereignty, with the exception of the areas of foreign policy and defence. The Arctic island currently receives an annual grant of around $585m from Denmark.

In recent years, questions around sovereignty have in many ways defined the political and environmental policies of the island. Many of the political parties support independence.

However, this financial dependence on Denmark makes the prospect of full independence quite difficult: the grant accounts for nearly 20% of the island’s income, while fishing makes up around 90% of its exports.

In order to gain full autonomy from Denmark, Greenland needs to develop a self-sufficient economy. However, this likely requires the development of lucrative extractive industries which will deepen the island’s dependence on (foreign) international capital.

“If we go back ten years, mining was seen as the major way to [become politically independent], and there was great excitement,” said Nuttall.

However in recent years this attitude towards mining has changed considerably due to a host of factors including a downturn in global commodity markets, a greater emphasis on renewable energy and attention given to the climate crisis.

“Mining is going to be one pillar of an economic development strategy that will include other things such as the development of tourism, expansion of the fishing industry… and expanding renewables,” Nuttall explained.

The current government is now focusing on investments in the island’s enormous hydropower potential, which has the potential to grow as glaciers melt and which will allow a reduction in petrol imports, one of the country’s main expenses. Kalistat Lund, the minister for agriculture, self-sufficiency, energy and environment, stated that the government is “working to attract new investments for the large hydropower potential that we cannot exploit ourselves”.

The island is also currently expanding its airports and promoting tourism. Currently the only flights available to Greenland are from Reykjavik or Copenhagen.

Greenland often appears in discussions about climate change – usually in the context of films of starving polar bears, adorable Arctic foxes and rutting muskox; or melting glaciers diverting the Gulf Stream and raising global sea levels, flooding cities across the planet. Ice cores from Greenland, like those of Antarctica, help us understand historic variations in the composition of our atmosphere and in our climate, and have been vital for scientists’ understanding of the science of climate change.

These things are all true, and each Arctic species being pushed to extinction by the warming of the world is a tragedy. But what’s also true is that Greenland is home to tens of thousands of people, with their own history and culture, politics and organisations; a people who, after a thousand years of colonisation, are starting to assert both their independence from Denmark and their sovereignty in the face of the global market. And, who, along with other indigenous communities around the world, are starting to lead a fightback against the industrial, extractive capitalism that’s killing the planet.

Mother Nature, Inc.

Mother Nature, Inc.

This article originally appeared in Counterpunch.

Editor’s note: What is the Endgame of capitalism? First destroy the planet for profit then profit on the protection of what is left. Just look at how the market commoditized bottled water, in plastic to boot. How much does a bottle of clean air cost? It will not end until people are turned into copper tops. This is The System, see Surveillance Capitalism.

BY Robert Hunziker

Featured image: Ryan Gsell – CC BY 2.0


Wall Street investors have hit the jackpot. Soon they’ll be able to buy, own, and dictate The Commons, public lands, the world of Mother Nature. In fact, a pilot project is already in the works with ecosystems up for sale as Wall-Streeters anxiously prepare to gobble up the valued benefits of Mother Nature.

According to the NYSE PR Dept. they’ll IPO nature: “To preserve and restore the natural assets that ultimately underpin the ability for there to be life on Earth.” What? Really?

And, according to NYSE COO Michael Blaugrund: “Our hope is that owning a natural asset company is going to be a way that an increasingly broad range of investors have the ability to invest in something that’s intrinsically valuable, but, up to this point, was really excluded from the financial markets.”

Then, does this mean that neoliberal capitalism is becoming nature’s beneficent caretaker so environmentalists can stop wringing their hands about the horrendous loss of wild vertebrate life, down a whopping 68%, and loss of wetlands and loss of huge chunks of rainforests these past few decades, all of which echoes a guttural sound of impending extinction? Answer: Don’t count on it.

For starters, there’s something extraordinarily distasteful and downright disgusting about Wall Street buying control of nature’s resource capabilities. It bespeaks of an upside down world where the ludicrous becomes acceptable, but is it really acceptable? Is it?

The main character in this new scheme to own the world is a new asset class with a very plain name that says it all: Natural Asset Company or NAC. Yes, if you are a billionaire, get ready to buy up to 30% of the world’s natural resource beneficence to society. It’s going to be offered on the biggest auction block of the world, the New York Stock Exchange under the cover of sustainability of nature and protection of biodiversity, wink, wink!

Of course, this prompts a series of questions, headlined by when does Mother Nature morph into a tollbooth?

In simplest of terms, NACs allow for the formation of specialized corporations that hold the rights to the ecosystem services produced on a given chunk of land. The services might be sequestration of carbon or clean water or possibly rare Tibetan mountain air or maybe a lake teeming with trout in the wilderness. The possibilities are endless when auctioning off major chunks of an asset as big as the planet.

The NAC will maintain, manage and grow the natural asset that it has commoditized, working towards maximizing the profit potential of the natural asset, although, of course, this is not emphasized in the PR material. Nevertheless, it could lead to near-infinite profits. After all, the living Earth does rejuvenate and replenish and service ecosystems on its own accord, a natural process that goes on forever. Why not own it?

If ever there has been a time for the people of the world to drop whatever they are doing and focus on one issue, now is that time. The Commons is for sale! Think long and hard about that proposition, study it, discuss it, and decide whether to agree that Mother Nature should be monetized. If not in agreement, then do something, tell everybody, tell anybody who’ll listen, carry poster boards in the street, join a protest march, bang pots and pans, do something to relieve that breakneck pressure building around your temples!

The Intrinsic Exchange Group, in partnership with the NYSE, is currently working with the Costa Rica government on a pilot project of NACs in the country in order to institute its protocol for ownership of forests, lakes, waterfalls, mountains, meadows, caves, wetlands, in essence, all of nature. Costa Rica is the proving grounds for ownership of Mother Nature, whether she likes it or not.

First, NAC identifies a natural asset, like a forest for example, which is quantified using special protocols that have already been developed by various coalitions amongst multinational corporations, which in and of itself is remarkably terrifying. The NAC decides who has the rights to the natural asset’s productivity and how it is to be managed. It is then monetized via an IPO on the stock exchange. Thus, the NAC becomes “the Issuer” to potential buyers of the natural asset that the NAC represents. Essentially, NAC is a real estate agent of Mother Nature. The buyers are institutional investors, or the occasional billionaire, that want to own the rights to the benefits of wetlands or rainforests or natural water springs or rarified mountainous air or hot springs or whatever they want to own. The world is their oyster to buy, own, enjoy, and profit by.

Throughout all human history nature has been The Commons or the cultural and natural resource for all of society inclusive of natural processes like air and water. But now private investors are deleting The Commons with claims of “conservation and sustainability” of 30% of what’s called “protected areas” of our precious worldwide assets.

According to initial calculations, NACs will unlock $4Quadrillion in assets as a new feeding ground for Wall Street investors to buy the rights to clean water and clean air and trout streams and bass-laden lakes and gorgeous picturesque waterfalls and lagoons, an entire forest, or maybe eventually extend into the oceans. Who knows the range of possibilities once nature is transacted on Wall Street.

Monetizing nature!

What’s next, what’s left?

The Commons is property shared by all, inclusive of natural products like air, water, and a habitable planet, forests, fisheries, groundwater, wetlands, pastures, the atmosphere, the high seas, Antarctica, outer space, caves, all part of ecosystems of the planet.

The sad truth is Mother Nature, Inc. will lead to extinction of The Commons, as an institution, in the biggest heist of all time. Surely, private ownership of nature is unseemly and certainly begs a much bigger relevant question that goes to the heart of the matter, to wit: Should nature’s ecosystems, which benefit society at large, be monetized for the direct benefit of the few?

Robert Hunziker lives in Los Angeles and can be reached at rlhunziker@gmail.com.