UK claims greenhouse gas reduction, while outsourcing carbon emissions to China

By Fiona Harvey / The Guardian

Britons’ consumption of goods such as TVs and mobile phones made in China has “outsourced” the UK’s greenhouse-gas emissions, and is leading to a net increase in global emissions, according to a report from an influential committee of MPs.

While the UK’s own greenhouse-gas emissions have been tumbling, people and businesses have been buying an increasing proportion of manufactured products from overseas, where regulations on carbon emissions are often much weaker than within the EU. As a result, the increase in carbon emissions from goods produced overseas that are then used in Britain are now outstripping the gains made in cutting emissions here.

Tim Yeo, chairman of the energy and climate change committee, said: “Successive governments have claimed to be cutting climate-changing emissions, but in fact a lot of pollution has simply been outsourced overseas. We get through more consumer goods than ever before in the UK, and this is pushing up emissions in manufacturing countries like China.”

However, while China has become the world’s biggest producer of greenhouse-gas emissions, it has also become the world’s second biggest economy on the back of the enormous exports from its vast manufacturing sector. This means that, in effect, consumers from developed countries have paid China to take on responsibility for more greenhouse-gas emissions.

The Chinese government is reluctant to deal with the problem, insisting that China is taking on voluntary emissions-reduction targets, but is resistant to moves that would force Chinese manufacturers to obey stricter emissions limits.

This can put developed-world manufacturers at a disadvantage, which encourages the production of goods in areas with lax carbon controls, and thus pushes up emissions globally. Simon Harrison, chair of energy policy at the Institution of Engineering and Technology, said: “It’s about how you price imported goods – do you take account of the emissions involved in their production?”

When goods are manufactured in the UK and other European countries, the companies that make them are subject to strict emissions controls. For instance, they have to pay for the carbon they produce, and pay a surcharge on energy to subsidise renewable forms of generation. But overseas exporters in countries such as China and India are not subject to such stringent regulation, and often their manufacturing processes and energy generation are more carbon-intensive than the same processes here.

The government is in a quandary over what to do about the situation. Though importing carbon-intensive goods from overseas helps the UK to cut its overall emissions, it does not help to cut emissions globally, but just shifts the problem elsewhere. However, to slap import tariffs on goods from overseas that are produced in a carbon-intensive manner – which some UK manufacturers have said they would welcome – would be difficult under the World Trade Organisation’s rules.

Some green campaigners are urging the government to take responsibility for the emissions produced in the manufacture of imported goods. Andrew Pendleton, head of campaigns at Friends of the Earth, said: “One of the main reasons why nations such as China have soaring carbon emissions is because they are making goods to sell to rich western countries. This report highlights the UK’s role in creating this pollution. The government can’t continue to turn a blind eye to the damaging impact that our hunger for overseas products has on our climate. We need to tackle the problem, not shift it abroad.”

Read more from The Guardian: http://www.guardian.co.uk/environment/2012/apr/18/britain-outsourcing-carbon-emissions-china

Bright green technologies dependent on rare earth metals that may soon be economically unfeasible

By Massachusetts Institute of Technology

Wind turbines, one of the fastest-growing sources of emissions-free electricity, rely on magnets that use the rare earth element neodymium. And the element dysprosium is an essential ingredient in some electric vehicles’ motors. The supply of both elements — currently imported almost exclusively from China — could face significant shortages in coming years, the research found.

The study, led by a team of researchers at MIT’s Materials Systems Laboratory — postdoc Elisa Alonso PhD ’10, research scientist Richard Roth PhD ’92, senior research scientist Frank R. Field PhD ’85 and principal research scientist Randolph Kirchain PhD ’99 — has been published online in the journal Environmental Science & Technology, and will appear in print in a forthcoming issue. Three researchers from Ford Motor Company are co-authors.

The study looked at 10 so-called “rare earth metals,” a group of 17 elements that have similar properties and which — despite their name — are not particularly rare at all. All 10 elements studied have some uses in high-tech equipment, in many cases in technology related to low-carbon energy. Of those 10, two are likely to face serious supply challenges in the coming years.

The biggest challenge is likely to be for dysprosium: Demand could increase by 2,600 percent over the next 25 years, according to the study. Neodymium demand could increase by as much as 700 percent. Both materials have exceptional magnetic properties that make them especially well-suited to use in highly efficient, lightweight motors and batteries.

A single large wind turbine (rated at about 3.5 megawatts) typically contains 600 kilograms, or about 1,300 pounds, of rare earth metals. A conventional car uses a little more than one pound of rare earth materials — mostly in small motors, such as those that run the windshield wipers — but an electric car might use nearly 10 times as much of the material in its lightweight batteries and motors.

Currently, China produces 98 percent of the world’s rare earth metals, making those metals “the most geographically concentrated of any commercial-scale resource,” Kirchain says.

Historically, production of these metals has increased by only a few percent each year, with the greatest spurts reaching about 12 percent annually. But much higher increases in production will be needed to meet the expected new demand, the study shows.

China has about 50 percent of known reserves of rare earth metals; the United States also has significant deposits. Mining of these materials in the United States had ceased almost entirely — mostly because of environmental regulations that have increased the cost of production — but improved mining methods are making these sources usable again.

Rare earth elements are never found in isolation; instead, they’re mixed together in certain natural ores, and must be separated out through chemical processing. “They’re bundled together in these deposits,” Kirchain says, “and the ratio in the deposits doesn’t necessarily align with what we would desire” for the current manufacturing needs.

Neodymium and dysprosium are not the most widely used rare earth elements, but they are the ones expected to see the biggest “pinch” in supplies, Alonso explains, due to projected rapid growth in demand for high-performance permanent magnets.

Kirchain says that when they talk about a pinch in the supply, that doesn’t necessarily mean the materials are not available. Rather, it’s a matter of whether the price goes up to a point where certain uses are no longer economically viable.

The researchers stress that their study does not mean there will necessarily be a problem meeting demand, but say that it does mean that it will be important to investigate and develop new sources of these materials; to improve the efficiency of their use in devices; to identify substitute materials; or to develop the infrastructure to recycle the metals once devices reach the end of their useful life. The purpose of studies such as this one is to identify those resources for which these developments are most pressing.

While the raw materials exist in the ground in amounts that could meet many decades of increased demand, Kirchain says the challenge comes in scaling up supply at a rate that matches expected increases in demand. Developing a new mine, including prospecting, siting, permitting and construction, can take a decade or more.

“The bottom line is not that we’re going to ‘run out,’” Kirchain says, “but it’s an issue on which we need focus, to build the supply base and to improve those technologies which use and reuse these materials. It needs to be a focus of research and development.”

Barbara Reck, a senior research scientist at Yale University who was not involved in this work, says “the results highlight the serious supply challenges that some of the rare earths may face in a low-carbon society.” The study is “a reminder to material scientists to continue their search for substitutes,” she says, and “also a vivid reminder that the current practice of not recycling any rare earths at end-of-life is unsustainable and needs to be reversed.”

From PhysOrg: http://phys.org/news/2012-04-energy-scarce-materials.html

Bright green colonialism: massive solar project threatens sacred Indian sites and wildlife

By Edward Helmore / The Guardian

Of the many projects commissioned by the Obama administration to showcase its commitment to renewable energy, few are as grandly futuristic as the multibillion-dollar solar power projects under construction across broad swaths of desert on the California-Arizona border.

But at least two developments, including the $1bn, 250-megawatt Genesis Solar near Blythe in the lower Colorado river valley and the Solar Millennium project, are beset with lengthy construction delays, while others are facing legal challenges lodged by environmental groups and Native American groups who fear damage to the desert ecology as well as to ancient rock art and other sacred heritage sites.

Out on the stony desert floor, Native Americans say, are sites of special spiritual significance, specifically involving the flat-tailed horned toad and the desert tortoise.

“This is where the horny toad lives,” explains Alfredo Figueroa, a small, energetic man and a solo figure of opposition who could have sprung from the pages of a Carlos Castaneda novel, pointing to several small burrows. Figueroa is standing several hundred metres into the site of Solar Millennium, a project backed by the Cologne-based Solar Millennium AG. The firm, which has solar projects stretching from Israel to the US, was last month placed in the hands of German administrators and its assets listed for disposal.

Figueroa is delighted with the news. “Of all the creatures, the horny toad is the most sacred to us because he’s at the centre of the Aztec sun calendar,” he says. “And the tortoise also, who represents Mother Earth. They can’t survive here if the developers level the land, because they need hills to burrow into.”

Figueroa, 78, a Chemehuevi Indian and historian with La Cuna de Aztlán Sacred Sites Protection Circle, has become one of the most vocal critics of the solar programme and expresses some unusually bold claims as to the significance of this valley: he claims it is the birthplace of the Aztec and Mayan systems of belief. He points out the depictions of a toad and a tortoise on a facsimile of the Codex Borgia, one of a handful of divinatory manuscripts written before the Spanish conquest.

On a survey of the 2,400-hectare site Figueroa points out a giant geoglyph, an earth carving he says represents Kokopelli, a fertility deity often depicted as a humpbacked flute player with antenna-like protrusions on his head. Kokopelli, he says, will surely be disturbed if the development here resumes.

The area is known for giant geoglyphs, believed by some to date back 10,000 years. Gesturing towards the mountains, he also describes Cihuacoatl – a pregnant serpent woman – he sees shaped in the rock formations. All of this, he says, amounts to why government-fast-tracked solar programmes in the valley, where temperatures can reach 54C, should be abandoned. It is a matter of their very survival.

“We are traditional people – the people of the cosmic tradition,” Figueroa explains. “The Europeans came and did a big number on us. They tried to destroy us. But they were not able to destroy our traditions, and it’s because of our traditions and our mythology that we’ve been able to survive. If we’d blended in with the Wasps – the white Anglo-Saxon Protestants – we’d have been lost long ago.”

At the Genesis Solar site, 20 miles west, Florida-based NextEra has begun to develop an 810-hectare site. The brackets that will hold the reflecting mirrors stand like sentinels. Backed by a $825m department of energy loan, Genesis Solar is planned as a centrepiece of the administration’s renewable energy programme, with enough generating capacity to power 187,500 homes.

But local Native American groups collectively known as the Colorado River Indian Tribes are demanding that 80 hectares of the development be abandoned after prehistoric grinding stones were found on a layer of ashes they say is evidence of a cremation site “too sacred to disturb”.

Read more from The Guardian: http://www.guardian.co.uk/environment/2012/mar/11/solar-power-mojave-desert-tribes

BASF, Eramet Drop $2.6b Indonesian Nickel Project

BASF, Eramet Drop $2.6b Indonesian Nickel Project

By Hans Nicholas Jong / Mongabay

JAKARTA — German chemical giant BASF and French miner Eramet have pulled out of a multibillion-dollar “green energy” project in Indonesia because of its impact on one of the last Indigenous tribes on Earth living in voluntary isolation.

In an announcement on June 24, both companies said they had scrapped plans to invest up to $2.6 billion in the project on the island of Halmahera in Indonesia’s eastern province of North Maluku. The Sonic Bay project would have seen the construction of a refinery producing about 67,000 metric tons of nickel and 7,500 metric tons of cobalt a year. These metals, crucial ingredients in electric vehicle batteries, would have come from the nearby Weda Bay Nickel mine, the world’s largest nickel mine, in which Eramet holds a minority stake.

In its announcement, BASF said it would “stop all ongoing evaluation and negotiation activities for the project in Weda Bay.”

The decision came after a sustained campaign by activists voicing concerns that the Sonic Bay refinery, which is essentially an extension of the Weda Bay Nickel project, would increase the risk of Indigenous peoples in the area losing their lands. Weda Bay Nickel’s concession overlaps with rainforest that’s home to hundreds of members of the Forest Tobelo people, according to U.K.-based Indigenous rights NGO Survival International, which has lobbied both BASF and the German authorities to drop out of the project.

Eramet’s Weda Bay Nickel mine on the territory of the uncontacted Forest Tobelo people in Halmahera, Indonesia. Image courtesy of Survival International.

‘The people who live in the forest’

The Forest Tobelo tribe are among the last Indigenous groups still living in voluntary isolation from the rest of world. They are believed to number between 300 and 500 hunter-gatherer nomadic peoples whose way of life is so intricately tied to the environment that they call themselves O’Hongana Manyawa — the people who live in the forest.

Because the Forest Tobelo people avoid contact with outsiders, it’s unlikely they could ever be reasonably consulted about any projects in their area, or give their free, prior and informed consent (FPIC) for the use of their customary lands. Some tribe members have emerged from their isolation to report losing their forests to the mining concession.

As such, any investment in the Sonic Bay project would likely contribute to the ongoing destruction of the Forest Tobelo people’s forests, Survival International said.

This could be a reason why BASF and Eramet pulled out of the project, said Pius Ginting, coordinator of the Indonesian NGO Action for Ecology and Emancipation of the People (AEER). BASF’s stated reason is that the supply of battery-grade nickel in the market has eased, and that it therefore doesn’t need to invest so heavily to secure supplies.

What it doesn’t mention, however, is that its home government, Germany, is legally obligated to protect, respect and implement the rights of Indigenous and tribal peoples and improve their living and working conditions in the countries where they live. That’s because Germany in 2021 ratified the International Labour Organization’s Indigenous and Tribal Populations Convention.

That would therefore make any German company’s involvement in a project like Sonic Bay that threatens Indigenous peoples a violation of the convention, Pius said.

He also pointed out that WBN had scored poorly in a routine annual assessment of environmental parameters by Indonesia’s Ministry of Environment and Forestry. Known as the PROPER assessment, it assigns a color code to rate companies’ performance, ranging from gold to green to blue to red to black; a gold or green grade means a company exceeds legal requirements.

In 2022, Weda Bay Nickel received a red grade, meaning it failed to operate in accordance with existing environmental and social regulations.

“Even if [BASF and Eramet] said the main reason [for their withdrawal] is because of the market and the economy, we see that environmental risks are of course being considered as well due to WBN’s bad PROPER score,” Pius said.

He added their abandonment of the project should be a wake-up call for the rest of the battery metals industry and the Indonesian government to improve the environmental, social and governance (ESG) performance of the industry.

A member of the Forest Tobelo indigenous group in North Maluku, Indonesia. Photo by Muhammad Ector Prasetyo/Flickr.

‘No-go zone’ to protect Indigenous tribe

Despite this development, WBN’s mining operation looks set to continue as the government pushes for Indonesia to become a powerhouse in the production of battery metals. This means the Forest Tobelo people will continue to be at risk of losing their forests, Survival International said.

The campaign group recently posted a video showing an uncontacted Forest Tobelo family approaching workers at a mining camp. According to Survival International, the family was asking for food after their rainforest was destroyed. It said similar scenes can be prevented by establishing a no-go zone, where no mining or other activities can take place.

Much of the nickel mined at Weda Bay goes to Chinese EV makers; the mine’s majority stakeholder is Tsingshan Holding Group, the world’s biggest nickel producer. Tesla, which doesn’t currently source nickel from Weda Bay but has signed agreements worth billions of dollars with Indonesian nickel and cobalt suppliers, said in its 2023 impact report that it was “exploring the need for a no-go zone” to protect uncontacted Indigenous peoples.

In a meeting with Survival International representatives, senior Indonesian politician Tamsil Linrung also voiced his support for the protection of the Forest Tobelo people through the establishment of a no-go zone.

“We will try to make that region a no-go zone. If not in the near future, perhaps after the next president is sworn into office [in October 2024],” he said.

Uncontacted Forest Tobelo peoples appear at a Weda Bay Nickel mining camp. The uncontacted Forest Tobelo are becoming effectively forced to beg for food from the same companies destroying their rainforest home. Image courtesy of Survival International.

Respite — for now

For now, the news that BASF and Eramet are dropping out of the refinery project provides some respite for the Forest Tobelo people, said Survival International director Caroline Pearce.

“BASF’s withdrawal means that they, at least, will not be complicit in the Hongana Manyawa’s destruction. But Eramet, and other companies, are still ripping up the rainforest and the uncontacted Hongana Manyawa simply won’t survive without it. They must stop now, for good, before it’s too late,” she said.

But another top official, Investment Minister Bahlil Lahadalia — who faces allegations of self-dealing and corruption in the revocation and reissuance of mining permits — said negotiations are still underway to get BASF and Eramet to invest in the refinery. He attributed their withdrawal to a decline in EV sales in Europe as a result of weakening purchasing power, but said this would only be temporary.

“[The project] is still pending,” he said as quoted by Indonesian news website Tempo.co. “We’re still negotiating.”

Help stop an uncontacted people being wiped out for electric car batterieshttps://act.survivalinternational.org/page/124732/action/1?locale=en-GB&_gl=1*3688ky*_ga_VBQT0CYZ12*MTczMjg5MDgxMC4xLjEuMTczMjg5MTU3Mi4wLjAuMA..

Banner: Nickel mining activities in Halmahera, North Maluku, Indonesia. Image by Christ Belseran/Mongabay Indonesia.

Battery Storage Systems Are a Fire Hazard

Battery Storage Systems Are a Fire Hazard

By Katie Singer https://katiesinger.substack.com/p/bess-fire-hazards

On Friday, August 30, Applied Energy Services Corporation (AES), a global utility and power generation company, submitted a proposal to Santa Fe, New Mexico county commissioners to build a 700-acre solar facility with a battery energy storage system (BESS).

On September 5th, a thermal runaway fire started at the AES-built SDG&E (San Diego Gas and Electric) Battery Storage Facility in Escondido, California. (With a thermal runaway fire, excessive heat causes a chemical reaction that spreads to other batteries.) Authorities issued a mandatory evacuation order for the immediate area, and a “shelter in place” order for areas as far as over a mile away from the fire. (To shelter in place, people must go indoors, shut doors and windows, and “self-sustain” until emergency personnel provide additional direction.) Schools up to three miles away from the fire were evacuated Thursday and canceled for Friday. 500 businesses closed.

As of this morning, Saturday, September 7th, officials have not yet lifted orders to evacuate and shelter in place.

On social media, people have reported smelling “burning plastic” inside their homes (despite windows being closed) and feeling ill.

People from Oceanside to Encinitas encountered a strong chemical smell starting around 5 pm Friday, the 6th. Around 8:30 pm, San Diego County Air Pollution Control District officials said that this smell was not related to the BESS fire in Escondido. Due to the odors’ fleeting nature, they were unable to identify its source.

This is the 3rd AES BESS thermal runaway fire in five years. Officials predict that it could take up to 48 hours to extinguish.

A May 2024 battery fire in Otay Mesa, California kept firefighters on the scene for nearly 17 days. They sprayed eight million gallons of water on the site. The county’s hazmat team tested water runoff and smoke and reported no toxic or dangerous levels. (Is the keyword in this last sentence “reported?”)

For a list of battery energy storage “failure incidents,” see Electric Power Research Institute’s database. Globally, 63 utility and industrial-scale battery energy storage systems endured failure events from 2011 to 2023. After South Korea, the U.S. has experienced the most major battery energy storage-related fires, with California (six, with this Escondido fire) and New York (four) reporting the most incidents.

Back in Santa Fe County, petitioners emailed and hand-delivered a request to county commissioners on July 23 and August 23 to enact a moratorium on AES’s solar facility and battery energy storage system. Commissioners did not review these petitions before AES submitted its application on August 30th. A moratorium cannot apply to a pending application.

AES’s Escondido Battery Energy Storage facility has 24 BESS battery containers. The corporation plans to install 38 battery containers at its Rancho Viejo BESS facility.

For updates, visit New Mexicans for Responsible Renewable Energy.

Please also read my September 5th post, 21 questions for solar PV explorers, and check out Shauna and Harlie Rankin’s video, “Government announces 31 million acre land grab from U.S. ranchers (for solar and wind facilities).” It explains that federal officials and corporations have joined forces to install “renewable power” corridors—five miles wide, 70 miles long, and larger—around the U.S. by 2030. These corridors will cover farm and ranchland with solar and wind facilities.

I also highly recommend Calvin L. Martin’s August 2019 report, “BESS Bombs: The huge explosive toxic batteries the wind & solar companies are sneaking into your backyard.” Part 1 and Part 2. I recommend reading this report even though powers-that-be removed its videos.

According to basic engineering principles, no technology is safe until proven safe. Will legislators continue to dedicate billions of dollars to subsidizing solar power, wind power, battery storage and EVs? Will commissioners and regulators say, “We have to expect some thermal runaway fires in order to mitigate climate change threats?” Or, will they build safety features into BESS like this firefighter suggests? Will they protect the public and insist on certified reports from liability-carrying professional engineers that all hazards have been mitigated before they permit new facilities and new battery storage systems?

 

21 questions for solar PV explorers

1.  Do you agree with Herman Daly’s principles—don’t take from the Earth faster than it can replenish, and don’t waste faster than it can absorb?

2.  Should solar PV evaluations recognize the extractions, water, wood, fossil fuels and intercontinental shipping involved in manufacturing solar PV systems?

3.  How should a manufacturer prove that slave laborers did not make any part of its solar PV system?

4.  Should evaluations of solar PVs’ ecological impacts include impacts from chemicals leached during PVs’ manufacture?

5.  Should evaluations assess the ecological impacts of spraying large-scale solar facilities’ land with herbicides to kill vegetation that could dry and catch fire?

6.  Does your fire department have a plan for responding to a large-scale solar facility fire on a sunny day—when solar-generated electricity cannot be turned off?

7.  Since utilities can’t shut off rooftop solar’s power generation on a sunny day, firefighters will not enter the building: they could be electrocuted. Meanwhile, every solar panel deployed on a rooftop increases a building’s electrical connections and fire hazards. How/can your fire department protect buildings with rooftop solar?

8.  Solar panels are coated with PFAs in four places. Panels cracked during hailstorms can leach chemicals into groundwater. Who will monitor and mitigate the chemicals leached onto land under solar panels?

9.  To keep clean and efficient, solar panels require cleaning. Per month, how much water will the solar PV facility near you require?

10.  Covering land with paved roads, parking lots, shopping malls, data centers…and large solar facilities…disrupts healthy water cycling and soil structure. Should evaluations assess the impact of these losses? How/can you restore healthy water cycling and soil structure?

11.  Since solar PVs generate power only when the sun shines—but electricity users expect its availability 24/7—such customers require backup from the fossil-fuel-powered grid or from highly toxic batteries. Should marketers stop calling solar PVs “renewable,” “green,” “clean,” “sustainable” and “carbon neutral?”

12.  Inverters convert the direct current (DC) electricity generated by solar panels to alternating current (AC)—the kind of electricity used by most buildings, electronics and appliances. (Boats and RVs do not connect to the grid; they use DC—batteries—to power their appliances.) Inverters “chop” the electric current on building wires, generating a kind of radiation. What are the hazards of such radiation? How/can you mitigate it?

13.  At their end-of-usable-life, solar PVs are hazardous waste. Who pays the ecological costs to dispose of them?

14.  Who pays the financial bill to dispose of solar PV systems at their end-of-usable-life? If you’ve got a large-scale solar facility, did your county commissioners require the corporation to post a bond so that if/when it goes bankrupt, your county doesn’t pay that financial bill?

15.  After a solar facility’s waste has been removed, how/will the land be restored?

16.  From cradles-to-graves, who is qualified to evaluate solar PVs’ ecological soundness? Should the expert carry liability for their evaluation? Should consumers require a cradle-to-grave evaluation from a liability-carrying expert before purchasing a solar PV system?

17.  Do solar PVs contribute to overshoot—using water, ores and other materials faster than the Earth can replenish them?

18.  If overshoot is a primary problem, and climate change, loss of wildlife species and pollution are consequences of overshoot, do we change our expectations of electric power, devices, appliances and the Internet?

19.  Can you name five unsustainable expectations about electric power?

20.  Can you name five sustainable expectations about electric power?

21.  In your region (defined by your watershed), who knows how to live sustainably?

RELATED NEWS

SUBSIDIZING SOLAR

U.S. subsidies of semiconductor and green energy manufacturers could reach $1 trillion.

When it opened in 2014, the Ivanpah Solar Power Facility in the Mojave Desert was the world’s largest solar thermal power station. Read about its daily consumption of natural gas, the subsidies it used to fund its $2.2 billion cost, its devastation of 3500 acres of desert habitat, its fire, and its annual production of electricity.

END-OF-LIFE-E-WASTE

End-of-life-e-waste (including from solar panels) poisons Ghana, Malaysia and Thailand —and harms children who scour junkyards for food and schooling money. Actual end-of-life-e-waste rises five times faster than documented e-waste. Of course, the vast majority of e-waste occurs during manufacturing (mining, smelting, refining, “doping” of chemicals, intercontinental shipping of raw materials, etc.).

INSPIRATION

The new Just Transition Litigation Tracking Tool from the Business & Human Rights Resource Centre has documented, up to 31 May 2024, 60 legal cases launched around the world by Indigenous Peoples, other communities and workers harmed by “renewable” supply chains. Cases brought against states and/or the private sector in transition mineral mining and solar, wind and hydropower sectors challenge environmental abuses (77% of tracked cases), water pollution and/or access to water (80%), and abuse of Indigenous Peoples’ rights (55%), particularly the right to Free, Prior and Informed Consent (FPIC – 35% of cases). These cases should warn companies and investors that expensive, time-consuming litigation can quickly eat up the benefits of such shortcuts.

For two decades, a small group of nuns in rural Kansas has taken on Netflix, Amazon and Google on social issues. Even when their stocks amount to only $2,000, the nuns propose resolutions at shareholders’ meetings. For example, the sisters have asked Chevon to assess its human rights policies, and for Amazon to publish its lobbying expenditures.

When Rio Tinto proposed mining lithium in Serbia’s Jadar Valley (whose deposits could cover 90% of Europe’s current lithium needs), the corporation claimed that mining would meet environmental protection requirements. Locals learned about the mining’s potentially devastating impacts on groundwater, soil, water usage, livestock and biodiversity from tailings, wastewater, noise, air pollution and light pollution. 100,000 Serbians took to the streets, blocked railways—and moved President Aleksandar Vucic to promise that mining will not proceed until environmentalists’ concerns are satisfied.

 

Photo by Justin Lim on Unsplash