The Difference Between Hope and Courage

The Difference Between Hope and Courage

Editor’s note: “I think hope is really harmful for several reasons. False hopes bind us to unlivable situations, and they blind us to real possibilities. Does anybody really think that Weyerhaeuser is going to stop deforesting because we ask nicely? Does anybody really think that if a democrat would have gotten into the White House that things would be ok? Does anybody think that vivisectors will stop torturing animals just because we stand outside with a sign?

That doesn’t mean that we shouldn’t stand out there with that sign. What it means is, do we really believe that they will stop because we do that? And if you don’t believe that, what does that mean? The book I have just recently completed is really centered around this question. Do you believe that the culture will undergo a voluntary transformation to obtain a sustainable way of living? If you don’t, what does that mean for our strategy and for our tactics? We don’t know. The reason we don’t know is that we don’t ask that question. The reason we don’t ask that question is that we’re so busy pretending that we have hope.” – Derrick Jensen


 

Why is it that so many people are always busy claiming that we need hope? One recent article I saw discusses “active hope” as if that is any different from regular “hope.” Hope is hopium, be it active hope, regular hope, passive hope, or resigned hope. Put almost any word you want (except “false”) in front of the word hope, and you will cause me to assume that you are selling something. Something that smells like bullshit.
Before I go into detail regarding hope along with more analysis that I am frequently doing, I came across this article courtesy of Jan Andrew Bloxham and Steve Pyke, which more or less succinctly wraps up exactly what I’ve been saying for the last decade. Short quotes really don’t do it justice as one really needs to read the entire article, but I’ll provide a snippet here:

Biosphere Collapse: We Are in a Terminal Phase

The Sixth Mass Extinction is not a future risk—it is happening now, and human activity is the sole cause.

Extinction Rates: Current rates are 100–1,000 times higher than the “background” rate of the Cenozoic era. While the oft-cited “250–300 species per day” figure is debated (due to undercounting invertebrates and microbes), conservative estimates still suggest ~150 species lost daily. For context, the Permian-Triassic extinction (“The Great Dying”) wiped out 90% of species over 60,000 years. We’re matching that pace in decades.

Habitat Destruction: 75% of Earth’s land surface is degraded by human activity. Forests (critical carbon sinks) are vanishing at 10 million hectares/year. Oceanic dead zones (hypoxic regions) have quadrupled since 1950.

Food Web Collapse: Phytoplankton (the base of marine food chains) have declined 40% since 1950. Insect biomass is dropping 2.5% annually, threatening pollination and soil health.

Conclusion: The biosphere is unravelling faster than evolution can adapt. Humans are not exempt—we are apex predators in a collapsing food web.”

Derrick Jensen told us about hope almost two decades ago and explained that the reason people think we need hope is through cultural conditioning, and this is how he describes hope, quote:

Hope is, in fact, a curse, a bane. I say this not only because of the lovely Buddhist saying “Hope and fear chase each other’s tails,” not only because hope leads us away from the present, away from who and where we are right now and toward some imaginary future state. I say this because of what hope is.

More or less all of us yammer on more or less endlessly about hope. You wouldn’t believe — or maybe you would — how many magazine editors have asked me to write about the apocalypse, then enjoined me to leave readers with a sense of hope. But what, precisely, is hope? At a talk I gave last spring, someone asked me to define it. I turned the question back on the audience, and here’s the definition we all came up with: hope is a longing for a future condition over which you have no agency; it means you are essentially powerless.”

Going back to my first article here, the first thing one should determine is whether the situation being looked at is a problem or a predicament. A problem, by definition, has an answer or a solution. A predicament is often called different names such as dilemma, but Wikipedia calls it a “wicked problem.” Under the word dilemma is a less complex definition, where we once again see the word predicament under the “See Also” section. Here is the entry for dilemma on Wikipedia.
Something that is a problem one has agency over, meaning that there is a solution which is both attainable and feasible. Therefore, hope actually prevents one from attaining that goal, quote:
When you give up on hope, you turn away from fear.
So, in reality, for almost any problem, what we need is not hope, but COURAGE!
Of course, much has changed over the last 19 years since that article was written in terms of how the predicaments we face have become far worse. Still, nothing has really changed about society making any real efforts to abandon technology use and civilization. When I say things like that, I often get criticized for what is assumed that I want “to live like a cave man” or that I am “Malthusian” or that I just want to “give up.” I wrote The Cycle of Life specifically for those folks.
Now, for the bad news: predicaments don’t have solutions, they only have outcomes. Yes, my regular readers are most likely very tired of reading that same message over and over and over again. But here’s the catch – courage is great for predicaments too! An article by Frank Moone gives us details on what to do. In it, he says that: Hiding out, giving up, or doing nothing is not an acceptable response.
Of course, unfortunately, there are people who will do just that. Simply telling people what an acceptable response is won’t necessarily get them to comply. There are literally hundreds of books out there that describe the exact same things, but again, only people who want to do that will actually follow through. It really is absolutely not one bit different to people who read my articles versus people who couldn’t be less interested. No interest = no compliance, not that any readers will comply either (of course, I haven’t actually ever asked anybody to do anything – I’ve only made general recommendations). There are literally millions of people who simply do not care. Is it because of ignorance? Doubtful – as they’ve been told; they choose not to believe. Of course, belief is irrelevant to how the system works. It will continue to work the same way whether one believes in it or not, which is the great thing about facts. Not believing in them doesn’t change them.
The most important part about Frank’s article about “active acceptance” is what it doesn’t tell you. Sadly, the article is based partly on fear. Notice how it talks about survival? Here’s the part I disagree with, quote: Leave a legacy of wisdom and care for future generations.
Articles on “how to survive” are literally everywhere. Prepping handbooks, food preparation and storage, books about weapons, bunker building books, Earthships, Transition Towns, The Venus Project, and every other type of preparation manual, book, concept, and living arrangement are available at your nearest library or bookstore or online. I’ve written about countless ideas all based on the same premise. Fear of death. But what if survival is highly over-rated? What if there ARE NO future generations? What if the generation being born today is the last one? Needless to say, not everyone is going to be interested in accomplishing something they see no need for because they see it as a waste of time when they could be doing something they are actually passionate about. Focusing on surviving isn’t Living Now. Focusing on surviving is more or less similar to focusing on Dying Now. One must choose how he or she wants to live – do you want to run towards life or away from death?
Frank’s article is good – don’t get me wrong. But it repeats the same message that so many articles promoting survival do – let’s deny reality and promote false hope. One can fear death and choose to focus on attempting to evade it, but this is really the definition of insanity because humans have a natural instinct for survival to begin with (so one doesn’t have to really spend all their time remembering to survive) AND you still won’t escape it. Now, if one really wants to spend their time doing that, then no harm, no foul. If, on the other hand, one isn’t afraid of death and has no interest in such endeavors, then they shouldn’t be shamed for something they see no motivation for or satisfaction in.
Just because I’m passionate about reducing the amount of energy and resources I use doesn’t mean that I think it is OK to try to shame others into doing this as well in a misguided effort to reduce the planetary ecological footprint. It’s just not going to happen. The billionaires certainly couldn’t give two craps about what I’m doing one way or the other and they certainly aren’t going to change their lifestyles to accommodate what I think is important. My message is for people to accept our predicaments for what they are, discover what they are truly passionate about, and work towards that end, at the same time enjoying life and nature and being grateful for what still exists today.
To understand this just a bit deeper, one must understand personal values versus personal traits and the psychology behind them. Nate Hagens goes into detail on both the dark triad and the dark tetrad personality traits. One can claim specific values but have personality traits which oppose those values, which instantly points to the person being a liar (and potentially a pathological liar, which narcissists tend to be). Either way, traits will outcompete values in almost all circumstances. Most people’s traits and values are much closer in alignment to each other, but we all know people who fit into the dark triad and tetrad patterns.
I understand what many people in the overshoot community would like to see with regards to developing a sustainable community. I would very much like that myself. I actually seriously considered embarking on building one myself (following in the footsteps of many other individuals who have done this). But then I read countless stories of struggles from others, and enterprises that turned into something far less grand than had been anticipated. Many of these projects failed and even the ones which have succeeded haven’t truly met up with the original expectations. The MPP works just as prevalently in this regard as it does in mainstream society. I also knew about places in my own state which had originally been developed as utopian societies, such as the Kristeen Community, New Harmony, and Padanaram Settlement, which all failed as they were originally set up. The Padanaram Settlement is still in operation, but not like it was for many years. Like most places whose originator/founder has passed away, changes within the community have made it more like a regular town now.
I have attempted to point out many times that attachment to outcome is often associated with goal-setting and is generally ill-advised in the future that we will experience because of the fact that many if not most goals/outcomes will become impossible to meet. Some goals will be far more attainable than others, especially shorter-term ones versus long-term goals. Part of my advice comes from my own experiences. I have always been a rather goal-oriented person. Understanding overshoot means coming to terms with the reality that quite literally everything around us is changing and goals which once may have been attainable now no longer are, simply due to energy and resource decline and climate change, among many other symptom predicaments. This has been difficult to accept.
This is most certainly NOT to say to give up on any goals that one is passionate about, but to recommend being flexible about goals. Be aware of the strong possibility that your life may come apart at the seams when you least expect it. Why you ask? Because of the Technate of North America. Everything you thought you knew is about to change if it hasn’t already under the surface (or even on the surface). I don’t agree with everything in the article (it does appear to be overshoot blind), but the systems surrounding us here in the U.S. are being taken apart, one by one. It is true that collapse doesn’t generally happen in a controlled fashion because it isn’t under the control of any single person or entity. I agree wholeheartedly with that assessment.
Meanwhile, a new study shows that peak carbon sequestration was in 2008, and since then the amount of carbon dioxide absorbed by plants has declined by an average of 0.25% a year. Another paper demonstrates that in 2023, the CO2 growth rate was 3.37 ± 0.11 ppm at Mauna Loa, which was 86% above that of the previous year and hit a record high since observations began in 1958, while global fossil fuel CO2 emissions only increased by 0.6% ± 0.5%. This implies an unprecedented weakening of land and ocean sinks, and raises the question of where and why this reduction happened. The rate at which climate change is proceeding is increasing dramatically. This was accurately predicted many years ago but is now happening. See also Carbon Sinks Are Becoming Carbon Sources.
Of course, something else that has been slowing for quite some time could easily bring an end to agriculture to parts of Europe. Here’s the quote that brings relevance to everything above in today’s article:

A lot of discussion is, how should agriculture prepare for this,” he said. But a collapse of the heat-transporting circulation is a going-out-of-business scenario for European agriculture, he added. “You cannot adapt to this. There’s some studies of what happens to agriculture in Great Britain, and it becomes like trying to grow potatoes in Northern Norway.

THAT is the overwhelming theme I have been attempting to explain for the last four years here. You cannot adapt to this. We’re not talking just about Great Britain, Europe, or anywhere specific. Leon Simons says this regarding the rate of warming globally:
As far as we can determine, this is the fastest rate of warming in the history of our planet!
The rate of change will overtake the rate of evolution whereby evolution cannot keep up with the changes. Rather than fall into denial of reality, utilize optimism bias, and attempt to bargain to maintain civilization, one must comprehend that there is no escaping this and that we lack agency (who exactly is “we”?), despite unsubstantiated claims to the contrary by those who are busy trying to sell you a fantasy that is not to be. Don’t fall into the hope trap – seek courage instead.

A new study on birds points out yet another symptom predicament I have repeatedly mentioned, especially recently – pollution loading. Here’s the poignant part of the article, quote:

Ideally, you do not want these substances in your body, but in practice, it is virtually impossible for humans and many other living organisms to avoid them.

Recent research and a new method for detecting PFAS bring both bad and good news. The bad news is that we are finding PFAS in places we have not previously found them. The good news is that this means we have become better at detecting these substances.


“The biggest increase is in the livers of wading birds. We found up to 180 times more PFAS than previously,” said Zhang.
Perhaps pollution loading is the reason HPAI H5N1 bird flu has been so deadly to birds and now mammals, which signals potential reasons why humans are becoming so much more disease-ridden as these chemicals, compounds, and toxins add up in our bodies. This is of huge concern because of the implications it has regarding those who think regenerative agriculture or permaculture will build resilience and rebuild the soil. Rebuilding the soil is a lovely idea, and it seems relatively easy to add nutrients to it through mulching and other soil amendments. But how does one rid the soil of microplastics, PFAS, PFOS, dioxins, salts, and a thousand other chemicals/chemical compounds? All of these pollutants are steadily increasing and doing so rather rapidly now due to increased wildfires, winds, extreme weather events, and extreme rain/flooding events.
To end this article, I present yet another excellent article from Dave Pollard summarizing the backdrop and leadup to the fiascoes unfolding currently in the U.S. but also many other nations as well. The bottom line is that reality is a cruel master, and many of the illusions we chose to believe in didn’t actually exist in the first place. Still, just like the monkeys fighting in the power station in Sri Lanka causing a nation-wide blackout, the same scenario is unfolding in the U.S., quote:

And for all of that, these massive, staggeringly complex, bureaucratic systems are so easy to break! All it takes is a few monkeys!

Maybe, as we watch our exhausted, fraudulent, incompetently-‘led’ civilization falling apart all around us, we can finally open our eyes and see that it never has been what we believed it was, with all our smarmy talk of “freedom” and “democracy”. It’s been a sham from the start, but we believed the nonsense we’ve been told about it because we wanted to believe it. Take away everything we have, but you’ll never take away our belief in our human superiority, our manifest destiny, the myth of perpetual progress as we spread across the universe, and, most of all, our certainty that we will be saved.

So we have DOGE, perhaps the most blatantly, overtly incompetent gang of monkeys the world has ever seen, let loose in the ‘power factory’ by the Child King, the most incompetent business person in the history of civilization, wreaking havoc on every essential public service in the US.

And we have the incompetent, miseducated, sci-fi dreamer technophiles, with their wild untested ideas for Marvel Comics-style rescues of our ecosystems, let loose to play at geoengineering, sucking up billions from the dregs of the world’s fast-failing treasuries to play at making fusion energy, and carbon capture, and AI everything, and quantum everything, and starships to anywhere-but-this-fucked-planet, and carbon (and now water) cap-and-trade offset exchanges (for those that flunked science). Gotta be some salvation in there somewhere! It’s ordained!

Watching this unfold is quite sickening, only buffered by the fact that most of us in the overshoot community knew that collapse would come sooner or later. I just think that most of us had wished that we might eke out a few more years first.
Thank goodness for some beautiful pictures at Manistee, Michigan to distract one away from all of this for a bit!
Banner: Early October morning at Hills Creek State Park
Earth’s Water Cycle Off Balance for ‘First Time in Human History’

Earth’s Water Cycle Off Balance for ‘First Time in Human History’

Editor’s note: Water, as well as forests, do not need to be managed. They just need to be left alone.


By Petro Kotzé / Mangabay

Water seems deceptively simple and is easy to take for granted. It has no color, taste or smell and is one of the most plentiful chemical compounds on Earth. Recycled endlessly through the biosphere in its various forms, it is fundamental to keeping our planet’s operating system intact, and has done so for millions of years.

Water is life. Earth’s oceans are where life likely originated, and freshwater is essential for plants and animals to persist and thrive. It is basic to all human development. But as our 21st-century world gallops ahead, we are vastly manipulating the water cycle at an unprecedented rate and scale to meet the ever-growing needs of an exploding population.

By 2030, we will have built enough dams to alter 93% of the world’s rivers. Estimates vary, but we already use around 90% of the planet’s freshwater to grow our food. More than half of us now live in cities, but by 2050 a projected 68% of the world’s nearly 8 billion people will reside in urban areas. That metropolitan lifestyle will require astronomical amounts of water — extracted, treated, and piped over large distances. Humanity also prevents much rainwater from easily infiltrating underground, reducing aquifers, as we pave over immense areas with impermeable concrete and asphalt.

But these easily visible changes are only the proverbial tip of the iceberg. Researchers are shining new light on sweeping human alterations to Earth’s water cycle, many playing out in processes largely unseen. In the Anthropocene — the unofficial name for the current human-influenced unit of geologic time — we are already pushing one of Earth’s most fundamental and foundational systems, the hydrological cycle, toward the breaking point.

Trouble is, we don’t yet know when this threshold may be reached, or what the precise consequences will be. Scientists are resolutely seeking answers.

Water flows past Copenhagen in Denmark.
Water flows past Copenhagen in Denmark. As Earth’s urban areas expand, so do population pressures on the freshwater supply and the water cycle. Image by Petro Kotzé.

Water cycle basics

The hydrological cycle is powered by the sun and flows through eternal inhalations and exhalations of water in different states, as it is exchanged between the atmosphere and the planet. Liquid water from oceans, lakes and rivers rises via evaporation into the sky, to form water vapor, an important greenhouse gas that, like carbon dioxide, helps insulate the planet to maintain that “just right” temperature to maintain life as we know it.

Atmospheric water vapor then changes to liquid, falling to earth as precipitation. It then flows as runoff again across the landscape, and what doesn’t go back into waterbodies, settles into soils, to be taken up by plants and released via transpiration as vapor skyward. A large amount of freshwater is also locked in glaciers and icecaps.

Within this cycle, there are constant complex interactions between what scientists call blue and green water. Blue water includes rivers, lakes, reservoirs and renewable groundwater stores. Green water is defined as terrestrial precipitation, evaporation and soil moisture.

Illustration: Partitioning of rainwater into green and blue water flows.
Partitioning of rainwater into green and blue water flows. Image by Geertsma et al. (2009)/Baseline Review for the Pilot Programme in Kenya. Green Water Credits Report 8, ISRIC–World Soil Information, Wageningen.

A fully functioning hydrological cycle, with balanced supplies and flows of blue and green water, is essential to terrestrial and aquatic ecosystems, human food availability and production, and our energy security.

It also regulates Earth’s weather and influences climate. Atmospheric temperature, for example, is dependent on evaporation and condensation. That’s because as water evaporates, it absorbs energy and cools the local environment, and as it condenses, it releases energy and warms the world. Throughout the Holocene geological epoch, a relatively stable water cycle helped maintain balanced temperatures and conditions able to support civilization.

However, in the Anthropocene, human activity has impacted the water cycle, the climate and ecosystems. For one, as more human-produced CO2 and methane build up in the atmosphere, more solar energy is held by the planet, causing global warming. And the hotter the air, the greater the quantity of water vapor the atmosphere can hold. That’s bad news because water vapor is itself a powerful greenhouse gas, greatly increasing the warming.

Earth’s water cycle
Earth’s water cycle. Image courtesy of USGS.

Measuring hydrological cycle change: ‘It’s complicated’

As our anthropogenic manipulation of the water cycle escalates on a global scale, we urgently need a holistic way to monitor these modifications and understand their impacts. Yet, the topic has not received the urgent scientific attention it requires. “To the best of our knowledge, there is no study comprehensively investigating whether human modifications of the water cycle have led, could be leading, or will lead to planetary‐scale regime shifts in the Earth system,” researchers noted in a 2020 paper on the role of the water cycle in maintaining fundamental Earth functioning.

One key concern of scientists: If severe hydrological shifts occur in too many regions, or in key regions that greatly influence the water cycle or water availability (such as the Amazon), then that could provoke shifts in other regions, in a global chain reaction, says study co-author Dieter Gerten, working group leader and Earth modeling coordinator at the Potsdam Institute for Climate Impact Research in Germany.

“Conceptually we know that there must be a limit for how much we can disturb the [hydrological] system before we start feeling serious impacts on the Earth system and then, by extension, to humanity,” says one of the paper’s other co-authors, Miina Porkka, a postdoctoral researcher at the Water and Development Group at Aalto University in Finland.

International researchers under the auspices of the Stockholm Resilience Centre have been hammering away at answering these questions. They had to start with the basics. One big problem to date has been scientists’ lack of a metric for quantifying serious water cycle alterations. How do we even measure changes to the water cycle?

“It gets complicated,” says Gerten, who has been involved in the research to bring a global perspective to local water management since 2009, as conducted under the Planetary Boundaries Framework; Gerten is also a professor of global change climatology and hydrology at Humboldt University of Berlin.

The Toktogul reservoir in Kyrgyzstan.
The Toktogul reservoir in Kyrgyzstan. The Anthropocene is producing wholesale manipulations to Earth’s water cycle. For example, by 2030, more than 90% of the world’s rivers will likely be altered by dams. Image by Petro Kotzé.

Measuring change: Blue water

The Planetary Boundaries Framework defines a safe operating space for humanity as represented by nine natural global processes that, if severely destabilized, could disrupt Earth’s operating system and threaten life and civilization. The freshwater planetary boundary presents one such threshold, and scientists are working to define a global limit to anthropogenic water cycle modifications.

Initially, in 2009, river flow was used to try and measure the boundary threshold, Gerten explains, because blue water in all its forms was seen to integrate the three largest anthropogenic manipulations of the water cycle: human impacts on precipitation patterns, modifications of soil moisture by land use and land cover; and water withdrawals for human use.

This research used a simple calculation of the global sum of the average annual surface water flow in rivers, with an assumed 30% of that accessible water needing to be protected. This “freshwater use” boundary was set at 4,000 cubic kilometers (960 cubic miles) per year of blue water consumption. This is at the lower limit of a 4,000-6,000 km3 (960-1,440 mi3) annual range designated as a danger zone that takes us “too close to the risk of blue and green water-induced thresholds that could have deleterious or even catastrophic impacts on the Earth System,” researchers wrote in a 2020 paper that evaluated the water planetary boundary.

The Padysha-Ata River in Kyrgyzstan.
The Padysha-Ata River in Kyrgyzstan. Blue water includes rivers as well as lakes, reservoirs, and renewable groundwater stores. Image by Petro Kotzé.

With only an estimated 2,600 km3 (624 mi3) of water withdrawn annually at the time of the study, scientists concluded we were still in the safe zone. However, “That [conclusion] was immediately criticized,” Gerten says, in part because scientists were already seeing ample regional water-related problems. Another criticism argued that the measure of blue water alone did not reflect all types of human interference with the water cycle and Earth system.

Gerten later led work that proposed quantifying the boundary by assessing the amount of streamflow needed to maintain environmental flow requirements in all river basins on Earth. This approach had the advantage of recognizing regionally transgressed limits and thereby deduced a global value.

According to this newer calculation, the freshwater use planetary boundary should be set much lower, at about 2,800 km3 (672 mi3), Gerten says, which means humanity is already much closer to the danger zone than previously thought. “Water is more limited on Planet Earth than we think,” Gerten cautions.

The nine planetary boundaries
The nine planetary boundaries, counterclockwise from top: climate change, biosphere integrity (functional and genetic), land-system change, freshwater change, biogeochemical flows (nitrogen and phosphorus), ocean acidification, atmospheric aerosol pollution, stratospheric ozone depletion, and release of novel chemicals. In 2022, scientists announced the transgression of both the freshwater and novel entities boundaries. Image courtesy of J. Lokrantz/Azote based on Steffen et al. (2015) via Stockholm Resilience Centre.

Redefining the freshwater boundary: Green water

Over time, a consortium of researchers was formed to deeply scrutinize the freshwater boundary. This resulted in follow-up work in 2019 and 2020 proposing that the freshwater boundary be divided into sub-boundaries related to major stores of freshwater: namely atmospheric water, frozen water, groundwater, soil moisture, and surface water.

Since then, scientists simplified their approach further. “Even though we are talking about very complex matters,” Porkka says, the boundary definition, to be useful as a metric, needed to stay “relatively simple.”

The most recent and sweeping reassessment of the freshwater planetary boundary was published in 2022. “Our suggestion is to … change the name from ‘freshwater use planetary boundary’ to ‘freshwater change planetary boundary,’” says study lead author Lan Wang-Erlandsson from the Stockholm Resilience Centre. “Then, to have two components,” she adds, “One for green water, and one for blue water.”

“Water has so many functions in the Earth system, and many of them happen invisibly via green water,” Gerten explains. “We don’t see it and we don’t feel it. That’s why [green water] has been neglected over decades. The focus has been on river flows and groundwater because we can see it, feel it, use it, and touch it. But [as a result] a big share of the water cycle has been overlooked.”

The Tsitsikamma forests in South Africa’s Garden Route region.
The Tsitsikamma forests in South Africa’s Garden Route region. The water taken up by plants and released via transpiration as vapor skyward is an integral part of the water cycle. Image by Petro Kotzé.

The newly accepted metric for tracking green water: The soil moisture in the root zone of plants, or more technically: “the percentage of ice-free land area on which root-zone soil moisture anomalies exit the local bounds of baseline variability in any month of the year.”

This new proxy is appealing because it is directly influenced by human pressures with change over time measurable. In turn, soil moisture directly impacts a range of large-scale ecological, climatic, biogeochemical and hydrological dynamics.

Using this novel green water boundary transgression criteria, scientists detected a major hydrological departure from the baseline set during the Holocene. And the evidence for such a departure is overwhelming: Researchers found “unprecedented areas [of Earth] with root-zone soil moisture anomalies,” indicating an exit from the so-called “safe zone.”

A second criteria, Earth Systems Resilience, was also instituted. Researchers evaluated the state of regional climate systems (ranging from monsoons to land carbon sinks and large biomes) to see which have seen enhanced changes in their process rates, resulting in ripple effects that could destabilize the Earth system, Wang-Erlandsson explains.

Lake Sary-Chelek, part of a UNESCO Biosphere Reserve, in Kyrgyzstan.
Lake Sary-Chelek, part of a UNESCO Biosphere Reserve, in Kyrgyzstan. The hydrological cycle represents an eternal exchange of water in different states between the atmosphere and the planet’s surface, and it maintains the biosphere as we know it. Within this cycle, there is constant interaction between blue and green water. Image by Petro Kotzé.

A transgressed freshwater change boundary

Unfortunately, examples of compromised Earth System Resilience transgressions are rife across the planet.

Take the Amazon Rainforest, for instance. It is now understood that carbon uptake likely peaked there in the 1990s, with a sequestration decline since then driven by escalating climate change and fires, along with global demand for agricultural commodities, which spurred extensive Amazon forest clearing, bringing major land-use change. More recently, African tropical forests have passed their carbon uptake peak.

When these vast biomes and natural systems are put under extreme multiple stressors, the effects can self-amplify and lead to greater, more rapid, rates of change, Wang-Erlandsson says: In South America, this combination of stressors, particularly deforestation and climate change, is inducing intensifying drought, which is now leading to cascading perturbations in living systems. Scientists now think the rainforest biome, stable for thousands of years, is reaching a tipping point, and could quickly transition to seasonal forest, or even a degraded savanna. This shift could lead to the transformation of the South American monsoon system, and a permanent state of reduced rainfall and impoverished biodiversity.

But what starts in the Amazon won’t likely stay there: The rainforest’s destruction will release massive amounts of carbon, intensifying climate change, potentially leading to climate and ecological tipping points in other biomes.

Agricultural development in Uzbekistan
Agricultural development in Uzbekistan. Global land-use change, including large-scale deforestation and irrigation, is contributing to major alterations in the water cycle, leading to a destabilized climate and major global environmental and sociopolitical disruptions. Image by Petro Kotzé.

Another concerning example (although debated) of an Earth system shift is the suggestion of a weakening carbon fertilization process, in which higher atmospheric carbon concentrations result in speeded-up photosynthesis as plants try to improve water efficiency in the face of drought. It is thought that this effect is happening already, brought on by limitations in nutrient and soil moisture availability.

In drylands, climate change and ecosystem degradation are triggering vicious cycles of infiltration capacity loss — a decrease in soil moisture and moisture recycling, resulting in increasing desertification and biodiversity loss. In polar permafrost regions, soil moisture saturation could accelerate thawing, generating dangerous methane emissions. Methane is a greenhouse gas far more powerful than carbon dioxide.

Alarmed by the water cycle’s departure from the Holocene baseline, and noting “worrying” signs of low Earth System Resilience, researchers early in 2022 declared the green water boundary to be “considerably transgressed.” The situation, they said, will likely worsen before any reversals in the trend will be observed. “Green water modifications are now causing rising Earth system risks at a scale that modern civilizations might not have ever faced,” the study states.

We don’t yet know what the planetary-scale impacts will ultimately be, but, Porkka says, we have an idea of how impacts could be felt in different parts of the world.

An irrigation canal runs past apricot orchards in the Batken region of Kyrgyzstan.
An irrigation canal runs past apricot orchards in the Batken region of Kyrgyzstan. We have vastly manipulated Earth’s water cycle to suit humanity’s needs. Image by Petro Kotzé.

Disastrous extreme weather events

Regional extreme events, including floods and mega droughts, are already occurring, Porkka notes. Examples are to be found on every continent.

On Africa’s southeast coast, as just one example: the World Weather Attribution (WWA) network of scientists has found that human-induced climate change has increased the likelihood and intensity of heavy rainfall associated with tropical cyclones. The group based their findings on an analysis of tropical storms Ana and Batisrai, which battered parts of Madagascar, Mozambique, Malawi and Zimbabwe in early 2022. Both cyclonic systems brought devastating floods that caused severe humanitarian impacts, including many deaths and injuries and large-scale damage to infrastructure. These sorts of extreme weather events put great pressure on socioeconomic and political institutions, and could easily destabilize struggling developing nations.

And the situation is worsening. The number of disasters related to weather, climate or water hazards has increased fivefold over the past 50 years, according to the World Meteorological Organization. An assessment from 1970 to 2019 found more than 11,000 reported disasters attributed to such hazards globally, resulting in more than 2 million deaths and $3.64 trillion in losses. All are indicative of a careening hydrological cycle.

Of the top 10 climate disasters, those causing the largest human losses during that period were droughts (650,000 deaths), storms (577,232), floods (58,700), and extreme temperature (55,736 deaths). In economic terms, the top 10 events included storms (costing $521 billion) and floods ($115 billion).

Clouds above a dusty road in the Northern Cape of South Africa.
Clouds above a dusty road in the Northern Cape of South Africa. The hydrological cycle is powered by the sun and is an eternal exchange of water between the atmosphere and the planet. As climate change escalates, so do extreme weather events such as droughts and intense storms. Image by Petro Kotzé.

Porkka points out, however, that freshwater system destabilization impacts can be more subtle than extreme events. Widespread irrigation of croplands, for example, can increase evaporation to such a high degree that even distant precipitation patterns are altered. Part of the problem is that we do not know if consequences like these are negative or positive.

“[W]e know that we’re changing the [hydrological] system in fundamental ways and, once we do, we don’t really know how the impacts accumulate,” says Porkka.

While many riddles remain, scientists now feel they have a reliable metric for accurately tracking transgressions of the freshwater change boundary. “The prime question was what the key variables are, and I think that is relatively solid now with soil moisture [green water] and river flows [blue water],” Gerten says. “The next questions are, where exactly to put the boundaries, and what happens if they are transgressed?”

Based on these findings, researchers are calling for urgent action: “The current global trends and trajectories of increasing water use, deforestation, land degradation, soil erosion, atmospheric pollution, and climate change need to be promptly halted and reversed to increase the chances of remaining in [Earth’s] safe operating space.”

That’s a tall order, and no matter humanity’s actions, we don’t know how things will play out. “Water is so fundamental and elemental, and at the same time, so varied,” Gerten says, and there is no silver bullet for solving our hydrological problems.

South Africa’s Orange River tumbles over Augrabies Falls.
South Africa’s Orange River tumbles over Augrabies Falls. Water is one of the most plentiful chemical compounds on Earth and is recycled endlessly through the biosphere in different forms. Image by Petro Kotzé.

Banner image: Farmers tending to their agricultural land in Uzbekistan. Image by Petro Kotzé.

Citations:

Scanlon, B. R., Jolly, I., Sophocleous, M., & Zhang, L. (2007). Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality. Water Resources Research43(3). doi:10.1029/2006wr005486

Gleeson, T., Wang‐Erlandsson, L., Porkka, M., Zipper, S. C., Jaramillo, F., Gerten, D., … Famiglietti, J. S. (2020). Illuminating water cycle modifications and earth system resilience in the Anthropocene. Water Resources Research56(4). doi:10.1029/2019wr024957

Gleeson, T., Wang-Erlandsson, L., Zipper, S. C., Porkka, M., Jaramillo, F., Gerten, D., … Famiglietti, J. S. (2020). The water planetary boundary: Interrogation and revision. One Earth2(3), 223-234. doi:10.1016/j.oneear.2020.02.009

Gerten, D., Hoff, H., Rockström, J., Jägermeyr, J., Kummu, M., & Pastor, A. V. (2013). Towards a revised planetary boundary for consumptive freshwater use: Role of environmental flow requirements. Current Opinion in Environmental Sustainability5(6), 551-558. doi:10.1016/j.cosust.2013.11.001

Zipper, S. C., Jaramillo, F., Wang‐Erlandsson, L., Cornell, S. E., Gleeson, T., Porkka, M., … Gordon, L. (2020). Integrating the water planetary boundary with water management from local to global scales. Earth’s Future8(2). doi:10.1029/2019ef001377

Wang-Erlandsson, L., Tobian, A., van der Ent, R. J., Fetzer, I., te Wierik, S., Porkka, M., … Rockström, J. (2022). A planetary boundary for green water. Nature Reviews Earth & Environment. doi:10.1038/s43017-022-00287-8

Hubau, W., Lewis, S. L., Phillips, O. L., Affum-Baffoe, K., Beeckman, H., Cuní-Sanchez, A., … Zemagho, L. (2020). Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature579(7797), 80-87. doi:10.1038/s41586-020-2035-0

Wang, S., Zhang, Y., Ju, W., Chen, J. M., Ciais, P., Cescatti, A., … Peñuelas, J. (2020). Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science370(6522), 1295-1300. doi:10.1126/science.abb7772

Ravi, S., Breshears, D. D., Huxman, T. E., & D’Odorico, P. (2010). Land degradation in drylands: Interactions among hydrologic-aeolian erosion and vegetation dynamics. Geomorphology116(3-4), 236-245. doi:10.1016/j.geomorph.2009.11.023

Van Luijk, G., Cowling, R. M., Riksen, M. J. P. M., & Glenday, J. (2013). Hydrological implications of desertification: Degradation of South African semi-arid subtropical thicket. Journal of Arid Environments91, 14-21. doi:10.1016/j.jaridenv.2012.10.022

Knoblauch, C., Beer, C., Liebner, S., Grigoriev, M. N., & Pfeiffer, E. (2018). Methane production as key to the greenhouse gas budget of thawing permafrost. Nature Climate Change8(4), 309-312. doi:10.1038/s41558-018-0095-z

Photo by Leslie Lopez Holder on Unsplash

Net Zero Plans Are Largely Meaningless

Net Zero Plans Are Largely Meaningless

Editor’s note: “75 of the world’s largest 114 fossil fuel companies have now made net zero by 2050 commitments, yet not a single fossil fuel company has committed to phasing out oil and gas production by 2050 nor have any committed to ending exploration for new oil and gas fields or halting the extraction of existing reserves.”

Real Zero, not greenwashed ‘net zero,’ is essential. As the Corporate Accountability report concludes, it’s time to reject the big polluters’ agenda and implement programs that rapidly phase out fossil fuels and truly eliminate greenhouse gas emissions.”

We “obsess” over getting to “Net Zero” yearly CO2 increases in the atmosphere. The Moderates in Climate Science THEORIZE that when this happens, the GMST will IMMEDIATELY stop going up and will level off.

DOES IT LOOK LIKE “NET ZERO” is going to happen?

If your child is born this year, they are likely going to live through +1.5°C of warming by the time they are 25. A fact that is likely going to cause a 40% to 50% drop in the global food supply and a reduction of 2.5 billion — 4 billion in the global population by 2050, at a minimum.


 

The overshoot myth of bargaining: you can’t keep burning fossil fuels and expect scientists of the future to get us back to 1.5°C

Melting Antarctic glacier.
Shutterstock/Bernhard Staehli

James Dyke, University of Exeter; Robert Watson, University of East Anglia, and Wolfgang Knorr, Lund University

Record breaking fossil fuel production, all time high greenhouse gas emissions and extreme temperatures. Like the proverbial frog in the heating pan of water, we refuse to respond to the climate and ecological crisis with any sense of urgency. Under such circumstances, claims from some that global warming can still be limited to no more than 1.5°C take on a surreal quality.

For example, at the start of 2023’s international climate negotiations in Dubai, conference president, Sultan Al Jaber, boldly stated that 1.5°C was his goal and that his presidency would be guided by a “deep sense of urgency” to limit global temperatures to 1.5°C. He made such lofty promises while planning a massive increase in oil and gas production as CEO of the Abu Dhabi National Oil Company.

We should not be surprised to see such behaviour from the head of a fossil fuel company. But Al Jaber is not an outlier. Scratch at the surface of almost any net zero pledge or policy that claims to be aligned with the 1.5°C goal of the landmark 2015 Paris agreement and you will reveal the same sort of reasoning: we can avoid dangerous climate change without actually doing what this demands – which is to rapidly reduce greenhouse gas emissions from industry, transport, energy (70% of total) and food systems (30% of total), while ramping up energy efficiency.

A particularly instructive example is Amazon. In 2019 the company established a 2040 net zero target which was then verified by the UN Science Based Targets initiative (SBTi) which has been leading the charge in getting companies to establish climate targets compatible with the Paris agreement. But over the next four years Amazon’s emissions went up by 40%. Given this dismal performance, the SBTi was forced to act and removed Amazon and over 200 companies from its Corporate Net Zero Standard.

This is also not surprising given that net zero and even the Paris agreement have been built around the perceived need to keep burning fossil fuels, at least in the short term. Not do so would threaten economic growth, given that fossil fuels still supply over 80% of total global energy. The trillions of dollars of fossil fuel assets at risk with rapid decarbonisation have also served as powerful brakes on climate action.

Overshoot

The way to understand this doublethink: that we can avoid dangerous climate change while continuing to burn fossil fuels – is that it relies on the concept of overshoot. The promise is that we can overshoot past any amount of warming, with the deployment of planetary-scale carbon dioxide removal dragging temperatures back down by the end of the century.

This not only cripples any attempt to limit warming to 1.5°C, but risks catastrophic levels of climate change as it locks us in to energy and material-intensive solutions which for the most part exist only on paper.

To argue that we can safely overshoot 1.5°C, or any amount of warming, is saying the quiet bit out loud: we simply don’t care about the increasing amount of suffering and deaths that will be caused while the recovery is worked on.


This article is part of Conversation Insights.

Our co-editors commission long-form journalism, working with academics from many different backgrounds who are engaged in projects aimed at tackling societal and scientific challenges.


A key element of overshoot is carbon dioxide removal. This is essentially a time machine – we are told we can turn back the clock of decades of delay by sucking carbon dioxide directly out of the atmosphere. We don’t need rapid decarbonisation now, because in the future we will be able to take back those carbon emissions. If or when that doesn’t work, we are led to believe that even more outlandish geoengineering approaches such as spraying sulphurous compounds into the high atmosphere in an attempt to block out sunlight – which amounts to planetary refrigeration – will save us.

The 2015 Paris agreement was an astonishing accomplishment. The establishment of 1.5°C as being the internationally agreed ceiling for warming was a success for those people and nations most exposed to climate change hazards. We know that every fraction of a degree matters. But at the time, believing warming could really be limited to well below 2°C required a leap of faith when it came to nations and companies putting their shoulder to the wheel of decarbonisation. What has happened instead is that the net zero approach of Paris is becoming detached from reality as it is increasingly relying on science fiction levels of speculative technology.

There is arguably an even bigger problem with the Paris agreement. By framing climate change in terms of temperature, it focuses on the symptoms, not the cause. 1.5°C or any amount of warming is the result of humans changing the energy balance of the climate by increasing the amount of carbon dioxide in the atmosphere. This traps more heat. Changes in the global average temperature is the established way of measuring this increase in heat, but no one experiences this average.

Climate change is dangerous because of weather that affects particular places at particular times. Simply put, this extra heat is making weather more unstable. Unfortunately, having temperature targets makes solar geoengineering seem like a sensible approach because it may lower temperatures. But it does this by not reducing, but increasing our interference in the climate system. Trying to block out the sun in response to increasing carbon emissions is like turning on the air conditioning in response to a house fire.

In 2021 we argued that net zero was a dangerous trap. Three years on and we can see the jaws of this trap beginning to close, with climate policy being increasingly framed in terms of overshoot. The resulting impacts on food and water security, poverty, human health, the destruction of biodiversity and ecosystems will produce intolerable suffering.

The situation demands honesty, and a change of course. If this does not materialise then things are likely to deteriorate, potentially rapidly and in ways that may be impossible to control.

Au revoir Paris

The time has come to accept that climate policy has failed, and that the 2015 landmark Paris agreement is dead. We let it die by pretending that we could both continue to burn fossil fuels and avoid dangerous climate change at the same time. Rather than demand the immediate phase out of fossil fuels, the Paris agreement proposed 22nd-century temperature targets which could be met by balancing the sources and sinks of carbon. Within that ambiguity net zero flourished. And yet apart from the COVID economic shock in 2020, emissions have increased every year since 2015, reaching an all time high in 2023.

Despite there being abundant evidence that climate action makes good economic sense (the cost of inaction vastly exceeds the cost of action), no country strengthened their pledges at the last three COPs (the annual UN international meetings) even though it was clear that the world was on course to sail past 2°C, let alone 1.5°C. The Paris agreement should be producing a 50% reduction in greenhouse gas emissions by 2030, but current policies mean that they are on track to be higher than they are today.

Net Zero
Greenhouse gas emissions continue to rise.
Catazul/Pixabay, CC BY

Editor’s note: DGR knows that “renewable” technologies are not sustainable and that the only transition will be to a future that does not include civilization.

We do not deny that significant progress has been made with renewable technologies. Rates of deployment of wind and solar have increased each year for the past 22 years and carbon emissions are going down in some of the richest nations, including the UK and the US. But this is not happening fast enough. A central element of the Paris agreement is that richer nations need to lead decarbonisation efforts to give lower income nations more time to transition away from fossil fuels. Despite some claims to the contrary, the global energy transition is not in full swing. In fact, it hasn’t actually begun because the transition demands a reduction in fossil fuel use. Instead it continues to increase year-on-year.

And so policymakers are turning to overshoot in an attempt to claim that they have a plan to avoid dangerous climate change. A central plank of this approach is that the climate system in the future will continue to function as it does today. This is a reckless assumption.

2023’s warning signs

At the start of 2023, Berkeley Earth, NASA, the UK Met Office, and Carbon Brief predicted that 2023 would be slightly warmer than the previous year but unlikely to set any records. Twelve months later and all four organisations concluded that 2023 was by some distance the warmest year ever recorded. In fact, between February 2023 and February 2024 the global average temperature warming exceeded the Paris target of 1.5°C.

The extreme weather events of 2023 give us a glimpse of the suffering that further global warming will produce. A 2024 report from the World Economic Forum concluded that by 2050 climate change may have caused over 14 million deaths and US$12.5 trillion in loss and damages.

Currently we cannot fully explain why global temperatures have been so high for the past 18 months. Changes in dust, soot and other aerosols are important, and there are natural processes such as El Niño that will be having an effect.

But it appears that there is still something missing in our current understanding of how the climate is responding to human impacts. This includes changes in the Earth’s vital natural carbon cycle.

Around half of all the carbon dioxide humans have put into the atmosphere over the whole of human history has gone into “carbon sinks” on land and the oceans. We get this carbon removal “for free”, and without it, warming would be much higher. Carbon dioxide from the air dissolves in the oceans (making them more acidic which threatens marine ecosystems). At the same time, increasing carbon dioxide promotes the growth of plants and trees which locks up carbon in their leaves, roots, trunks.

All climate policies and scenarios assume that these natural carbon sinks will continue to remove tens of billions of tons of carbon from the atmosphere each year. There is evidence that land-based carbon sinks, such as forests, removed significantly less carbon in 2023. If natural sinks begin to fail – something they may well do in a warmer world – then the task of lowering global temperatures becomes even harder. The only credible way of limiting warming to any amount, is to stop putting greenhouse gasses into the atmosphere in the first place.

Science fiction solutions

It’s clear that the commitments countries have made to date as part of the Paris agreement will not keep humanity safe while carbon emissions and temperatures continue to break records. Indeed, proposing to spend trillions of dollars over this century to suck carbon dioxide out of the air, or the myriad other ways to hack the climate is an acknowledgement that the world’s largest polluters are not going to curb the burning of fossil fuels.

Direct Air Capture (DAC), Bio Energy Carbon Capture and Storage (BECCS), enhanced ocean alkalinity, biochar, sulphate aerosol injection, cirrus cloud thinning – the entire wacky races of carbon dioxide removal and geoengineering only makes sense in a world of failed climate policy.

Net Zero
Is ‘cloud thinning’ really a possibility?
HarmonyCenter/Pixabay, CC BY

Over the following years we are going to see climate impacts increase. Lethal heatwaves are going to become more common. Storms and floods are going to become increasingly destructive. More people are going to be displaced from their homes. National and regional harvests will fail. Vast sums of money will need to be spent on efforts to adapt to climate change, and perhaps even more compensating those who are most affected. We are expected to believe that while all this and more unfolds, new technologies that will directly modify the Earth’s atmosphere and energy balance will be successfully deployed.

What’s more, some of these technologies may need to operate for three hundred years in order for the consequences of overshoot to be avoided. Rather than quickly slow down carbon polluting activities and increasing the chances that the Earth system will recover, we are instead going all in on net zero and overshoot in an increasingly desperate hope that untested science fiction solutions will save us from climate breakdown.

We can see the cliff edge rapidly approaching. Rather than slam on the brakes, some people are instead pushing their foot down harder on the accelerator. Their justification for this insanity is that we need to go faster in order to be able to make the jump and land safely on the other side.

We believe that many who advocate for carbon dioxide removal and geoengineering do so in good faith. But they include proposals to refreeze the Arctic by pumping up sea water onto ice sheets to form new layers of ice and snow. These are interesting ideas to research, but there is very little evidence this will have any effect on the Arctic let alone global climate. These are the sorts of knots that people tie themselves up in when they acknowledge the failure of climate policy, but refuse to challenge the fundamental forces behind such failure. They are unwittingly slowing down the only effective action of rapidly phasing out fossil fuels.

That’s because proposals to remove carbon dioxide from the air or geoengineer the climate promise a recovery from overshoot, a recovery that will be delivered by innovation, driven by growth. That this growth is powered by the same fossil fuels that are causing the problem in the first place doesn’t feature in their analysis.

The bottom line here is that the climate system is utterly indifferent to our pledges and promises. It doesn’t care about economic growth. And if we carry on burning fossil fuels then it will not stop changing until the energy balance is restored. By which time millions of people could be dead, with many more facing intolerable suffering.

Major climate tipping points

Even if we assume that carbon removal and even geoengineering technologies can be deployed in time, there is a very large problem with the plan to overshoot 1.5°C and then lower temperatures later: tipping points.

The science of tipping points is rapidly advancing. Late last year one of us (James Dyke) along with over 200 academics from around the world was involved in the production of the Global Tipping Points Report. This was a review of the latest science about where tipping points in the climate system may be, as well as exploring how social systems can undertake rapid change (in the direction that we want) thereby producing positive tipping points. Within the report’s 350 pages is abundant evidence that the overshoot approach is an extraordinarily dangerous gamble with the future of humanity. Some tipping points have the potential to cause global havoc.

The melt of permafrost could release billions of tons of greenhouse gasses into the atmosphere and supercharge human-caused climate change. Fortunately, this seems unlikely under the current warming. Unfortunately, the chance that ocean currents in the North Atlantic could collapse may be much higher than previously thought. If that were to materialise, weather systems across the world, but in particular in Europe and North America, would be thrown into chaos. Beyond 1.5°C, warm water coral reefs are heading towards annihilation. The latest science concludes that by 2°C global reefs would be reduced by 99%. The devastating bleaching event unfolding across the Great Barrier Reef follows multiple mass mortality events. To say we are witnessing one of the world’s greatest biological wonders die is insufficient. We are knowingly killing it.

We may have even already passed some major climate tipping points. The Earth has two great ice sheets, Antarctica, and Greenland. Both are disappearing as a consequence of climate change. Between 2016 and 2020, the Greenland ice sheet lost on average 372 billion tons of ice a year. The current best assessment of when a tipping point could be reached for the Greenland ice sheet is around 1.5°C.

This does not mean that the Greenland ice sheet will suddenly collapse if warming exceeds that level. There is so much ice (some 2,800 trillion tons) that it would take centuries for all of it to melt over which time sea levels would rise seven metres. If global temperatures could be brought back down after a tipping point, then maybe the ice sheet could be stabilised. We just cannot say with any certainty that such a recovery would be possible. While we struggle with the science, 30 million tons of ice is melting across Greenland every hour on average.

Net Zero
Ice sheets in Greenland and Antarctica are being affected by global warming.
Pexels from Pixabay, CC BY

The take home message from research on these and other tipping points is that further warming accelerates us towards catastrophe. Important science, but is anyone listening?

It’s five minutes to midnight…again

We know we must urgently act on climate change because we are repeatedly told that time is running out. In 2015, Professor Jeffrey Sachs, the UN special adviser and director of The Earth Institute, declared:

The time has finally arrived – we’ve been talking about these six months for many years but we’re now here. This is certainly our generation’s best chance to get on track.

In 2019 (then) Prince Charles gave a speech in which he said: “I am firmly of the view that the next 18 months will decide our ability to keep climate change to survivable levels and to restore nature to the equilibrium we need for our survival.”

“We have six months to save the planet,” exhorted International Energy Agency head Fatih Birol – one year later in 2020. In April 2024, Simon Stiell, executive secretary of the United Nations Framework Convention on Climate Change said the next two years are “essential in saving our planet”.

Either the climate crisis has a very fortunate feature that allows the countdown to catastrophe to be continually reset, or we are deluding ourselves with endless declarations that time has not quite run out. If you can repeatedly hit snooze on your alarm clock and roll over back to sleep, then your alarm clock is not working.

Or there is another possibility. Stressing that we have very little time to act is intended to focus attention on climate negotiations. It’s part of a wider attempt to not just wake people up to the impending crisis, but generate effective action. This is sometimes used to explain how the 1.5°C threshold of warming came to be agreed. Rather than a specific target, it should be understood as a stretch goal. We may very well fail, but in reaching for it we move much faster than we would have done with a higher target, such as 2°C. For example, consider this statement made in 2018:

Stretching the goal to 1.5 degrees celsius isn’t simply about speeding up. Rather, something else must happen and society needs to find another lever to pull on a global scale.

What could this lever be? New thinking about economics that goes beyond GDP? Serious consideration of how rich industrialised nations could financially and materially help poorer nations to leapfrog fossil fuel infrastructure? Participatory democracy approaches that could help birth the radical new politics needed for the restructuring of our fossil fuel powered societies? None of these.

The lever in question is Carbon Capture and Storage (CCS) because the above quote comes from an article written by Shell in 2018. In this advertorial Shell argues that we will need fossil fuels for many decades to come. CCS allows the promise that we can continue to burn fossil fuels and avoid carbon dioxide pollution by trapping the gas before it leaves the chimney. Back in 2018, Shell was promoting its carbon removal and offsets heavy Sky Scenario, an approach described as “a dangerous fantasy” by leading climate change academics as it assumed massive carbon emissions could be offset by tree planting.

Since then Shell has further funded carbon removal research within UK universities presumably in efforts to burnish its arguments that it must be able to continue to extract vast amounts of oil and gas.

Shell is far from alone in waving carbon capture magic wands. Exxon is making great claims for CCS as a way to produce net zero hydrogen from fossil gas – claims that have been subject to pointed criticism from academics with recent reporting exposing industry wide greenwashing around CCS.

But the rot goes much deeper. All climate policy scenarios that propose to limit warming to near 1.5°C rely on the largely unproven technologies of CCS and BECCS. BECCS sounds like a good idea in theory. Rather than burn coal in a power station, burn biomass such as wood chips. This would initially be a carbon neutral way of generating electricity if you grew as many trees as you cut down and burnt. If you then add scrubbers to the power station chimneys to capture the carbon dioxide, and then bury that carbon deep underground, then you would be able to generate power at the same time as reducing concentrations of carbon dioxide in the atmosphere.

Unfortunately, there is now clear evidence that in practice, large-scale BECCS would have very adverse effects on biodiversity, and food and water security given the large amounts of land that would be given over to fast growing monoculture tree plantations. The burning of biomass may even be increasing carbon dioxide emissions. Drax, the UK’s largest biomass power station now produces four times as much carbon dioxide as the UK’s largest coal-fired power station.

Five minutes to midnight messages may be motivated to try to galvanise action, to stress the urgency of the situation and that we still (just) have time. But time for what? Climate policy only ever offers gradual change, certainly nothing that would threaten economic growth, or the redistribution of wealth and resources.

Despite the mounting evidence that globalised, industrialised capitalism is propelling humanity towards disaster, five minutes to midnight does not allow time and space to seriously consider alternatives. Instead, the solutions on offer are techno fixes that prop up the status quo and insists that fossil fuel companies such as Shell must be part of the solution.

That is not to say there are no good faith arguments for 1.5°C. But being well motivated does not alter reality. And the reality is that warming will soon pass 1.5°C, and that the Paris agreement has failed. In the light of that, repeatedly asking people to not give up hope, that we can avoid a now unavoidable outcome risks becoming counterproductive. Because if you insist on the impossible (burning fossil fuels and avoiding dangerous climate change), then you must invoke miracles. And there is an entire fossil fuel industry quite desperate to sell such miracles in the form of CCS.

Four suggestions

Humanity has enough problems right now, what we need are solutions. This is the response we sometimes get when we argue that there are fundamental problems with the net zero concept and the Paris agreement. It can be summed up with the simple question: so what’s your suggestion? Below we offer four.

1. Leave fossil fuels in the ground

The unavoidable reality is that we need to rapidly stop burning fossil fuels. The only way we can be sure of that is by leaving them in the ground. We have to stop exploring for new fossil fuel reserves and the exploitation of existing ones. That could be done by stopping fossil fuel financing.

At the same time we must transform the food system, especially the livestock sector, given that it is responsible for nearly two thirds of agricultural emissions. Start there and then work out how best the goods and services of economies can be distributed. Let’s have arguments about that based on reality not wishful thinking.

2. Ditch net zero crystal ball gazing targets

The entire framing of mid and end-century net zero targets should be binned. We are already in the danger zone. The situation demands immediate action, not promises of balancing carbon budgets decades into the future. The SBTi should focus on near-term emissions reductions. By 2030, global emissions need to be half of what they are today for any chance of limiting warming to no more than 2°C.

It is the responsibility of those who hold most power – politicians and business leaders – to act now. To that end we must demand twin targets – all net zero plans should include a separate target for actual reductions in greenhouse gas emissions. We must stop hiding inaction behind promises of future removals. It’s our children and future generations that will need to pay back the overshoot debt.

3. Base policy on credible science and engineering

All climate policies must be based on what can be done in the real world now, or in the very near future. If it is established that a credible amount of carbon can be removed by a proposed approach – which includes capture and its safe permanent storage – then and only then can this be included in net zero plans. The same applies to solar geoengineering.

Speculative technologies must be removed from all policies, pledges and scenarios until we are sure of how they will work, how they will be monitored, reported and validated, and what they will do to not just the climate but the Earth system as a whole. This would probably require a very large increase in research. As academics we like doing research. But academics need to be wary that concluding “needs more research” is not interpreted as “with a bit more funding this could work”.

4. Get real

Finally, around the world there are thousands of groups, projects, initiatives, and collectives that are working towards climate justice. But while there is a Climate Majority Project, and a Climate Reality Project, there is no Climate Honesty Project (although People Get Real does come close). In 2018 Extinction Rebellion was formed and demanded that governments tell the truth about the climate crisis and act accordingly. We can now see that when politicians were making their net zero promises they were also crossing their fingers behind their backs.

We need to acknowledge that net zero and now overshoot are becoming used to argue that nothing fundamental needs to change in our energy intensive societies. We must be honest about our current situation, and where we are heading. Difficult truths need to be told. This includes highlighting the vast inequalities of wealth, carbon emissions, and vulnerability to climate change.

The time for action is now

We rightly blame politicians for failing to act. But in some respects we get the politicians we deserve. Most people, even those that care about climate change, continue to demand cheap energy and food, and a constant supply of consumer products. Reducing demand by just making things more expensive risks plunging people into food and energy poverty and so policies to reduce emissions from consumption need to go beyond market-based approaches. The cost of living crisis is not separate from the climate and ecological crisis. They demand that we radically rethink how our economies and societies function, and whose interests they serve.

To return to the boiling frog predicament at the start, it’s high time for us to jump out of the pot. You have to wonder why we did not start decades ago. It’s here that the analogy offers valuable insights into net zero and the Paris agreement. Because the boiling frog story as typically told misses out a crucial fact. Regular frogs are not stupid. While they will happily sit in slowly warming water, they will attempt to escape once it becomes uncomfortable. The parable as told today is based on experiments at the end of the 19th century that involved frogs that had been “pithed” – a metal rod had been inserted into their skulls that destroyed their higher brain functioning. These radically lobotomised frogs would indeed float inert in water that was cooking them alive.

Promises of net zero and recovery from overshoot are keeping us from struggling to safety. They assure us nothing too drastic needs to happen just yet. Be patient, relax. Meanwhile the planet burns and we see any sort of sustainable future go up in smoke.

Owning up to the failures of climate change policy doesn’t mean giving up. It means accepting the consequences of getting things wrong, and not making the same mistakes. We must plan routes to safe and just futures from where we are, rather where we would wish to be. The time has come to leap.


For you: more from our Insights series:

To hear about new Insights articles, join the hundreds of thousands of people who value The Conversation’s evidence-based news. Subscribe to our newsletter.The Conversation

James Dyke, Associate Professor in Earth System Science, University of Exeter; Robert Watson, Emeritus Professor in Environmental Sciences, University of East Anglia, and Wolfgang Knorr, Senior Research Scientist, Physical Geography and Ecosystem Science, Lund University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

‘Monumental Victory’: Norway Halts Plans for Deep-Sea Mining

‘Monumental Victory’: Norway Halts Plans for Deep-Sea Mining

By Olivia Rosane is a staff writer for Common Dreams from Dec 02, 2024

Environmental organizations cheered as Norway’s controversial plans to move forward with deep-sea mining in the vulnerable Arctic Ocean were iced on Sunday.

The pause was won in Norway’s parliament by the small Socialist Left (SV) Party in exchange for its support in passing the government’s 2025 budget.

“Today marks a monumental victory for the ocean, as the SV Party in Norway has successfully blocked the controversial plan to issue deep-sea mining licenses for the country’s extended continental shelf in the Arctic,” Steve Trent, CEO and founder of the Environmental Justice Foundation, said in a statement. “This decision is a testament to the power of principled, courageous political action, and it is a moment to celebrate for environmental advocates, ocean ecosystems, and future generations alike.”

Norway sparked outrage in January when its parliament voted to allow deep-sea mining exploration in a swath of its Arctic waters larger than the United Kingdom. Scientists have warned that mining the Arctic seabed could disturb unique hydrothermal vent ecosystems and even drive species to extinction before scientists have a chance to study them. It would also put additional pressure on all levels of Arctic Ocean life—from plankton to marine mammals—at a time when they are already feeling the impacts of rising temperatures and ocean acidification due to the burning of fossil fuels.

“The Arctic Ocean is one of the last pristine frontiers on Earth, and its fragile ecosystems are already under significant stress from the climate crisis,” Trent said. “The idea of subjecting these waters to the destructive, needless practice of deep-sea mining was a grave threat, not only to the marine life depending on them but to the global community as a whole.”

“Thankfully, this shortsighted and harmful plan has been halted, marking a clear victory in the ongoing fight to protect our planet’s blue beating heart,” Trent continued.

In June, Norway announced that it would grant the first exploratory mining licenses in early 2025. However, this has been put on hold by the agreement with the SV Party.

“This puts a stop to the plans to start deep-sea mining until the end of the government’s term,” party leader Kirsti Bergstø said, as The Guardian reported.

Norway next holds parliamentary elections in September 2025, so no licenses will be approved before then.

The move comes amid widespread opposition to deep-sea mining in Norway and beyond. A total of 32 countries and 911 marine scientistshave called for a global moratorium on the practice. More than 100 E.U. parliamentarians wrote a letter opposing Norway’s plans specifically, and the World Wide Fund for Nature (WWF) has sued to stop them.

“This is a major and important environmental victory!” WWF-Norway CEO Karoline Andaur said in a statement. “SV has stopped the process for deep seabed mining, giving Norway a unique opportunity to save its international ocean reputation and gain the necessary knowledge before we even consider mining the planet’s last untouched wilderness.”

Haldis Tjeldflaat Helle, the deep-sea mining campaigner at Greenpeace Nordic, called the decision “a huge win.”

“After hard work from activists, environmentalists, scientists, and fishermen, we have secured a historic win for ocean protection, as the opening process for deep-sea mining in Norway has been stopped,” Helle said in a statement. “The wave of protests against deep-sea mining is growing. We will not let this industry destroy the unique life in the deep sea, not in the Arctic nor anywhere else.”

However, Norway’s Arctic waters are not entirely safe yet.

Prime Minister Jonas Gahr Stoere, of the Labour Party, toldTV2, on Sunday, “This will be a postponement.”

The government said that other work to begin the process of deep-sea mining, such as drafting regulations and conducting environmental impact surveys, would move forward. Norway is currently governed by the Labour and Center parties. The two parties leading in polls for September’s elections—the Conservatives and Progress Party—also both back deep-sea mining, according toReuters.

“If a new government attempts to reopen the licensing round we will fight relentlessly against it,” Frode Pleym, who leads Greenpeace Norway, told Reuters.

Other environmental groups tempered their celebrations with calls for further action.

Trent of the Environmental Justice Foundation said that “while today is a cause for celebration, this victory must not be seen as the end of the struggle.”

“We urge Norway’s government, and all responsible global actors, to make this a lasting victory by enshrining protections for the Arctic Ocean and its ecosystems into law, and coming out in favor of a moratorium or ban on deep-sea mining,” Trent added. “It is only through a collective commitment to sustainability and long-term stewardship of our oceans that we can ensure the health of the marine environment for generations to come.”

Trent concluded: “Today, thanks to the SV Party and all those around the world who spoke up against this decision, the ocean has won. Now, let’s ensure this victory lasts.”

Andaur of WWF said that this was a “pivotal moment” for Norway to “demonstrate global leadership by prioritizing ocean health over destructive industry.”

As WWF called on Norway to abandon its mining plans, it also urged the nation to reconsider its exploitation of the ocean for oil and gas.

“Unfortunately, we have not seen similar efforts to curtail the Norwegian oil industry, which is still getting new licenses to operate in Norwegian waters, including very vulnerable parts of the Arctic,” Andaur said. “Norway needs to explore new ways to make money without extracting fossil fuels and destroying nature.”

Greenpeace also pointed to the role Norway’s pause could play in bolstering global opposition to deep-sea mining.

“Millions of people across the world are calling on governments to resist the dire threat of deep-sea mining to safeguard oceans worldwide,” Greenpeace International Stop Deep-Sea Mining campaigner Louisa Casson said. “This is a huge step forward to protect the Arctic, and now it is time for Norway to join over 30 nations calling for a moratorium and be a true ocean champion.”

Photo by Alain Rieder on Unsplash

Plastic Pollution Pushing Earth Past All Planetary Boundaries

Plastic Pollution Pushing Earth Past All Planetary Boundaries

Editor’s note: Major plastic polluters win as the UN Treaty talks conclude without an agreement. Modern lifestyles and practices are intimately entwined with the use of plastics. Our phones, computers, food packaging, clothes, and even renewable energy technologies, such as wind turbine blades and the cables that connect them to the power grid, are all largely made from plastics. Plastics production requires fossil hydrocarbons and this connection continues to grow stronger daily. Powerful oil producers, both private companies and governments of oil-producing nations, were seen as the key impediment to a consensus deal. What will happen next? “Agree to a treaty among the willing even if that means leaving some countries that don’t want a strong treaty or concede to countries that will likely never join the treaty anyway, failing the planet in the process.”

“Plastic has been found everywhere on Earth — from deepest oceans to high mountains, in clouds and pole to pole. Microplastics have also been found in every place scientists look for them in the human body, from the brain to the testes, breast milk, and artery plaque. Microplastics pose health risks to humans and wildlife, researchers warn.” PFAS(perfluoroalkyl and polyfluoroalkyl substances) – “forever chemicals” contaminate biosolids(waste from sewage) used as fertilizer and pesticides, they also contain heavy metals and nitrates.

Today’s cheerleaders for increased birth rates are well aware of the silent cause of the ongoing rapid decline in male sperm counts. It’s the very industries these corporate managers run and governments regulate that is the blame. So you can be almost 100 percent sure that they are not going to address the real problem in order to achieve the goal of increasing human birth rates.

Laws must mandate companies to reduce their plastic footprint through production reduction, product redesign, or reuse systems — higher-priority strategies in the Zero Waste hierarchy,

 


By Sharon Guynup / Mongabay

Bottlenose dolphins leapt and torpedoed through the shallow turquoise waters off Florida’s Sarasota Bay. Then, a research team moved in, quickly corralling the small pod in a large net.

With the speed of a race car pit crew, veterinarians, biologists and their assistants examined the animals, checking vital signs while taking skin, blood and other samples. They held a petri dish over each dolphin’s blowhole until it exhaled, with an intensity similar to a human cough. Then, they rolled up the net and the dolphins swam off unharmed. A pod in Louisiana’s Barataria Bay was similarly tested.

Generations of dolphins have been part of this ongoing dolphin health study, which has been run by the Sarasota Dolphin Research Program since 1970. It tracks populations and individuals and also looks for health issues related to pollutants in the marine environment.

In the lab, scientists discovered that all 11 of the dolphins had breathed out microplastic fibers, shed from synthetic clothing, says Leslie B. Hart, associate professor at the College of Charleston and an author on this research. The fibers resembled those found in human lungs in previous studies, proving that dolphins, like us, are breathing plastic. In people, microplastic has been linked to poor lung function and possible lung disease.

An earlier collaboration linked phthalates circulating in the dolphins’ blood to alterations in their thyroid hormone levels — an effect also found in humans that can impact nearly every organ in the body. Phthalates, toxic chemicals found in flexible plastics, readily leach into the environment. The full effects on marine mammals remain unknown.

The dolphin studies are part of a larger quest to understand how plastic pollution is impacting the world’s wildlife. While thousands of human studies have demonstrated damage from tiny plastic particles entering both cells and organs throughout the body, little is known about animal impacts because long-term field studies are difficult and costly. “We’re really just starting to skim the surface,” Hart says.

Beyond the threat plastics pose to individual animals and species, other researchers have detected broader, global harm, a new report warns. Plastic pollution is transforming Earth systems needed to support life, worsening climate change, increasing biodiversity loss, making oceans more acidic and more.

The plastics crisis is escalating rapidly: Each year, petrochemical manufacturers make more than 500 million tons of plastics –– but the world recycles just 9%. The rest is burned, landfilled or ends up in rivers, rainwater, the air, soil or the sea. Today, the planet is awash in plastic. “It’s everywhere. It’s pervasive and it’s persistent,” says Andrew Wargo, who focuses on ecosystem health at the Virginia Institute of Marine Science.

Since the 1930s the polymers industry has completely altered daily life: Plastics are in our homes, cars, clothes, furniture, and electronics, as well as our single-use throwaway water bottles, food packaging and takeout containers.

In 2022, the U.N. Environment Assembly voted to address the plastic crisis by creating a legally binding international plastics treaty in hope of curbing and regulating production. But plastics-producing nations, including China, Russia, Saudi Arabia, Iran and the U.S. resisted progress, influenced by a $712 billion plastics and petrochemicals industry and its lobbyists.

A critically important fifth round of negotiations begins Nov. 25 when delegates hope to hammer out final treaty language for ratification by U.N. member states.

Meanwhile, the natural world is in great danger, threatened by a biodiversity crisis, a climate crisis and serious degradations of planetary systems. Researchers are now scrambling to understand the growing threat plastics pose to the health of all living organisms.

Plastics conquer the world

Bakelite, the first synthetic plastic product ever made, came on the market in 1907. By the 1950s, production ramped up, changing the course of history and revolutionizing modern life. Plastics facilitated innumerable human innovations — and spawned a throwaway culture. Add in poorly regulated petrochemical manufacturing processes and industrial fishing’s plastic gear, and global plastic pollution stats soared.

People have now produced some 11 billion metric tons of plastic. Globally, we discard 400 million tons of plastic waste every year; without controls imposed on overproduction, that may reach 1.1 billion tons within the next 25 years.

It can take 500-1,000 years for plastic to break down, and scientists are beginning to question whether it ever fully degrades. Today, 50-75 trillion microplastic particles litter the seas, according to a United Nations estimate, 500 times more than all the stars in our Milky Way galaxy. Microscopic life in the ocean has been dubbed “the Plastisphere,” with early research finding that even phytoplankton, the food-web base vital to marine ecosystems, is under threat.

Plastic debris was first noticed in the oceans in the early 1960s. For a long time, ecologists’ main wildlife concerns focused on the threat to sea turtles and other marine creatures that ate plastic bags or became tangled in plastic fishing nets. Now, everything from zooplankton to sharks and seabirds eat it and are exposed to it.

Hart emphasizes the problem’s global scope: “Plastic pollution has been found on every continent and in every ocean, in people, terrestrial wildlife and marine wildlife.” It contaminates creatures across the tree of life and concentrates up the food chain, threatening

every living thing, from insects, rodents, rhinos and frogs to clams, whales, snakes, wildcats and a host of migratory animals. Carried to the poles on wind and tide, even Arctic foxes and penguins carry microplastics.

A gannet amid plastic.
Seabirds are at particular risk from microplastics, easily mistaking particles for food. Ingestion causes physical and hormonal damage to cells and organs. Image by A_Different_Perspective via Pixabay (Public domain).
Sources of plastic marine pollution
Image by Alpizar, F., et al. via Wikimedia Commons (CC BY-SA 4.0).

Insidious plastic harm to health

It’s well known that animals regularly mistake plastic debris for food. Shearwaters and other seabirds, for example, can choke and starve when plastic pieces block their digestive tracts or pierce internal organs. At least 1,565 species are known to ingest plastic. For decades, scientists have noted dead animals ensnared in plastic nets, fishing gear or six-pack rings.

But those big pieces of petrochemical plastic (along with their chemical additives) don’t decompose; they degrade into ever-smaller pieces, getting smaller and smaller. Eventually, they break down into microplastics, tiny particles no bigger than a grain of sand, or become nanoparticles, visible only under a high-powered microscope. These microplastics can leach toxic chemicals. Of the more than 13,000 chemicals currently used in plastics, at least 3,200 have one or more “hazardous properties of concern,” according to a U.N. report.

Most of what we know today about the health impacts of plastics and their chemical additives is based on human medical research, which may offer clues to what happens to animals; that’s unlike most health research, which is done on animals and extrapolated to people.

We know from human medical research that microplastics can damage cells and organs and alter hormones that influence their function. Plastic particles have crossed the blood-brain barrier. They have lodged in human bone marrow, testicles, the liver, kidneys and essentially every other part of the body. They enter the placenta, blood and breast milk. Exposure may affect behavior and lower immunity.

And what plastics do to us, they likely do to animals. The phthalates found in Florida dolphins, for example, along with phenols, parabens and per- and polyfluoroalkyls, are just a fraction of the many endocrine disruptors released by plastics and their chemical additives that can alter hormone levels and derail body functions. Exposure may affect behavior and lower immunity.

Microplastics
Plastic does not disappear: It breaks down into smaller and smaller pieces that settle in soil and float in the air and water. Microplastic can easily penetrate living organisms, their cells, and even cross the blood-brain barrier. Image by European Commission (Lukasz Kobus) via Wikimedia Commons (CC BY 4.0).

Doctors have confirmed links between plastic and human disease and disability. “They cause premature birth, low birth weight, and stillbirth as well as leukemia, lymphoma, brain cancer, liver cancer, heart disease and stroke,” Phil Landrigan, a pediatrician and environmental health expert stated in a press conference earlier this year.

Endocrine-disrupting chemicals can also interfere with reproduction in humans: They’re partially responsible for sperm counts that dropped to one-seventh of 1940s levels. These chemicals can also damage the placenta and ovaries. Experts think this is likely happening in animals, too, raising serious concern for endangered species already in decline.

In the wild, animals are now exposed daily to microplastics, eating and breathing them, while many freshwater and marine species swim in a plastic soup. But little is known about the long-term impacts of chronic exposure or what microplastics do within animal tissues, with even less understood about what happens when microplastics shrink to nano size and easily enter cells.

There are some data: Oysters produce fewer eggs. Pregnant zebrafish can pass nano-polystyrene to their embryos, while other research showed plastic exposure slowed fish larvae growth rates. Seabirds, including shearwaters, develop “plasticosis,” a newly declared disease characterized by thick scarring in the stomach due to plastic ingestion, which inhibits digestion. Microplastics also damage the heart structure of birds and permeate the liver, muscle and intestines in cod.

In lab experiments, microplastics in the lungs of pregnant rats easily passed to their fetuses’ brains, hearts and other organs. In adult mice, plastic nanoparticles crossed the blood-brain barrier, triggering swift changes that resembled dementia. In a wild animal, cognitive decline can quickly prove fatal, making it difficult to find food, avoid predators, mate or raise young.

In the lab, fish were more susceptible to a common virus after a one-month exposure to microplastic. They then shed more virus (a fish public health problem) and died in high numbers. Surprisingly, “there’s a lot of similarities between fish and humans, so that we have a lot of the same immune pathways,” explains Wargo, an author on this study. However, the reaction depended on the type of plastic. Nylon fibers had the biggest effect; most nylon sheds from synthetic clothing.

Laysan albatross (Phoebastria immutabilis) carcass
Nearly all Laysan albatross (Phoebastria immutabilis) carcasses found on Midway Atoll contain marine plastic debris. Experts estimate that albatrosses feed their chicks approximately 10,000 pounds of marine debris annually on Midway, enough plastic to fill about 100 curbside trash cans. Image by USFWS – Pacific Region via Flickr (CC BY-NC 2.0).

One challenge to researching health impacts, Wargo explains, is that “plastics oftentimes are lumped into one category, but they’re [all] very different: their structure, chemical composition, their shape and size,” creating thousands of variations. These factors influence how toxic they are, he says, which likely varies between individual animals and different species. Investigation is further complicated and obstructed by petrochemical companies that zealously guard their proprietary polymer product formulas.

The ubiquity of plastics and their global presence means that polymers likely have many undetected and unstudied wildlife health impacts. Some impacts could be masked by other environmental stressors, and untangling and analyzing the particulars will likely take decades.

What we do know is that the poor health, decline or disappearance of a single species within a natural community ripples outward, affecting others, and damaging interconnected ecological systems that have evolved in synchrony over millennia. Here’s just one speculative concern: We know microplastics can bioaccumulate, so apex predators, which balance ecosystems by keeping prey species in check, may be at high risk because they consume and build up large concentrations of microplastics and additive chemicals in their organs.

Plastics harm wildlife –– and humans –– in additional ways: by polluting the air and contributing to climate extremes. Currently, about 19% of plastic waste is incinerated, releasing potentially harmful chemical aerosols into the air. In addition, plastic production sends 232 million metric tons of greenhouse gases into the atmosphere yearly. Then there’s the pollution and carbon released from fracking and drilling operations to source the oil and gas to make these products.

Lastly, the microplastics animals and humans ingest are “Trojan horses.” These tiny particles absorb and carry a wide range of pollutants and bacteria, which then can enter and lodge within our bodies.

Single-use plastic bottles and other throwaway plastic packaging
Single-use plastic bottles and other throwaway plastic packaging are a major cause of plastic pollution, with many activists and nations calling for a ban. While plastic bottles can be recycled, they frequently aren’t. Also, plastics degrade every time they’re recycled and are usually recycled only once or twice. Image by Hans via Pixabay (Public domain).

Stanching ‘a global-scale deluge of plastic waste’

Climate change and the plastics crisis spring from the same source: The world’s seven largest plastic manufacturers are fossil fuel companies. The U.S. produces the most plastic waste of any country, more than the entire EU combined: 42 million metric tons annually, or 287 pounds per person, according to a 2022 congressional report. It noted that “The success of the 20th-century miracle invention of plastics has also produced a global-scale deluge of plastic waste seemingly everywhere we look.”

Consumers can take small actions to protect themselves and limit plastic pollution by avoiding single-use plastics and carrying reusable bags and stainless-steel water bottles. Disposable fast-food packaging makes up almost half of plastic garbage in the ocean, so cutting back on takeout and bottled water could help.

But realistically addressing the planet’s plastics emergency requires a global paradigm shift that reframes the discussion. Many nations still think of plastics as a waste management issue, but responsibility needs to fall on the shoulders of regulators — and the producers, specifically fossil fuel companies and petrochemical manufacturers.

An international consortium of scientists has stressed the need for “urgent action” in the run-up to this month’s United Nations plastics treaty negotiations, the fifth and hopefully final summit intended to establish international regulations.

The U.S. had been among the largest, most influential dissenters in efforts to limit global plastics production and identify hazardous chemicals used in plastics. But in August 2024, prior to the U.S. presidential election, the Biden administration publicly announced it had toughened its position, supporting production limits, but submitted no position paper. Then, this week it returned to its earlier stance that would protect the plastics industry from production caps.

The plastics treaty summit in Busan, South Korea, beginning Nov. 25 and ending Dec. 1, aims to finalize treaty language that will then need to be ratified by the world’s nations. Regardless of the summit’s outcome, scientists continue to uncover new evidence of plastic’s dangers to humans, animals and the planet, raising the alarm and need for action.

This beach on the island of Santa Luzia, Cape Verde, dramatically illustrates a global problem: a world awash in plastic waste.
This beach on the island of Santa Luzia, Cape Verde, dramatically illustrates a global problem: a world awash in plastic waste. What it doesn’t show is the breakdown of this debris by wind and tide into microplastics, now sickening people and animals. Image by Plastic Captain Darwin via Wikimedia Commons (CC BY-SA 4.0).

 

Banner: A black-winged stilt (Himantopus himantopus) forages in a swamp polluted with plastic and other trash. Image by Sham Prakash via Pexels (Public domain).