Earth’s Water Cycle Off Balance for ‘First Time in Human History’

Earth’s Water Cycle Off Balance for ‘First Time in Human History’

Editor’s note: Water, as well as forests, do not need to be managed. They just need to be left alone.


By Petro Kotzé / Mangabay

Water seems deceptively simple and is easy to take for granted. It has no color, taste or smell and is one of the most plentiful chemical compounds on Earth. Recycled endlessly through the biosphere in its various forms, it is fundamental to keeping our planet’s operating system intact, and has done so for millions of years.

Water is life. Earth’s oceans are where life likely originated, and freshwater is essential for plants and animals to persist and thrive. It is basic to all human development. But as our 21st-century world gallops ahead, we are vastly manipulating the water cycle at an unprecedented rate and scale to meet the ever-growing needs of an exploding population.

By 2030, we will have built enough dams to alter 93% of the world’s rivers. Estimates vary, but we already use around 90% of the planet’s freshwater to grow our food. More than half of us now live in cities, but by 2050 a projected 68% of the world’s nearly 8 billion people will reside in urban areas. That metropolitan lifestyle will require astronomical amounts of water — extracted, treated, and piped over large distances. Humanity also prevents much rainwater from easily infiltrating underground, reducing aquifers, as we pave over immense areas with impermeable concrete and asphalt.

But these easily visible changes are only the proverbial tip of the iceberg. Researchers are shining new light on sweeping human alterations to Earth’s water cycle, many playing out in processes largely unseen. In the Anthropocene — the unofficial name for the current human-influenced unit of geologic time — we are already pushing one of Earth’s most fundamental and foundational systems, the hydrological cycle, toward the breaking point.

Trouble is, we don’t yet know when this threshold may be reached, or what the precise consequences will be. Scientists are resolutely seeking answers.

Water flows past Copenhagen in Denmark.
Water flows past Copenhagen in Denmark. As Earth’s urban areas expand, so do population pressures on the freshwater supply and the water cycle. Image by Petro Kotzé.

Water cycle basics

The hydrological cycle is powered by the sun and flows through eternal inhalations and exhalations of water in different states, as it is exchanged between the atmosphere and the planet. Liquid water from oceans, lakes and rivers rises via evaporation into the sky, to form water vapor, an important greenhouse gas that, like carbon dioxide, helps insulate the planet to maintain that “just right” temperature to maintain life as we know it.

Atmospheric water vapor then changes to liquid, falling to earth as precipitation. It then flows as runoff again across the landscape, and what doesn’t go back into waterbodies, settles into soils, to be taken up by plants and released via transpiration as vapor skyward. A large amount of freshwater is also locked in glaciers and icecaps.

Within this cycle, there are constant complex interactions between what scientists call blue and green water. Blue water includes rivers, lakes, reservoirs and renewable groundwater stores. Green water is defined as terrestrial precipitation, evaporation and soil moisture.

Illustration: Partitioning of rainwater into green and blue water flows.
Partitioning of rainwater into green and blue water flows. Image by Geertsma et al. (2009)/Baseline Review for the Pilot Programme in Kenya. Green Water Credits Report 8, ISRIC–World Soil Information, Wageningen.

A fully functioning hydrological cycle, with balanced supplies and flows of blue and green water, is essential to terrestrial and aquatic ecosystems, human food availability and production, and our energy security.

It also regulates Earth’s weather and influences climate. Atmospheric temperature, for example, is dependent on evaporation and condensation. That’s because as water evaporates, it absorbs energy and cools the local environment, and as it condenses, it releases energy and warms the world. Throughout the Holocene geological epoch, a relatively stable water cycle helped maintain balanced temperatures and conditions able to support civilization.

However, in the Anthropocene, human activity has impacted the water cycle, the climate and ecosystems. For one, as more human-produced CO2 and methane build up in the atmosphere, more solar energy is held by the planet, causing global warming. And the hotter the air, the greater the quantity of water vapor the atmosphere can hold. That’s bad news because water vapor is itself a powerful greenhouse gas, greatly increasing the warming.

Earth’s water cycle
Earth’s water cycle. Image courtesy of USGS.

Measuring hydrological cycle change: ‘It’s complicated’

As our anthropogenic manipulation of the water cycle escalates on a global scale, we urgently need a holistic way to monitor these modifications and understand their impacts. Yet, the topic has not received the urgent scientific attention it requires. “To the best of our knowledge, there is no study comprehensively investigating whether human modifications of the water cycle have led, could be leading, or will lead to planetary‐scale regime shifts in the Earth system,” researchers noted in a 2020 paper on the role of the water cycle in maintaining fundamental Earth functioning.

One key concern of scientists: If severe hydrological shifts occur in too many regions, or in key regions that greatly influence the water cycle or water availability (such as the Amazon), then that could provoke shifts in other regions, in a global chain reaction, says study co-author Dieter Gerten, working group leader and Earth modeling coordinator at the Potsdam Institute for Climate Impact Research in Germany.

“Conceptually we know that there must be a limit for how much we can disturb the [hydrological] system before we start feeling serious impacts on the Earth system and then, by extension, to humanity,” says one of the paper’s other co-authors, Miina Porkka, a postdoctoral researcher at the Water and Development Group at Aalto University in Finland.

International researchers under the auspices of the Stockholm Resilience Centre have been hammering away at answering these questions. They had to start with the basics. One big problem to date has been scientists’ lack of a metric for quantifying serious water cycle alterations. How do we even measure changes to the water cycle?

“It gets complicated,” says Gerten, who has been involved in the research to bring a global perspective to local water management since 2009, as conducted under the Planetary Boundaries Framework; Gerten is also a professor of global change climatology and hydrology at Humboldt University of Berlin.

The Toktogul reservoir in Kyrgyzstan.
The Toktogul reservoir in Kyrgyzstan. The Anthropocene is producing wholesale manipulations to Earth’s water cycle. For example, by 2030, more than 90% of the world’s rivers will likely be altered by dams. Image by Petro Kotzé.

Measuring change: Blue water

The Planetary Boundaries Framework defines a safe operating space for humanity as represented by nine natural global processes that, if severely destabilized, could disrupt Earth’s operating system and threaten life and civilization. The freshwater planetary boundary presents one such threshold, and scientists are working to define a global limit to anthropogenic water cycle modifications.

Initially, in 2009, river flow was used to try and measure the boundary threshold, Gerten explains, because blue water in all its forms was seen to integrate the three largest anthropogenic manipulations of the water cycle: human impacts on precipitation patterns, modifications of soil moisture by land use and land cover; and water withdrawals for human use.

This research used a simple calculation of the global sum of the average annual surface water flow in rivers, with an assumed 30% of that accessible water needing to be protected. This “freshwater use” boundary was set at 4,000 cubic kilometers (960 cubic miles) per year of blue water consumption. This is at the lower limit of a 4,000-6,000 km3 (960-1,440 mi3) annual range designated as a danger zone that takes us “too close to the risk of blue and green water-induced thresholds that could have deleterious or even catastrophic impacts on the Earth System,” researchers wrote in a 2020 paper that evaluated the water planetary boundary.

The Padysha-Ata River in Kyrgyzstan.
The Padysha-Ata River in Kyrgyzstan. Blue water includes rivers as well as lakes, reservoirs, and renewable groundwater stores. Image by Petro Kotzé.

With only an estimated 2,600 km3 (624 mi3) of water withdrawn annually at the time of the study, scientists concluded we were still in the safe zone. However, “That [conclusion] was immediately criticized,” Gerten says, in part because scientists were already seeing ample regional water-related problems. Another criticism argued that the measure of blue water alone did not reflect all types of human interference with the water cycle and Earth system.

Gerten later led work that proposed quantifying the boundary by assessing the amount of streamflow needed to maintain environmental flow requirements in all river basins on Earth. This approach had the advantage of recognizing regionally transgressed limits and thereby deduced a global value.

According to this newer calculation, the freshwater use planetary boundary should be set much lower, at about 2,800 km3 (672 mi3), Gerten says, which means humanity is already much closer to the danger zone than previously thought. “Water is more limited on Planet Earth than we think,” Gerten cautions.

The nine planetary boundaries
The nine planetary boundaries, counterclockwise from top: climate change, biosphere integrity (functional and genetic), land-system change, freshwater change, biogeochemical flows (nitrogen and phosphorus), ocean acidification, atmospheric aerosol pollution, stratospheric ozone depletion, and release of novel chemicals. In 2022, scientists announced the transgression of both the freshwater and novel entities boundaries. Image courtesy of J. Lokrantz/Azote based on Steffen et al. (2015) via Stockholm Resilience Centre.

Redefining the freshwater boundary: Green water

Over time, a consortium of researchers was formed to deeply scrutinize the freshwater boundary. This resulted in follow-up work in 2019 and 2020 proposing that the freshwater boundary be divided into sub-boundaries related to major stores of freshwater: namely atmospheric water, frozen water, groundwater, soil moisture, and surface water.

Since then, scientists simplified their approach further. “Even though we are talking about very complex matters,” Porkka says, the boundary definition, to be useful as a metric, needed to stay “relatively simple.”

The most recent and sweeping reassessment of the freshwater planetary boundary was published in 2022. “Our suggestion is to … change the name from ‘freshwater use planetary boundary’ to ‘freshwater change planetary boundary,’” says study lead author Lan Wang-Erlandsson from the Stockholm Resilience Centre. “Then, to have two components,” she adds, “One for green water, and one for blue water.”

“Water has so many functions in the Earth system, and many of them happen invisibly via green water,” Gerten explains. “We don’t see it and we don’t feel it. That’s why [green water] has been neglected over decades. The focus has been on river flows and groundwater because we can see it, feel it, use it, and touch it. But [as a result] a big share of the water cycle has been overlooked.”

The Tsitsikamma forests in South Africa’s Garden Route region.
The Tsitsikamma forests in South Africa’s Garden Route region. The water taken up by plants and released via transpiration as vapor skyward is an integral part of the water cycle. Image by Petro Kotzé.

The newly accepted metric for tracking green water: The soil moisture in the root zone of plants, or more technically: “the percentage of ice-free land area on which root-zone soil moisture anomalies exit the local bounds of baseline variability in any month of the year.”

This new proxy is appealing because it is directly influenced by human pressures with change over time measurable. In turn, soil moisture directly impacts a range of large-scale ecological, climatic, biogeochemical and hydrological dynamics.

Using this novel green water boundary transgression criteria, scientists detected a major hydrological departure from the baseline set during the Holocene. And the evidence for such a departure is overwhelming: Researchers found “unprecedented areas [of Earth] with root-zone soil moisture anomalies,” indicating an exit from the so-called “safe zone.”

A second criteria, Earth Systems Resilience, was also instituted. Researchers evaluated the state of regional climate systems (ranging from monsoons to land carbon sinks and large biomes) to see which have seen enhanced changes in their process rates, resulting in ripple effects that could destabilize the Earth system, Wang-Erlandsson explains.

Lake Sary-Chelek, part of a UNESCO Biosphere Reserve, in Kyrgyzstan.
Lake Sary-Chelek, part of a UNESCO Biosphere Reserve, in Kyrgyzstan. The hydrological cycle represents an eternal exchange of water in different states between the atmosphere and the planet’s surface, and it maintains the biosphere as we know it. Within this cycle, there is constant interaction between blue and green water. Image by Petro Kotzé.

A transgressed freshwater change boundary

Unfortunately, examples of compromised Earth System Resilience transgressions are rife across the planet.

Take the Amazon Rainforest, for instance. It is now understood that carbon uptake likely peaked there in the 1990s, with a sequestration decline since then driven by escalating climate change and fires, along with global demand for agricultural commodities, which spurred extensive Amazon forest clearing, bringing major land-use change. More recently, African tropical forests have passed their carbon uptake peak.

When these vast biomes and natural systems are put under extreme multiple stressors, the effects can self-amplify and lead to greater, more rapid, rates of change, Wang-Erlandsson says: In South America, this combination of stressors, particularly deforestation and climate change, is inducing intensifying drought, which is now leading to cascading perturbations in living systems. Scientists now think the rainforest biome, stable for thousands of years, is reaching a tipping point, and could quickly transition to seasonal forest, or even a degraded savanna. This shift could lead to the transformation of the South American monsoon system, and a permanent state of reduced rainfall and impoverished biodiversity.

But what starts in the Amazon won’t likely stay there: The rainforest’s destruction will release massive amounts of carbon, intensifying climate change, potentially leading to climate and ecological tipping points in other biomes.

Agricultural development in Uzbekistan
Agricultural development in Uzbekistan. Global land-use change, including large-scale deforestation and irrigation, is contributing to major alterations in the water cycle, leading to a destabilized climate and major global environmental and sociopolitical disruptions. Image by Petro Kotzé.

Another concerning example (although debated) of an Earth system shift is the suggestion of a weakening carbon fertilization process, in which higher atmospheric carbon concentrations result in speeded-up photosynthesis as plants try to improve water efficiency in the face of drought. It is thought that this effect is happening already, brought on by limitations in nutrient and soil moisture availability.

In drylands, climate change and ecosystem degradation are triggering vicious cycles of infiltration capacity loss — a decrease in soil moisture and moisture recycling, resulting in increasing desertification and biodiversity loss. In polar permafrost regions, soil moisture saturation could accelerate thawing, generating dangerous methane emissions. Methane is a greenhouse gas far more powerful than carbon dioxide.

Alarmed by the water cycle’s departure from the Holocene baseline, and noting “worrying” signs of low Earth System Resilience, researchers early in 2022 declared the green water boundary to be “considerably transgressed.” The situation, they said, will likely worsen before any reversals in the trend will be observed. “Green water modifications are now causing rising Earth system risks at a scale that modern civilizations might not have ever faced,” the study states.

We don’t yet know what the planetary-scale impacts will ultimately be, but, Porkka says, we have an idea of how impacts could be felt in different parts of the world.

An irrigation canal runs past apricot orchards in the Batken region of Kyrgyzstan.
An irrigation canal runs past apricot orchards in the Batken region of Kyrgyzstan. We have vastly manipulated Earth’s water cycle to suit humanity’s needs. Image by Petro Kotzé.

Disastrous extreme weather events

Regional extreme events, including floods and mega droughts, are already occurring, Porkka notes. Examples are to be found on every continent.

On Africa’s southeast coast, as just one example: the World Weather Attribution (WWA) network of scientists has found that human-induced climate change has increased the likelihood and intensity of heavy rainfall associated with tropical cyclones. The group based their findings on an analysis of tropical storms Ana and Batisrai, which battered parts of Madagascar, Mozambique, Malawi and Zimbabwe in early 2022. Both cyclonic systems brought devastating floods that caused severe humanitarian impacts, including many deaths and injuries and large-scale damage to infrastructure. These sorts of extreme weather events put great pressure on socioeconomic and political institutions, and could easily destabilize struggling developing nations.

And the situation is worsening. The number of disasters related to weather, climate or water hazards has increased fivefold over the past 50 years, according to the World Meteorological Organization. An assessment from 1970 to 2019 found more than 11,000 reported disasters attributed to such hazards globally, resulting in more than 2 million deaths and $3.64 trillion in losses. All are indicative of a careening hydrological cycle.

Of the top 10 climate disasters, those causing the largest human losses during that period were droughts (650,000 deaths), storms (577,232), floods (58,700), and extreme temperature (55,736 deaths). In economic terms, the top 10 events included storms (costing $521 billion) and floods ($115 billion).

Clouds above a dusty road in the Northern Cape of South Africa.
Clouds above a dusty road in the Northern Cape of South Africa. The hydrological cycle is powered by the sun and is an eternal exchange of water between the atmosphere and the planet. As climate change escalates, so do extreme weather events such as droughts and intense storms. Image by Petro Kotzé.

Porkka points out, however, that freshwater system destabilization impacts can be more subtle than extreme events. Widespread irrigation of croplands, for example, can increase evaporation to such a high degree that even distant precipitation patterns are altered. Part of the problem is that we do not know if consequences like these are negative or positive.

“[W]e know that we’re changing the [hydrological] system in fundamental ways and, once we do, we don’t really know how the impacts accumulate,” says Porkka.

While many riddles remain, scientists now feel they have a reliable metric for accurately tracking transgressions of the freshwater change boundary. “The prime question was what the key variables are, and I think that is relatively solid now with soil moisture [green water] and river flows [blue water],” Gerten says. “The next questions are, where exactly to put the boundaries, and what happens if they are transgressed?”

Based on these findings, researchers are calling for urgent action: “The current global trends and trajectories of increasing water use, deforestation, land degradation, soil erosion, atmospheric pollution, and climate change need to be promptly halted and reversed to increase the chances of remaining in [Earth’s] safe operating space.”

That’s a tall order, and no matter humanity’s actions, we don’t know how things will play out. “Water is so fundamental and elemental, and at the same time, so varied,” Gerten says, and there is no silver bullet for solving our hydrological problems.

South Africa’s Orange River tumbles over Augrabies Falls.
South Africa’s Orange River tumbles over Augrabies Falls. Water is one of the most plentiful chemical compounds on Earth and is recycled endlessly through the biosphere in different forms. Image by Petro Kotzé.

Banner image: Farmers tending to their agricultural land in Uzbekistan. Image by Petro Kotzé.

Citations:

Scanlon, B. R., Jolly, I., Sophocleous, M., & Zhang, L. (2007). Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality. Water Resources Research43(3). doi:10.1029/2006wr005486

Gleeson, T., Wang‐Erlandsson, L., Porkka, M., Zipper, S. C., Jaramillo, F., Gerten, D., … Famiglietti, J. S. (2020). Illuminating water cycle modifications and earth system resilience in the Anthropocene. Water Resources Research56(4). doi:10.1029/2019wr024957

Gleeson, T., Wang-Erlandsson, L., Zipper, S. C., Porkka, M., Jaramillo, F., Gerten, D., … Famiglietti, J. S. (2020). The water planetary boundary: Interrogation and revision. One Earth2(3), 223-234. doi:10.1016/j.oneear.2020.02.009

Gerten, D., Hoff, H., Rockström, J., Jägermeyr, J., Kummu, M., & Pastor, A. V. (2013). Towards a revised planetary boundary for consumptive freshwater use: Role of environmental flow requirements. Current Opinion in Environmental Sustainability5(6), 551-558. doi:10.1016/j.cosust.2013.11.001

Zipper, S. C., Jaramillo, F., Wang‐Erlandsson, L., Cornell, S. E., Gleeson, T., Porkka, M., … Gordon, L. (2020). Integrating the water planetary boundary with water management from local to global scales. Earth’s Future8(2). doi:10.1029/2019ef001377

Wang-Erlandsson, L., Tobian, A., van der Ent, R. J., Fetzer, I., te Wierik, S., Porkka, M., … Rockström, J. (2022). A planetary boundary for green water. Nature Reviews Earth & Environment. doi:10.1038/s43017-022-00287-8

Hubau, W., Lewis, S. L., Phillips, O. L., Affum-Baffoe, K., Beeckman, H., Cuní-Sanchez, A., … Zemagho, L. (2020). Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature579(7797), 80-87. doi:10.1038/s41586-020-2035-0

Wang, S., Zhang, Y., Ju, W., Chen, J. M., Ciais, P., Cescatti, A., … Peñuelas, J. (2020). Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science370(6522), 1295-1300. doi:10.1126/science.abb7772

Ravi, S., Breshears, D. D., Huxman, T. E., & D’Odorico, P. (2010). Land degradation in drylands: Interactions among hydrologic-aeolian erosion and vegetation dynamics. Geomorphology116(3-4), 236-245. doi:10.1016/j.geomorph.2009.11.023

Van Luijk, G., Cowling, R. M., Riksen, M. J. P. M., & Glenday, J. (2013). Hydrological implications of desertification: Degradation of South African semi-arid subtropical thicket. Journal of Arid Environments91, 14-21. doi:10.1016/j.jaridenv.2012.10.022

Knoblauch, C., Beer, C., Liebner, S., Grigoriev, M. N., & Pfeiffer, E. (2018). Methane production as key to the greenhouse gas budget of thawing permafrost. Nature Climate Change8(4), 309-312. doi:10.1038/s41558-018-0095-z

Photo by Leslie Lopez Holder on Unsplash

Three Summits Aim to Repair a Growing Rift with Nature

Three Summits Aim to Repair a Growing Rift with Nature

Editor’s note: Climate change can not be addressed without stopping the extinction and plastics crisis. Every day, an estimated 137 species of plants, animals and insects go extinct due to deforestation alone. Microplastics have been detected in more than 1,300 animal species, including fish, mammals, birds, and insects. A global plastic treaty will only work if it caps production. Bangladesh is about to implement its existing law regarding plastic usage by strictly banning single-use plastic and, gradually, all possible plastic uses.

Scientific models can never account for all of the interconnected relationships within planetary systems’ boundaries. That is one reason why catastrophe predictions are always being pushed ahead.

There is simply no way the current economic system can persist indefinitely on a finite planet. Unfortunately, COP16’s primary goal is critical to striking a sustainable balance between human civilization and the natural world. That is an impossibility.  We must tackle the underlying causes of biodiversity loss, including fossil fuel extraction, mining, industrial agriculture, intensive livestock farming, large-scale infrastructure projects, and monoculture tree plantations, basically civilization.

It is time to end civilization. Everything that claims existence must lose it; this is the eternal law. Power never gives up power willingly; it can only be broken with struggle. Nature is struggling to survive; we should help it.


 

Wildlife, climate and plastic: how three summits aim to repair a growing rift with nature

Jack Marley, The Conversation

By the end of 2024, nearly 200 nations will have met at three conferences to address three problems: biodiversity loss, climate change and plastic pollution.

Colombia will host talks next week to assess global progress in protecting 30% of all land and water by 2030. Hot on its heels is COP29 in Azerbaijan. Here, countries will revisit the pledge they made last year in Dubai to “transition away” from the fossil fuels driving climate breakdown. And in December, South Korea could see the first global agreement to tackle plastic waste.

Don’t let these separate events fool you, though.

“Climate change, biodiversity loss and resource depletion are not isolated problems,” says biologist Liette Vasseur (Brock University), political scientist Anders Hayden (Dalhousie University) and ecologist Mike Jones (Swedish University of Agricultural Sciences).

“They are part of an interconnected web of crises that demand urgent and comprehensive action.”

Let’s start with the climate.

Earth’s fraying parasol “How hot is it going to get? This is one of the most important and difficult remaining questions about our changing climate,” say two scientists who study climate change, Seth Wynes and H. Damon Matthews at the University of Waterloo and Concordia University respectively.

The answer depends on how sensitive the climate is to greenhouse gases like CO₂ and how much humanity ultimately emits, the pair say. When Wynes and Matthews asked 211 authors of past reports by the Intergovernmental Panel on Climate Change, their average best guess was 2.7°C by 2100.

“We’ve already seen devastating consequences like more flooding, hotter heatwaves and larger wildfires, and we’re only at 1.3°C above pre-industrial levels — less than halfway to 2.7°C,” they say.

There is a third variable that is harder to predict but no less important: the capacity of forests, wetlands and the ocean to continue to offset warming by absorbing the carbon and heat our furnaces and factories have released.

This blue and green carbon pump stalled in 2023, the hottest year on record, amid heatwaves, droughts and fires. The possibility of nature’s carbon storage suddenly collapsing is not priced into the computer models that simulate and project the future climate.

A forest clearing with wildfire smoke in the distance.

Parched forests can emit more carbon than they soak up. Matthew James Ferguson/Shutterstock

However, the ecosystems that buffer human-made warming are clearly struggling. A new report from the World Wildlife Fund (WWF) showed that the average size of monitored populations of vertebrate wildlife (animals with spinal columns – mammals, birds, fish, reptiles and amphibians) has shrunk by 73% since 1970.

Wildlife could become so scarce that ecosystems like the Amazon rainforest degenerate, according to the report.

“More than 90% of tropical trees and shrubs depend on animals to disperse their seeds, for example,” says biodiversity scientist Alexander Lees (Manchester Metropolitan University).

“These ‘biodiversity services’ are crucial.”

The result could be less biodiverse and, importantly for the climate, less carbon-rich habitats.

Plastic in a polar bear’s gut

Threats to wildlife are numerous. One that is growing fast and still poorly understood is plastic.

Bottles, bags, toothbrushes: a rising tide of plastic detritus is choking and snaring wild animals. These larger items eventually degrade into microplastics, tiny fragments that now suffuse the air, soil and water.

“In short, microplastics are widespread, accumulating in the remotest parts of our planet. There is evidence of their toxic effects at every level of biological organisation, from tiny insects at the bottom of the food chain to apex predators,” says Karen Raubenheimer, a senior lecturer in plastic pollution at the University of Wollongong.

Plastic is generally made from fossil fuels, the main agent of climate change. Activists and experts have seized on a similar demand to address both problems: turn off the taps.

In fact, the diagnosis of Costas Velis, an expert in ocean litter at the University of Leeds, sounds similar to what climate scientists say about unrestricted fossil fuel burning:

“Every year without production caps makes the necessary cut to plastic production in future steeper – and our need to use other measures to address the problem greater.”

A production cap hasn’t made it into the negotiating text for a plastic treaty (yet). And while governments pledged to transition away from coal, oil and gas last year, a new report on the world’s energy use shows fossil fuel use declining more slowly than in earlier forecasts – and much more slowly than would be necessary to halt warming at internationally agreed limits. The effort to protect a third of earth’s surface has barely begun.

Each of these summits is concerned with ameliorating the effects of modern societies on nature. Some experts argue for a more radical interpretation.

“Even if 30% of Earth was protected, how effectively would it halt biodiversity loss?” ask political ecologists Bram Büscher (Wageningen University) and Rosaleen Duffy (University of Sheffield).

“The proliferation of protected areas has happened at the same time as the extinction crisis has intensified. Perhaps, without these efforts, things could have been even worse for nature,” they say.

“But an equally valid argument would be that area-based conservation has blinded many to the causes of Earth’s diminishing biodiversity: an expanding economic system that squeezes ecosystems by turning ever more habitat into urban sprawl or farmland, polluting the air and water with ever more toxins and heating the atmosphere with ever more greenhouse gas.”The Conversation

Jack Marley, Environment + Energy Editor, The Conversation

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Nearly Half of Migratory Species Populations Decline

Nearly Half of Migratory Species Populations Decline

Editor’s Note: Since main stream media gives so much attention to COP28 UN Framework Convention on Climate Change (UNFCCC), a lot of people are familiar with it. Climate change is posed as the main environmental issue that we are facing right now. While DGR believes that climate change is a threat, it is by far not the worst. Other pressing issues, like biodiversity loss, are often sidelined by mainstream media. As a result, many people do know what COP14 UN Convention on the Conservation of Migratory Species of Wild Animals (CMS) is. Biodiversity preservation requires habitat restoration, hardly something that anyone could gain profit from. Climate change, on the other hand, has provided many opportunities for corporations, in the name of “green” energy transition. We believe that climate change is a symptom of industrial civilization. Continuation of the process via “renewable” energy will only worsen all the ecological crisis that we are facing now, including climate change. Ending industrial civilization, protecting species and restoring habitats is the only way to actually address these issues.


Nearly Half of Migratory Species Populations Decline

By Climate and Capitalism

Overexploitation and habitat loss pose extinction threats for migratory fish, birds and others, worldwide

Why Are We Not Talking About Ecological Overshoot?

Why Are We Not Talking About Ecological Overshoot?

Editor’s Note: We cannot have infinite growth on a finite planet. Something that should be a part of common sense is somehow lost in meaning among policymakers. In this piece, Elisabeth Robson explains the concept of overshoot to explain just that. She also delves into how the major policy makers have ignored it in favor of focusing on climate change and proposing solutions of “renewable” energy. Finally, she ends with three presentations on the same topic.


By Elisabeth Robson / Medium
overshoot
Ecological Overshoot

Bill Rees spent a good part of his career developing a tool called the ecological footprint analysis — a measurement of our collective footprint in terms of the natural resources humans use each year and the waste products we put back into the environment. His analysis showed that humanity is well into overshoot — meaning, we are using far more resources than can be regenerated by Earth, and producing far more waste than the Earth can assimilate.

Overshoot is like having a checking account and a savings account and using not only all the money in our checking account each year, but also drawing down our savings account. Everyone knows if we spend down our savings account, eventually we’ll run out of money. In ecological terms, eventually we’ll run out of easily-extractable resources and do so much damage from the pollution we’ve created, life-as-we-know-it will cease to exist.

I don’t like using the word “resources” to describe the natural world, but it is a handy word to describe all the stuff we humans use from the natural world to keep ourselves alive and to maintain industrial civilization: whether that’s oil, trees, water, broccoli, cows, lithium, phosphorus, or the countless other materials and living beings we kill, extract, process, refine, and consume to get through each and every day and keep the global economy humming. Please know that I wince each time I write “resources” to represent living beings, ecosystems, and natural communities.

Whatever we call the stuff that fuels 8+ billion humans and the great big hungry beast that is industrial civilization, Bill’s analysis estimates our collective ecological footprint is currently running at about 1.75 Earth’s worth of it. Of course that use is unevenly distributed; as a North American, I am ashamed to say that I and my many neighbors on this continent have an ecological footprint 15–20 times bigger than the Earth could sustain if everyone lived like us. Many people on Earth still have ecological footprints far below what the Earth could sustain if everyone lived like them, so it all averages out to 1.75 Earths.

But wait! you might be saying; how can we be using more than one Earth’s worth of resources? Because we are drawing down those resources, like drawing down our savings account. Each year less is regenerated — fewer salmon and fewer trees for instance —  more materials are gone forever, more toxic waste is polluting the environment. Eventually the savings account will be empty, and that’s when life-as-we-know-it ends for good.

A companion yardstick for measuring human overshoot of Earth’s carrying capacity is the planetary boundaries framework. This framework identifies nine processes that are critical for maintaining the stability and resilience of the Earth system as a whole. The framework tracks by how much we’ve transgressed beyond a safe operating space for the nine processes: climate change, biosphere integrity, land system change, freshwater change, biogeochemical flows, ocean acidification, atmospheric aerosol loading, stratospheric ozone depletion, and novel entities such as micro plastics, endocrine disruptors, and organic pollutants.

Planetary Boundaries Framework, Stockholm Resilience Centre, Stockholm University

Six of the nine boundaries are transgressed, and of those, five are in the high risk zone. By far the boundary we’ve transgressed furthest is biosphere integrity — much more so than climate change. This is perhaps not surprising given that humans and our livestock make up 96% of the weight of land mammals and wildlife a mere 4%, and that the accumulated weight of all human stuff on the planet now weighs more than all living beings — flora and fauna combined — on Earth.

I’m writing this as the UN Framework Convention on Climate Change (UNFCCC) Conference of Parties (COP) 28 is wrapping up in Dubai, UAE. There was a lot of talk about climate change and fossil fuels — mostly whether we will “phase down” or “phase out” our use of fossil fuels — and about so-called “renewables.” The conference ended with a global goal to “triple renewables and double energy efficiency.”

“We acted, we delivered,” claimed COP28 President Sultan Al Jaber, as if building more industrial technologies, like wind turbines and solar panels, and making more energy efficient buildings and cars will somehow restore biosphere integrity; unpollute the water, land and air; regrow all the old-growth forests; unpave the wetlands; and reverse the 1000x-faster-than-normal rate we exterminating species on Earth.

The global focus on climate change, cemented by almost 30 years of UNFCCC conferences, has blinded the world to our true predicament — that is, ecological overshoot — of which climate change is just one of many symptoms. Organizations, governments, corporations, the media are all talking and talking about climate change and the supposed “solutions” of renewables and energy efficiency, while essentially ignoring the ongoing destruction of the natural world. I sometimes imagine them sitting around the large conference tables at the COP with their fingers in their ears singing la-la-la-la-la so as to tune out the natural world as she begs for mercy while they plan “green growth” and scheme to make sure none of the agreements will put a dent in any of their bank accounts.

Likewise, local governments, including the one where I live, are also entirely focused on climate change. Recent meetings, reports, policies, and plans in the county where I live reflect the carbon tunnel vision that is legislated from on high, including state laws mandating net zero greenhouse gas emissions by 2050 and “clean electricity” by 2045, and enforcing a market-based program to cap greenhouse gas emissions.

These state laws and others, as well as federal incentives such as the Infrastructure Law of 2021 and the Inflation Reduction Act of 2022, put the focus squarely on carbon emissions. No other symptom of ecological overshoot has such clear cut, goal-oriented legislation as carbon emissions.

Carbon tunnel vision

Carbon tunnel vision means other problems get short shrift. And the “solutions” that corporations are selling us in order to meet the goals set by federal and state law will actually make many of the other symptoms of ecological overshoot worse. Far worse.

Imagine the hockey-stick shaped graph of growth over the past 250 years or so. It doesn’t really matter what growth you’re measuring — population, the economy, average income, fertilizer use, nitrogen runoff, copper extraction— that graph is going steeply up.

The Great Acceleration

My county’s planning documents assume that growth line will continue going up. Everywhere’s planning documents assume the same — that the economy, population, extraction, development, and consumption will continue growing. Indeed, an economy based on debt requires it for life-as-we-know-it to continue.

But this is simply not possible on a finite planet with finite resources and ecosystems already shattering under pressure. Basic laws of ecology tell us that when a species overshoots the regenerative capacity of its environment, that species will collapse. This is true for humans too. Our city, county, state, and federal policies do not reflect this reality in any way. This is shortsighted at best; a catastrophe at worst.

So why are most scientists, organizations, and governments so focused on climate change and carbon emissions? In part, because it’s relatively easy to measure. We’ve been measuring carbon dioxide in the atmosphere since 1958, and many other greenhouse gases almost as long. We can see the average annual parts per million increase every year. It’s much easier to measure CO2 ppm in the atmosphere than it is to count every last frog of a given species, or detect toxic pollutants in ground water, or track the decline of top soil, or do long term studies on the impacts of pesticides and herbicides.

Another answer to that question is that corporations have created technologies and industries they can sell to the world as “solutions” to climate change. These “solutions” allow corporations and the governments they influence to believe we can continue business-as-usual. The pervasive propaganda about these “solutions” allows us regular folk to believe we can continue life-as-we-know-it without having to worry too much because “someone’s doing something about climate change.”

Unlike the “solutions” to climate change that corporations are constantly trying to sell us, there is no profitable technology that will eliminate habitat loss, species extinctions, pollution, and deforestation. And so what we hear from organizations, governments, corporations, and the media is all climate change all the time, because someone’s making bank.

To try to break through the wall of all climate change all the time, I recently hosted a series of events on ecological overshoot. I invited everyone I could think of in my county who might have influence on county policy and planning in hopes of sparking the kinds of broader conversations I wish we were having. Few of those people showed up, perhaps unsurprisingly, so it seems unlikely those conversations will happen.

However, the three presentations — by Bill Rees, Jeremy Jiménez, and Max Wilbert — are excellent and well worth sharing with the broader community of people who are trying their best to start conversations about ecological overshoot.

I hope you enjoy these presentations as much as I did, and have better luck than I have at broaching these topics with people where you live.

Bill Rees

Jeremy Jiménez

Max Wilbert


Elisabeth Robson is an organizer in Deep Green Resistance. She is also actively engaged in the Protect Thacker Pass campaign.

Are Climate Scientists in Denial about Climate Change?

Are Climate Scientists in Denial about Climate Change?

Editor’s note: Climate change predictions have repeatedly demonstrated to be estimating disasters much later than they arrive. In spite of that, climate scientists still continue to make similar predictions. In this piece, the author – a psychologist – explores the technical and psychological reasons behind this.


By Jackson Damian / Medium

One of the clichés of climate change reporting is climate scientists claiming to be ‘surprised’, ‘shocked’ or ‘baffled’ by extreme events happening so much faster than predicted by their models and research studies.

These consistent underestimations are often explained by their ‘cautious’ approach which sounds reasonable, until you realise this has led the International Panel on Climate Change (IPCC) — whose role is to advise humanity on the seriousness of the climate crisis — to get their advice consistently wrong.

COP27 reinforced this problem when, as ever, the IPCC based their warnings exclusively on a synthesis of climate scientist’s reports that, they knew, underdetermined both what’s already happening and the speed of catastrophic future change.

This means most people, including those in power and in the media, genuinely don’t know how desperate things already are. Even many directly engaged with the subject, in NGOs and protest groups, don’t realise concepts like limiting warming to a ‘safe’ 1.5C global average are now meaningless — because scientists won’t tell them.

People know it’s bad but not how bad. This gap in understanding remains wide enough for denialists and minimisers to legitimise inadequate action under the camouflage of empty eco-jargon and false optimism. This gap allows nations, corporations and individuals to remain distracted by short-term crises, which, however serious, pale into insignificance compared with the unprecedented threat of climate change.

Alongside those vested interests who minimise climate change assessments, underestimates by scientists have potentially devastating consequences for humanity’s efforts to react to this threat to our survival. You don’t need to be a scientist to know that misjudging the seriousness of a situation compromises any response.

This article explains why traditional climate science methods cannot keep up with rapid change. It provides an analysis of the psychological defences that prevent most climate scientists from admitting this in public when, unofficially, they all do and say they are afraid. In conclusion, we consider how scientists can overcome this irrational position, for the good of us all

How wrong are climate scientists?

The list of new climate phenomena and related extreme events that ‘surprise’ climate scientists is endless, because it literally grows by the day.

This statement of fact is not ‘doomist’ or disputed by anyone serious, including scientists themselves. Roger Harrabin, the BBC’s environment and energy correspondent, recently confessed he is ‘scared’ — because he has listened for years to scientists telling him things were far worse than they could say officially and this is evident in today’s climate extremes.

The unprecedented 40C-plus temperatures of 2022’s UK and French heatwaves that provoked Harrabin’s disclosure, were forecast in 2019 to occur sometime after 2050 by the modelling of their national meteorological organisations. Multiple UK locations then saw 40C in 2022, while elsewhere in Europe they got closer to 50C. This led Professor Hannah Cloke of the University of Reading to admit, “Even as a climate scientist… this is scary.”

More, unusually public, panicked-sounding comments from scientists followed because these unprecedented extremes in Europe, undoubtedly caused they knew by humanity’s impact on the climate, were also experienced across the entire Northern Hemisphere, not least China which suffered ‘the worst drought in human history’ and vast areas of western USA.

These, plus epic and terrible related events like extremes of drought in the Horn of Africa, floods in Pakistan (covering an area the size of the UK), Australia and Niger, heatwaves in India and Argentina, and many others — were not anticipated anything like this soon by climate science models.

Worse, this was nothing new, recent history records an accelerating number of similar phenomena including:

· The 2021 ‘heatdomes’ in British Columbia and elsewhere — predicted to occur only every 10 years after average global temperature increased by 2C i.e. again, sometime after 2050. These led Michael E. Mann, a ‘go-to’ climate scientist/commentator, to state the climate models were wrong.

· The mega Australian wildfires of 2019 — predicted to occur by 2050 by only one climate scientist who, when he said so in 2007, was ridiculed by his peers for being alarmist.

So, the answer to the question, ‘how wrong are climate scientists?’ is — disastrously. The fact is, no mainstream research paper or climate model predicted where we are now.

Why don’t the methods work?

These ‘peer-reviewed’ methods cannot keep up in a time of rapid climate change because they…

1. take years from proposal to publication — so are always out-of-date

2. must limit themselves to the consideration of fragments of the climate system, to satisfy the high statistical standards of ‘certainty’ required

3. don’t include known variables, such as methane, when measurement is problematic — these are allocated zero values which works for the maths but not for real-life

4. cannot make provision for variables they know must be significant but cannot say so ‘scientifically’ yet, including many ‘feedback loops’

5. cannot co-ordinate well with other, equally-limited studies

6. cannot consider the whole planetary system or, usually, even major system components

7. were designed for the study of nature’s usual, long-term (thousands/millions of years) pace of climate change, not the unprecedented speed of anthropogenic change.
The IPCC

The IPCC rely exclusively on data they ‘synthesise’ from scientific papers and models complying with these methods to tell humanity what is happening, though they know these are flawed for this purpose.

They will not consider better data until a scientist has referred to this using the same process.

In addition, they use a ‘consensus’ filter — this disregards ‘outlier’ results, so those few studies that sound more realistic alarms are discounted.

All this is compounded by the IPCC’s mind-bogglingly complicated 7-year review and reporting structure. Though designed to be thorough, this has no chance of keeping up.

This modus operandi was established at their inception in 1988 but, as Naomi Oreskes, the Harvard science historian says, the IPCC ‘set the bar of proof too high’ for their vital advisory role.

For clarity, this is the bar set by the IPCC for their synthesis of scientific evidence, not for their summaries issued to policymakers. These summaries are built on the foundation of this understated evidence but are further watered-down, under external pressures, by dubious factors such as the estimated impact of unproven technologies.
The Arctic Circle

This is where these methods get it most wrong.

Significant, unambiguous new observational evidence emerged in the summer of 2022, from Svalbard and the Barents Sea, to reveal an increase of 10C there in the past 30 years alone. Accounts of Alaskan and Northern Russian land masses recording even higher temperature anomalies have been routine for decades; in this context the Siberian wildfires of 2020 surpassed in area the rest of the world’s fires put together.

We now know the temperature across the entire Arctic Circle has increased by between 4C and 10C in four decades i.e. way above the current ‘global average’ of 1.2C, and the now-unachievable ‘safe’ limit of 1.5C. The drastic climatic consequences of these astonishingly fast increases include already altering the path and speed of the jet streams, 50–100 years faster than expected.

These increases were not built into climate models prior to 2022, one of the major reasons all bar one of the IPCC’s current ‘trajectories’ for future change have already been surpassed. Additional incorrect assumptions are regularly highlighted — a December 2022 study indicates the rate of melt of Greenland’s glacier fronts has been significantly underestimated in the models due to erroneous comparisons with events in Antartica.

The effect on leaders’ and the public’s (mis)understanding is significant. At the time of writing, on the back of the summer temperature extremes of 2022, 2/3 of the landmass of the USA is in the grip of a vast winter storm, while much of Europe experiences an unprecedented winter heatwave. Any climate scientist, informally, will say these events must be related to climate change caused by human activity. But they won’t say so publicly, because their methods cannot show this yet, so the media report the cause is subject to ‘scientific debate’ — creating a false impression of uncertainty and reducing warranted alarm.

We see similar misguided misreporting in relation to changes in other major climate elements including ocean temperatures, deep ocean currents, Antarctica, glacier retreat and biodiversity loss.

Another cliché of climate reporting is the surprise expressed at so many extreme events happening at ‘only’ 1.2C but given what’s actually happened in the Arctic Circle and elsewhere — as opposed to what the models predicted — it’s no surprise at all.

They do know – So why can’t climate scientists tell us?

This is where psychology comes into it. Climate scientists are extremely clever people but they are as human, and as vulnerable to sub-conscious needs and fears, as the rest of us.
They do know

It is worth reiterating that these highly-educated professionals do know everything outlined above to be true — they know EVERY new live observation and better-quality study or model shows this.

And it isn’t only Roger Harrabin, with his significant sample size, who says so.

The problem is also well-illustrated by the fiasco of the 1.5C average ‘limit’ which at COP27, using their methodology, the IPCC still declared realistic in spite of the fact that in 2022:

· the UN’s own Environment Program declared there was no credible path to limiting warming to 1.5C

· the journal Nature broadly surveyed climate scientists and ecologists on the average global temperature rise by 2100; 96% said it would be higher than 1.5C and 60% said it would be 3C or more

· an event at the University of East Anglia asked 60 climate scientists whether 1.5C was ‘still alive’? — 100% said no.

But, because most climate scientists will not say so in public, they enable COP27, virtually all media outlets and influential figures like Sir David Attenborough to keep misrepresenting reality.

All while, everyone agrees, every fraction of a degree beyond 1.5C of warming represents exponentially-worse consequences for humanity — and more than 3C could be unsurvivable.
The psychological reasons

Scientists nonetheless repress the fact all this points to an urgent need to change their behaviours to allow them to report ‘live’ – what they know is actually happening.

This repression process is automatic — it is a sub-conscious, psychological defence mechanism activated in response to the perceived threat that changing their ways of working represents.

The superficial element of this threat is to their basic needs; climate scientists in general are not motivated by material gain but they still need to eat. All of them, from the most junior to those contributing work to the IPCC, simply cannot vary from these prescribed ‘scientific’ methods in their activities — if they do, their work will not be accepted.

More significant for climate scientists, however, is the profound psychological importance to them of their professional standing, this is fundamental to their sense of themselves — we might say their egos ‘identify’ with this. The threat to this status that the possibility of abandoning these methods represents is experienced as a kind of mortal danger, a killing of themselves.

This ego-identification of scientists with their special status is not a new concept; it’s widely accepted as a kind of anodyne, hard-earned, superiority complex that’s generally beneficial in its consequences for society. Historically this was often seen in popular culture as an inferiority complex, producing the malevolent ‘mad scientist’, but in the era of advanced technology the isolated ‘nerd’ archetype has emerged from this shadow to enjoy elevated status and influence. The tendency towards social awkwardness of many in this group is also affectionately portrayed in shows like ‘The Big Bang Theory’.

But most scientists still feel psychologically different. They grew up apart because they were more intellectually capable than those around them. Even if surrounded by good-intentions, childhood inevitably featured isolation, in the absence of many who could connect with them at their level. Worse, a significant subset of this population experience bullying for their exceptional abilities.

Academia provides a psychological refuge among a social group of their peers, but they also discover here a competitive environment with rigid and complex rules of behaviour. These rules, to which these research methods are fundamental, are reinforced over years. They are the code they must abide by to confirm and retain their membership of the group.

It follows that any threat to this membership, as breaking these rules represents, is deeply psychologically painful. The defences and complexes activated, linked to early maturational experiences, are the most difficult to shift. They provoke sub-conscious, primitive fears. Rational argument, normally the goal of scientists, becomes difficult to engage.

These fears are reinforced by the absence of an alternative group to join if they leave — outcast, back in the ‘real’ world they would find no safe community.

Thus, ongoing repression and ‘business as usual’; thousands of limited studies and inaccurate models still flow from academia, and on to the IPCC — in spite of the desperate, wider consequences.

This is an example of collective cognitive dissonance, a behaviour which denies reality, often seen in human groups where individuals place high value on their membership.

Another crucial barrier to these scientists changing their behaviours is the near absence of any external pressure to do so — indeed the opposite is the case. Efforts to dilute climate warnings continue but even those who acknowledge the problem, enmeshed in their own obligations and related defences, don’t want to hear things are worse than scientists are already saying.
The psychology of the IPCC

The continued insistence of the IPCC on basing their advice on evidence produced by methods they know under-estimate the problem, is an extension of this collective cognitive dissonance.

Their behaviour makes no sense in the context of humanity’s failure to respond to catastrophic threat. IPCC lead scientists are not pathologically-inclined to cause harm — but they too feel unable to abandon the constraints of methods within which they are psychologically secure.

It is also likely the IPCC reinforces their emphasis on these flawed in-group methods, as a primitive defence against those non-scientific vested interests who challenge and ‘bully’ them, including in the production of their summaries for policymakers.

There is, nonetheless, one psychological factor that could shift these ‘ego-identified’ complexes and that is peer pressure, especially if this comes from senior leaders across the climate science community.
The truth is ‘unscientific’

Roger Harrabin reports scientists saying they can’t tell the truth because to do so would be ‘unscientific’. This apparent insanity, given the consequences, can be understood psychologically.

But scientists are not the only ones who need urgent analysis in this incredible context. Prioritising survival in their roles at the expense of rational behaviour is accepted, even expected, among corporate leaders and politicians, both as individuals and the collective.

It’s notable all these people come from a similar demographic— mostly white, male, middle-aged, privileged — or, if not, they are obliged to conform with the culture and social norms established by this group. It may be easier for scientists though, given the importance to them of objectivity, to break through their defences and change their behaviours.

The same but different – Divergence among climate scientists

The climate science community, like the science itself, is many-faceted and includes specialists in atmospheric sciences, fluid dynamics, meteorology, geo-science and others, as well as climatologists. More than one hundred thousand work in research, corporations, environment/habitat management, public administration, NGOs etc. Most have no direct connection to the IPCC or the media.

Only their leaders have these connections and it is no surprise, in this extreme situation, that this instinctively-conservative community is fragmenting. They currently fall into 5 main groups.

1. More of the same

In classic defence-mechanism style many scientists double-down on their existing flawed methods in response to their fears. Disappearing down the rabbit-hole of another 5-year study or designing another complex model is psychologically comfortable. Most research papers still end with the recommendation ‘more study is required…’, which rationalises this defensive behaviour but diminishes the impact of conclusions and plays into the hands of minimisers.

Ineffectual attempts have been made to change things up like, ‘attribution studies’. These calculate (using a questionable comparison to an imaginary world where human influence had not occurred) the probability of anthropogenic causation as opposed to ‘weather’ variations. Their findings are published faster than standard studies but still cause delays of many months and even then are not conclusive. Thus the summer 2022 droughts were reported in January 2023 to have been ‘calculated’ by the UK Met Office as ‘160 times more likely’ to have been caused by climate change, when any scientist would have said, informally, when they were happening, there was no chance it was anything else. Others produce ludicrous individual event estimates like ‘1000 times more…’

Anything to avoid a declaration of certainty at the time of the event, because this is not allowed by scientific method. Such convoluted compromises only make sense within the climate science community where adherence to the rules is sacrosanct — even though they know these will still cause delay in communication and misunderstanding elsewhere.

2. More of the same — but magically better

Senior climate scientist and Oxford Professor Tim Palmer told Roger Harrabin: “It’s impossible to say how much of an emergency we are in because we don’t have the tools to answer the question.’’

Former Met Office chief scientist Professor Dame Julia Slingo told BBC News in 2021: “We should be alarmed because the IPCC (climate computer) models are just not good enough.’’ She went on, “(We need) an international centre… like that at Cern… with expensive new mega-computers — to deliver the quantum leap to climate models that capture the fundamental physics that drive extremes”. Such computers — everyone knows — would take years to develop, time humanity does not have, and could anyway never be ‘mega’ enough to keep up.

It is difficult to imagine clearer cases of bad workmen blaming their tools, not least as they design the tools themselves — but it’s not that a Professor Dame and an Oxford Professor can’t see the wood for the trees, it is that they are the trees.

Most climate scientists still live deep in this area of a forest of their own creation. Their irrational obsession with improving ‘scientific’ methods as a response to this problem, clearly links to their subconsciously-driven resistance to saying anything in public without reference to these; they are looking for justification (within the rules of their community) to speak out, as they know they should. Off the record, Tim and Julia and the rest will say it is 100% certain humanity caused this unprecedented climate mayhem and — using their powerful brains instead of their limited models — can give accurate ideas of what’s coming next.

3. Ongoing denial

A small group of hardliners still refuse to look beyond conclusions derived within the limited parameters of individual studies and models. They disregard the fact these, and the big picture the IPCC obtains by considering them together, cannot tell us what’s actually going on. For them if something can’t be ‘proved’ yet by their methods — it’s not happening.

Thus many refused to accept jet streams had (inevitably) shifted because of the relative speed of Arctic warming — because their models could not yet demonstrate this. Their peer-reviewed work was published in credible journals, even when other scientists like Jennifer Francis pointed out obvious flaws, such as their inability to include the impact of the warming of land masses across the Arctic Circle. This purist group were quietened by the observations and events of 2022 but they remain influential.

Crucially, the IPCC itself belongs here — as they continue to reference only data from studies and models which they know cannot reflect reality.

4. Underestimation to ‘avoid panic’

Some scientists attempt to rationalise underestimation by claiming this avoids the paralysis the resultant panic would provoke. This, psychologically-speaking, is nonsense; history tells us the mass ‘freeze response’ they allude to will not be provoked by credible experts telling the truth. Not telling people, however, does risk confusion, paralysis and no meaningful action — which is what has played out.

These scientists collude with the ‘stubborn optimists’ in public life, people like the UN’s Cristiana Figueres who advocate maintaining a belief in things getting better, even when they look bleak — which sounds okay but, has led to magical thinking such as faith in non-viable techno-solutions and the untenable insistence on ‘keeping 1.5C alive’.

This group includes public-facing scientists like Katherine Hayhoe and Michael E Mann, popular because they say what people want to hear. Mann now acknowledges there has been no meaningful action. He still insists ‘progress’ made on ‘policy’ is ‘hopeful’, however, which is like praising the driver of a runaway train for jamming down the accelerator, before going back to talk with passengers about slowing down. So, he hasn’t found his way out of this group yet.

5. Going public

Some scientists are breaking ranks to tell it much more like it is. They include some whose reputations are established, like Sir David King, or are retired/emeritus professors like Peter Wadhams, or they are the more confident and the boldest, people like James Hansen, Makifo Sato, Jennifer Francis, Ye Tao, Bill McGuire, Peter Carter, Kevin Anderson, Tim Lenton, Jason Box, David Spratt, James Dyke and Peter Kalmus. They are not rooted so deeply within the forest and have in common the psychological trait that the existential fear in them provoked by this situation, has become stronger than any psychological threat.

Some are organising in groups such as Scientist Rebellion, The Climate Crisis Advisory Group, Scientists Warning, and Scholars Warning. Some of the youngest are breathing fire — Capstick et al in 2022 in the journal Nature Climate Change, argue that all climate scientists must get involved in civil disobedience to provoke action. Others focus on practical suggestions — but do so in silos which receive minimal attention, such as the Centre for Climate Repair.

Other academics are also realistically engaged including Jem Bendell, professor of Sustainable Leadership and Rupert Read, Associate Professor of Philosophy.

Though in touch with reality themselves, and connecting with probably several million others now across the globe, none of these or others like them have had a meaningful impact on the behaviour of governments, corporations and most individuals, nor on humanity’s omnicidal trajectory.

Scientists, collectively, telling the unvarnished truth about the desperate seriousness of the situation, right now, is something that could have this impact.

How can climate scientists allow themselves to tell the truth?

1. Admit the problem
Climate scientists must admit they are still the only ones who know the extent of the climate iceberg below the surface.
They must accept, in the face of this unprecedented threat, their primary professional responsibility now is to provide up-to-date information to humanity — about what’s really happening to our climate and to our essential habitat. This is the single most important task any group of scientists has ever faced.

They have to admit that rigid adherence to their academic methods, in this astonishingly rapid context, leads directly to their failure to communicate the truth.

They have to acknowledge the confusion this failure has provoked facilitates inadequate action, empty pledges, fantasy techno-solutions, and false-optimism.

Scientists must concede humanity urgently needs them to find new ways to communicate what they already know, not only what their methods, or some future super-computer, will allow.

2. Unite and co-ordinate

Pointing to accelerating climate-extreme events happening ahead of their predictions — and the failure of humanity to respond linked, in part, to these underestimations — senior scientists must build a new ‘permanent-emergency’ coalition of IPCC and climate science leaders from all disciplines.

This strong new coalition must overcome their psychological resistances to agree an urgent new direction for the climate science community, finding a way through the politics to co-ordinate this.

The attraction of civil disobedience as a potential catalyst is understandable — and the climate science community should support members who get involved.

Accurate information communicated effectively, however, has the best chance of provoking meaningful action, in the form of impulses to radically change originating from within governments and corporations, including fossil fuel companies.

The new coalition must collectively acknowledge it is climate scientists themselves who need to lead in these communications and ensure they are effective. To do this they will need to engage with psychological and comms experts to break through the defences of leaders in all spheres of human activity, as well as the wider population.

3. Plan and Act
This coalition must initiate a plan of action that could look something like this.

1. Announce the permanent-emergency

Getting ahead of the likely unprecedented new extremes of the 2023/2024 El Niño, issue statement to all media platforms (simultaneously from all national agencies, IPCC, NASA, NOAA, NSDIC, UK Met Office and equivalents, all university Climate Change departments, Institutes etc), declaring:

· A new state of climate ‘permanent-emergency’ is here. Comparisons with the past are now irrelevant — our climate has irrevocably changed, at a speed unprecedented in this planet’s history and will change ever faster, with devastating impacts much faster than expected.

· Traditional climate science methods could not predict this and cannot keep up — ‘live’ observation, interpretation and communication of this new climate reality will now be the priority of scientists.

· Humanity has to react without further delay. 1.5C is gone. Paris 2015 goals, COP pledges, carbon budgets etc are obsolete — radical new policies are needed.

· These must promote urgent, meaningful action in all areas of human activity, based on new ‘live’ information.

2. Initiate new Permanent-Emergency Climate Science Code of Practice

· All institutions and individual climate scientists required to adopt

· Requires all activity (teaching, funding, research, modelling, other activity) prioritises live observations, analysis and reporting.

· Requires senior climate scientists behave congruently in their professional actions — eg 40% of time allocated to external facing comms/education and personally ensuring colleagues adopt this code.

3. Co-ordinate global climate scientific resources as a permanent-emergency response

· Create new 24/7 network of climate hubs, based in existing institutions, with the primary purpose of live analysis of weather/climate events, probable future events and related parameters — all individuals and institutions to prioritise their work for these hubs.

· Ensure hubs are co-ordinated to cover and connect planet-wide climate activity.

· Task hubs with improving quality of live observations including in remote locations. Advance computer capabilities — without delaying communication of live information.

· Set up central ‘planet hub’ at the IPCC — the coalition base — operates 24/7 to co-ordinate/ integrate/synthesise work of individual hubs.

· Using psychological approaches, engage with resistance from within the climate science community and related disciplines.

· Promote emergency-first mobilisation of all academic disciplines.

· All in co-ordination with government, corporate, NGO, health, education, social care and arts etc sectors — includes delivery of rolling information programs.

4. Set up 24/7 primary communication centre at IPCC ‘Planet Hub’

· Provides rolling analysis in planet-wide report, continuously synthesises and translates technical work of individual hubs into accessible language — replaces 7-yearly reporting cycle.

· Pro-actively engages with psychological resistance in leaders and the wider public to ensure effective communications.

· Supervises parallel/reciprocal communication functions in all climate hubs.

· Engages and trains media-friendly scientists.

· Targets rolling comms/education programs at all media platforms — eradicates misconceptions, replaces with accurate narrative.

Conclusion and questions for scientists

This article is aimed primarily at climate scientists, related professions and the media, written by a psychotherapist/friend. Someone with enough post-graduate education to understand the scientific papers and the climate models, and their shortcomings, but without the professional authority to do more than hold a psychological mirror up to this group.

The aim is to encourage scientists to overcome their resistances to communicating what they know. Because if they don’t — then we all face the prospect of the end of civilised society, including academia, also much faster than expected.

It is beyond the scope of this article to argue how bad the situation is or what appropriate responses should look like. The truth is no-one knows if we have 5 years or 50 before societal collapse sets in — but there is no doubt, whatever the timeframe, the situation is desperate and there is still no sign this is properly understood.

The climate science community could have a crucial influence in closing this gap in understanding — no-one else in this arena gets close to their hard-earned authority.

From this point the author only has questions because, as we say in psychotherapy, ‘insight is half the battle’. Changing behaviours is the difficult other half. It is for scientists themselves to answer the following:

· Can climate scientists overcome the subconsciously-driven defences that prevent most of them from telling the truth in public?

· Can they re-organise themselves to take responsibility for the effective communication of the true severity of this unprecedented ‘permanent-emergency’?

· Can they lower their self-imposed ‘bar of proof’ to a rational level that allows them to competently perform, at last, this vital role — so minimisers can be negated and meaningful actions initiated?

· Can they engage with parallel psychological resistances in leaders, the media and the public to receiving this information?

· Can they play the unique part, only their expertise allows them to play, in reducing harm to billions of human beings and other species?

If they can’t, our options will be limited…


Featured image: COP15 UNFCCC Climate Change