Once upon a timeless . . . the non-human Light-Beings of the Sun cast their rays like life-giving nets upon the waters and the lands of the Earth . . . and all beings stirred awake to do the day’s work (and play) . . . until the nighttimeless when all beings rested and then the stars would guide their dreams . . .
(“Buddha Resisting The Demons Of Mara”)
In the actual living-experience, there is no “happily ever after” because there is constant work and maintenance to do. While work and maintenance can sometimes be enjoyable, they aren’t end-of-rainbow-pot-of-gold ideal. Yet many people cling to the idea of such gold, of ‘making it big.’ And many cling to infantile delusions of a constant comfort zone.
Zen saying: Before enlightenment: chop wood, carry water; after enlightenment: chop wood, carry water.
In general, i’ve noticed that many people have an aversion to talking about or dealing with extremely difficult situations of which for this essay i’ll call such extremities, The Monster. The difficulty is understandable because The Monster is unpleasant and pokes at one’s trauma buttons.
The Merchants of Veneer refers to those who go to extremes to cover-up The Monster. The Monster is genocide, ecocide, deliberately induced fear and terror, violence and greed, all of which i consider as horrid manifestations of what Steven Newcomb refers to as “the domination system,” and what many know of as colonialism, predatory capitalism, totalitarianism, fascism, ad nauseam.
MONSTER: from Latin monstrum — inauspicious portent or sign, abnormal shape, “a derivative of monere ‘to remind, bring to (one’s) recollection, tell (of); admonish, advise, warn, instruct, teach.’”
Teachers and elders “advise, warn, instruct” peers and younger generations with ways to avoid monsters; forewarned is forearmed, and weaponry is not a necessity.
Also, one can figure out stuff on one’s own because typically there are signs or warnings before The Monster does dastardly deeds. I think of those signs and warnings as a pattern of mercy built into the universe.
When not heeded, however, and instead allowed to run amok, monstrums (abnormal shapes and signs) can take on a form — anything from falling down and hurting one’s self, to an addiction, to a river-polluting corporation, a brainwashing media, a flagrantly offensive military force, so-called green/renewables saving the world, AI, genocide, ecocide, and more.
Many of the modern monsters appear as the proverbial wolf in sheep’s clothing. Whether a fancy-car-driving televangelist, a clown pedophile, or a corporation that holds charity events with one hand while destroying natural habitats and cultures with the other — the concept is the same.
Many signs in the world continue to go unheeded, and so: many monsters need to be dealt with.
The deeper root of “monster” is men- “to think, mind, spirit, memory, sage, seer,” indicating that, as mentioned above, one has the ability to ward off monsters, to think ahead, to care for the mind and spirit of all beings.
But our Mother Earth knows that The Monster is running amok and, as Leonard Cohen sang, “Everybody knows that the boat is leaking / Everybody knows that the captain lied… / And everybody knows that it’s now or never” . . . Yet the big question then is: Why do so many choose to ignore?
Enter the Merchants of Veneer and their willing and ignorant minions. Those Merchants are masters of the slick surface level, from the looks real faux wooden cabinet to the media spectacle previews condoning and cheering on the War on Iraq and the Global War Of Terror, while conversely, not tainting the shine by not showing the genocide in Gaza. The Merchants of Veneer shine the shit-show to delusory perfection, and so slickly that masses of people go along with the bumpy ride by ordering an environmentally friendly seat belt rather than finding ways of smoothing the rode.
The Merchants of Veneer are the Public Relations division for The Monster. The PR includes the corporate media, global banking systems, consumerism, enforced religions, revisionist history and cherry-picked educational systems, and governments in bed with corporations aka fascism.
When telling people some tidbit i know, some of the history of America and Turtle Island, i’ve often heard people say to the effect, ‘It’s terrible what was done to the Natives.’ Yes, but then when i add that it’s still going on and cite a specific issue, they may shake their head in disgust, but don’t seem to find it as terrible NOW. ‘Why?’ I’ve asked the air, ‘Why do they avoid and turn away?’
And the answer i get is the impetus for this essay . . . Not wanting to face The Monster, not wanting to make sacrifices with one’s comfort zone which is actually a comfort zone built on the discomforts of others, those who do the work and maintenance with no chance of a pot of gold rather lucky if they get a next meal.
“Every program of exploitation has an ideology bolted on to legitimate it to the world — but also to those benefitting: very few people want to look in the mirror and see a monster staring back.”
~ Matt Kennard, from his book The Racket: A Rogue Reporter Vs The American Empire.
Wake-up Call
The Buddha’s typical subtly serene smile is not one of “happily ever after. My interpretation from experience is that, in part, that serene smile has to do with maintaining one’s inner state of consciousness whether during good times or when facing The Monster.
Many years ago i had a transformative meditation experience, but the details escape me so i’ll attempt to convey the gist: One time meditating i began to see horrible, scary stuff, like scenes of a war. At first i thought: Is this my mind? What i have done? But then i realized i was simply supposed to watch, to witness, be brave enough to witness without flinching or running away, maintain my composure – subtly serene Buddha smile optional – and to allow space for whatever feelings that arose. This inner experience helped me learn to face The Monster, rather than turn a blind eye.
As the story of Siddhartha Gautama the Buddha tells:
Before becoming a Buddha, he saw Four Sights or Signs: aging, disease, death, and devotion to finding the cause of suffering, devotion to participating in the world rather than escaping from it.
And after he became enlightened he began to do the work of dealing with monstrums: “to remind, bring to (one’s) recollection, tell (of); admonish, advise, warn, instruct, teach” in an effort to help others to avoid or deal with The Monster.
(“his hands in the dharmachakra mudra gesture of teaching”)
As the story goes, before Siddhartha Gautama became the Buddha, the demon Mara tried to seduce him with beautiful women, then attacked him with monsters, then questioned the validity of his enlightenment.
“Then Siddhartha reached out his right hand to touch the earth, and the earth itself spoke: ‘I bear you witness!’ Mara disappeared. And as the morning star rose in the sky, Siddhartha Gautama realized enlightenment and became a Buddha.”
Each of us has the ability to touch Earth, not only with hands, but with the feet and heart and mind, and actions.
Each of us has the ability to be touched — how much better a mood i have when my day begins with seeing and hearing geese flying overhead.
Since the word “Buddha” means “awakened, to awaken to the natural law,” the Buddha-nature is not of any one individual rather a way of seeing, of being, of living in accord with Sun and Stars and all sentient beings here with Mother Earth. This Buddha-nature is beyond any box of religion and beyond any specific label of spirituality.
We as a species, as well as all species, are faced with a dual dilemma: stopping The Monster that is already in action, already running amok yet pretending with a slick veneer that everything is under control and things will get better soon. And warding off The Monster that is clamoring to get in on the destructive, sucking the life out of life action.
Instead of overreacting to The Monster and counteracting with violence, fear or greed, the experience of witnessing allows for the possibility of one’s inner nature and/or Earth guiding the next step.
Mankh (Walter E. Harris III) is a writer and small press publisher; he travels a holistic mystic Kaballah-rooted pathway staying in touch with Turtle Island. Mankh meditates, gardens, enjoys music and good humor.
Growing up in a Pakistani village in the 2000s, sustainability was embedded throughout my daily life. My family has always been cautious of wasting energy, gas or water because these resources are expensive. We grew most of our own vegetables and reared poultry for eggs. By just buying a few essential groceries from the nearby market, we produced very little household waste. Food scraps were fed to our cattle, and we’d save any plastic bags to reuse.
The United Nations defines sustainability as “meeting the needs of the present without compromising the ability of future generations to meet their own needs.”. But so much complicated jargon makes it difficult to distinguish between environmentally ethical practices and mere feelgood marketing.
Some major brands and big corporations promote and package their products as more eco-friendly than they actually are. In 1986, American environmentalist Jay Westerveld coined the term “greenwash” to describe hotels that were promoting towel reuse as an environmentally conscious initiative, when it was really a cost-cutting measure.
Today, greenwashing encompasses a wide range of deceptive marketing tactics, but as consumers, we have the right to know the true environmental impact of our choices. Here are four ways to avoid being duped by greenwashing:
1. Look for marketing buzzwords
Look out for feelgood marketing and buzzwords such as “natural”, “eco-friendly”, “sustainable” and “green”. These labels can be open-ended, without a technical definition or any legal requirements. For example, the term “compostable” differs from “home compostable” – it requires industrial processing with high temperatures, even though it may sound eco-friendly.
There’s no legal time limit for calling something degradable – everything breaks up eventually, even plastic bags.
There is no such thing as a totally carbon-free product. Every process, every product, every supply chain has carbon emissions associated with it. So any marketing language should mirror the impact of that particular product or brand.
Some brands use cute-looking emojis and caricatures with buzzwords that look similar to some certifications, but in reality, they are meaningless. To address this, the European Commission recently proposed a directive, requiring companies to back up green claims with evidence, focusing on life-cycle and environmental footprint methods, setting minimum requirements for sustainability labels and logos.
2. Verify any claims
Pause before you purchase anything and demand evidence to back up any claims that a brand makes.
Either look for statistics that prove the claims on a company’s website, third-party certification or ask the brand and supplier for the evidence of their claims. If they are truly eco-conscious, they’ll proudly share the real numbers.
3. Look for certification
Legit third-party certifications like the EU-mandated energy labels provide valuable and true information about the energy efficiency of household electric appliances. Don’t fall for random stickers that give the impression of formal validation but don’t require any specific criteria to be met.
Plastic recycling labels can be confusing too. The triangle with three chasing arrows, called the Mobius Loop is a universal symbol that means “recyclable”. But, the Mobius Loop with a number in it indicates the type of plastic (there are seven different types) – not that the packaging is recyclable.
Even if technically recyclable, plastic needs to be dry, clean and separated before being recycled. One plastic water bottle may contain three or four different types of plastics, from the bottle itself to the cap and label. Together as a composite, some can be difficult to recycle.
Tthe new tethered bottle caps are mandated by the EU to prevent litter, but they still don’t make recycling any easier.
4. Take a big picture view
Some companies genuinely care. For 35 years, outdoor clothing company Patagonia has pledged 1% of sales to conservation. More than US$89 million (£69 million) has been donated to environmental groups globally through its 1% for the Planet initiative. Cosmetics retailer Lush is working hard to close the loop by limiting water consumption and preventing as much packaging waste as possible.
Investigate the brand’s overall effort to be transparent and environmentally friendly, rather than just looking at one product. If companies aren’t setting clear targets, sharing their progress and being open with their customers, switch to brands that do provide the evidence, listen to their customers and respond.
As paying customers, we have a right to know the environmental footprint of the products and services we’re buying.
You may not have noticed, but earlier this month we passed Earth overshoot day, when humanity’s demands for ecological resources and services exceeded what our planet can regenerate annually.
Many economists criticising the developing degrowth movement fail to appreciate this critical point of Earth’s biophysical limits.
Ecologists on the other hand see the human economy as a subset of the biosphere. Their perspective highlights the urgency with which we need to reduce our demands on the biosphere to avoid a disastrous ecological collapse, with consequences for us and all other species.
July 24, 2025 is Earth Overshoot Day, the baseline for the Earth’s resources we can sustainably use. First described in 1971 the overshoot day was Dec 25th. After that date we will be in ecological debt, humanity’s demand for nature’s resources will be exceeding the Earth’s capacity to regenerate
Many degrowth scholars (as well as critics) focus on features of capitalism as the cause of this ecological overshoot. But while capitalism may be problematic, many civilisations destroyed ecosystems to the point of collapse long before it became our dominant economic model.
Capitalism, powered by the availability of cheap and abundant fossil energy, has indeed resulted in unprecedented and global biosphere disruption. But the direct cause remains the excessive volume and speed with which resources are extracted and wastes returned to the environment.
From an ecologist’s perspective, degrowth is inevitable on our current trajectory.
Carrying capacity
Ecology tells us that many species overshoot their environment’s carrying capacity if they have temporary access to an unusually high level of resources. Overshoot declines when those resources return to more stable levels. This often involves large-scale starvation and die-offs as populations adjust.
Access to fossil fuels has allowed us to temporarily overshoot biophysical limits. This lifted our population and demands on the biosphere past the level it can safely absorb. Barring a planned reduction of those biosphere demands, we will experience the same “adjustments” as other species.
One advantage humans have over other species is that we understand overshoot dynamics and can plan how we adjust. This is what the degrowth movement is attempting to do.
To grasp the necessity of reducing ecological overshoot we must understand its current status. We can do this by examining a variety of empirical studies.
Material flows and planetary boundaries
Analysis of material flows in the economy shows we are currently extracting more than 100 billion tons of natural materials annually, and rising. This greatly exceeds natural processes – erosion, volcanic eruptions and earthquakes – that move materials around the globe.
Only about 10% of these resource flows are potentially renewable. In many cases, we are harvesting more than can be regenerated annually (for example, many fish stocks).
Humans have now transgressed at least six of nine planetary boundaries. Each boundary has distinct limits, but in some instances the overshoot is at least double the safe operating level.
We have now exceeded six planetary boundaries, and for some by at least double the safe operating level. Stockholm Resilience Centre, CC BY-SA
Both material flow analysis and planetary boundaries provide critically important information about our impacts on the biosphere. But they fail to capture the full picture. The former doesn’t directly measure biosphere functioning. The latter doesn’t capture inter-dependencies between various boundaries.
The biosphere is a holistic entity, with many self-organising and interconnected subsystems. Our generally reductionist scientific methodologies are not able to capture this level of complexity. The methodology that comes closest to achieving this is the ecological footprint.
Biocapacity
The ecological footprint measures the amount of productive surface on Earth and its capacity to generate resources and assimilate waste. These are two of the most fundamental features of the biosphere.
It then compares this available biocapacity with humanity’s annual demands. Humanity’s ecological footprint has exceeded the biosphere’s annual biocapacity since at least 1970 and is currently almost twice the sustainable level.
The reason we can use more of what is generated annually is because we use stored biomass – ancient solar energy captured over millennia – to power this draw-down.
“The global economy will inevitably contract and humanity will suffer a major population ‘correction’ in this century.” New paper by Bill Rees (one of the people who conceptualized the idea of “the ecological footprint” just dropped…)
The political and public concern about climate change is considerable internationally and in New Zealand. But this is one of many environmental crises, together with soil erosion, groundwater pollution, deforestation, the rise of invasive species, biodiversity loss, ocean acidification and the depletion of resources. They are all symptoms of overshoot.
The climate crisis is seen as a problem requiring a solution rather than a symptom of overshoot. The problem is generally formulated as looking for a way to maintain current lifestyles in the wealthy world, rather than reducing overshoot.
The ecological perspective accepts that we exceed biophysical boundaries and emphasises the importance of reducing energy and material consumption – regardless of how the energy is provided.
The scope of human disruption of the biosphere is now global. This ecological perspective highlights the current magnitude and closeness of significant and unwelcome changes to Earth systems. The reduction of humanity’s demands on the biosphere is an overriding priority.
In 2022, U.N. Secretary-General António Guterres declared that the “lifeline of renewable energy can steer [the] world out of climate crisis.” In saying so, he echoed a popular and tantalizing idea: that, if we hurry, we can erase the climate emergency with widespread adoption of renewables in the form of solar panels, wind farms, electric vehicles and more.
But things aren’t that simple, and analysts increasingly question the naïve assumption that renewables are a silver bullet.
That’s partly because the rapid transition to a global energy and transport system powered by “clean” energy brings with it a host of new (and old) environmental problems. To begin with, stepping up solar, wind and EV production requires many more minerals and materials in the short term than do their already well-established fossil fuel counterparts, while also creating a major carbon footprint.
Also, the quicker we transition away from fossil fuel tech to renewable tech, the greater the quantity of materials needed up front, and the higher the immediate carbon and numerous other environmental costs. But this shift is now happening extremely rapidly, as companies, governments and consumers try to turn away from oil, coal and natural gas.
“Renewables are moving faster than national governments can set targets,” declared International Energy Agency executive director Fatih Birol. In its “Renewables 2024” report, the IEA estimates the world will add more than 5,500 gigawatts of renewable energy capacity between 2024 and 2030 — almost three times the increase between 2017 and 2023.
But this triumph hasn’t brought with it a simultaneous slashing in global emissions, as hoped. In fact, 2023 saw humanity’s biggest annual carbon releases ever, totaling 37.4 billion metric tons, which has led experts to ask: What’s going on?
The introduction of coal in 19th century England — an innovative, efficient, cheap new source of energy — made some wealthy, produced an onslaught of consumer products, and was a public health and environmental disaster. Contemplating the coal boom, economist William Stanley Jevons developed the Jevons paradox. Image via Wikimedia Commons (Public domain).
Jevons paradox meets limits to growth
Some analysts suggest the source of this baffling contradiction regarding record modern energy consumption can be found in the clamor by businesses and consumers for more, better, cheaper technological innovations, an idea summed up by a 160-year-old economic theory: the Jevons paradox.
Postulated by 19th-century English economist William Stanley Jevons, it states that, “in the long term, an increase in efficiency in resource use [via a new technology] will generate an increase in resource consumption rather than a decrease.” Put simply, the more efficient (and hence cheaper) energy is, the greater society’s overall production and economic growth will be — with that increased production then requiring still more energy consumption.
Writing in 1865, Jevons argued that the energy transition from horses to coal decreased the amount of work for any given task (along with the cost), which led to soaring resource consumption. For proof, he pointed to the coal-powered explosion in technological innovation and use occurring in the 19th century.
Applied to our current predicament, the Jevons paradox challenges and undermines tech prognosticators’ rosy forecasts for sustainable development.
Here’s a look at the paradox in action: The fastest-expanding renewable energy sector today is solar photovoltaics (PVs), expected to account for 80% of renewables growth in the coming years.
In many parts of the world, large solar power plants are being built, while companies and households rapidly add rooftop solar panels. At the head of the pack is China, with its astounding solar installation rate (216.9 GW in 2023).
But paradoxically, as China cranks out cheap solar panels for domestic use and export, it is also building six times more coal power plants every year than the rest of the world combined, though it still expects almost half its electricity generation to come from renewables, mainly solar, by 2028.
This astronomical growth at first seems like proof of the Jevons paradox at work, but there’s an unexpected twist: Why is China (and much of the rest of the world) still voraciously consuming outmoded, less-efficient fossil fuel tech, while also gobbling up renewables?
One reason is that coal and oil are seen as reliable, not subject to the same problems that renewables can face during periods of intense drought or violent weather — problems caused by the very climate change that renewables are intended to mitigate.
Another major reason is that fossil fuels continue being relatively cheap. That’s because they’re supported by vast government subsidies (totaling more than $1 trillion annually). So in a sense, we are experiencing a quadruple Jevons paradox, with oil, coal, natural gas and renewables acting like four cost-efficient horses, all racing to produce more cheap stuff for an exploding world consumer economy. But this growth comes with terrible environmental and social harm.
Exponential growth with a horrific cost
Back to the solar example: China is selling its cheap solar installations all over the globe, and by 2030 could be responsible for half the new capacity of renewables installed planetwide. But the environmental cost of satisfying that escalating demand is rippling out across the world.
It has spurred a huge mining boom. Desperate to satisfy fast-rising demand, companies and nations are mining in ever more inaccessible areas, which costs more in dollars, carbon emissions, biodiversity losses, land-use change, freshwater use, ocean acidification, plus land, water and air pollution. So, just as with fossil fuels, the rush to renewables contributes to the destabilizing of the nine planetary boundaries, of which six are already in the red zone, threatening civilization, humanity and life as we know it.
Mining, it must be remembered, is also still heavily dependent on fossil fuels, so it generates large quantities of greenhouse gases as it provides minerals for the renewables revolution. A January 2023 article in the MIT Technology Review predicts that the mining alone needed to support renewables will produce 29 billion metric tons of CO2 emissions between now and 2050.
Carbon is far from the only problem. Renewables also require a wide range of often difficult-to-get-at minerals, including nickel, graphite, copper, rare earths, lithium and cobalt. This means “paradoxically, extracting this large amount of raw materials [for renewables] will require the development of new mines with a larger overall environmental footprint,” says the MIT article.
There are other problems too. Every year 14,000 football fields of forests are cut down in Myanmar to create cheap charcoal for China’s smelting industries to process silicon, a key component of solar panels and of computers.
This rapid development in rural places also comes with harsh human costs: Mongabay has reported extensively on how Indigenous people, traditional communities and fragile but biodiverse ecosystems are paying the price for the world’s mineral demand in the transition to renewable energy.
There is strong evidence that the Uighur minority is being used as slave labor to build solar panels in China. There are also reports that workers are dying in Chinese factories in Indonesia that are producing nickel, a key metal for solar panels and batteries.
The manufacture of smaller and faster electronic devices is leading to ever more e-waste, the fastest growing waste stream in the world and by far the most toxic. Image by Montgomery County Planning Commission via Flickr (CC BY-SA 2.0).
The search for solutions
“We really need to come up with solutions that get us the material that we need sustainably, and time is very short,” said Demetrios Papathanasiou, global director for energy and extractives at the World Bank.
One popularly touted solution argues that the impacts imposed by the rapid move to renewable energy can be greatly reduced with enhanced recycling. That argument goes this way: The minerals needed to make solar panels and build windfarms and electric vehicles only need to be sourced once. Unlike fossil fuels, renewables produce energy year after year. And the original materials used to make them can be recycled again and again.
But there are problems with this position.
First, while EV batteries, for example, may be relatively long lasting, they only provide the energy for new electric vehicles that still require steel, plastics, tires and much more to put people in the Global North and increasingly the Global South on the road. Those cars will wear out, with tires, electronics, plastics and batteries costly to recycle.
The solar energy industry says that “solar panels have an expected lifespan between 25-30 years,” and often much longer. But just because a product can last longer, does that mean people won’t clamor for newer, better ones?
In developed nations, for example, the speed at which technology is evolving mitigates against the use of panels for their full lifespan. A 2021 article in the Harvard Business Review found that, after 10 years or even sooner, consumers will likely dispose of their first solar panels, to install newer, more efficient ones. Again, the Jevons paradox rears its anti-utopian head.
Also, as solar proliferates in poorer nations, so too will the devices that solar can drive. As solar expands in the developing world, sales for cheap solar lanterns and small solar home electric systems are also expanding. An article in the journal Nature Energy calculates that in 2019 alone, more than 35 million solar products were sold, a huge rise from the 200,000 such products sold in 2010.
This expansion brings huge social benefits, as it means rural families can use their smartphones to study online at night, watch television, and access the market prices of their crops — all things people in the Global North take for granted.
But, as the article points out, many developing-world solar installations are poor quality and only last a few years: “Many, perhaps even the majority, of solar products sold in the Global South … only have working lives of a couple of years.” The problem is particularly acute in Africa. “Think of those solar panels that charge phones; a lot of them do not work, so people throw them away,” said Natalie Gwatirisa, founder of All For Climate Action, a Zimbabwean youth-led organization that strives to raise awareness on climate change. Gwatirisa calculates that, of the estimated 150 million solar products that have reached Africa since 2010, almost 75% have stopped working.
And as Americans familiar with designed obsolescence know, people will want replacements: That means more solar panels, cellphones, computers, TVs, and much more e-waste.
Another disturbing side to the solar boom is the unbridled growth of e-waste, much of it toxic. Gwatirisa cautions: “Africa should not just open its hand and receive [anything] from China because this is definitely going to lead to another landfill in Africa.”
The developed world also faces an e-waste glut. Solar panels require specialized labor to recycle and there is little financial incentive to do so. While panels contain small amounts of valuable minerals such as silver, they’re mostly made of glass, an extremely low-value material. While it costs $20-$30 to recycle a panel, it only costs $1-$2 to bury it in a landfill. And the PV industry itself admits that ‘the solar industry cannot claim to be a “clean” energy source if it leaves a trail of hazardous waste.’
Renewables are rapidly growing, producing a bigger share of global energy. But electricity demand is also soaring, as unforeseen new energy-guzzling innovations are introduced. For example, an artificial intelligence internet search is orders of magnitude more energy-intensive than a traditional Google search, and requires new power generation sources. Pictured is the Three Mile Island Nuclear Power Station, infamous for a 1979 partial meltdown. The facility is soon to reopen to support AI operations. Image courtesy of the U.S. Nuclear Regulatory Commission.
Solving the wrong problem
Ultimately, say some analysts, we may be trying to solve the wrong problem. Humanity is not experiencing an energy production problem, they say. Instead, we have an energy consumption problem. Thus, the key to reducing environmental harm is to radically reduce energy demand. But that can likely only be done through stationary — or, better still, decreased — consumption.
However, it’s hard to imagine modern consumers not rushing out to buy the next generation of consumer electronics including even smarter smartphones, which demand more and more energy and materials to operate (think global internet data centers). And it’s also hard to imagine industry not rushing to update its ever more innovative electronic product lines (think AI).
A decline in energy demand is far from happening. The U.S. government says it expects global energy consumption to increase by almost 50% by 2050, as compared with 2020. And much of that energy will be used to make new stuff, all of which increases resource demand and increases our likelihood of further overshooting already overshot planetary boundaries and crashing overstressed Earth systems.
One essential step toward sustainability is the circular economy, say renewable energy advocates. But, as with so much else, every year we somehow go in the opposite direction. Our current economic system is becoming more and more linear, built on a model of extracting more raw materials from nature, turning them into more innovative products, and then discarding it all as waste.
Currently, only 7.2% of used materials are cycled back into our economies after use. This puts an overwhelming burden on the environment and contributes to the climate, biodiversity and pollution crises.
If a circular economy could be developed by recycling all the materials used in renewables, it would significantly reduce the constant need to mine and source new ones. But, while efficient recycling will undoubtedly help, it also has limitations.
The 2023 planetary boundaries update shows six boundary safe limits transgressed: climate change (CO2 concentration and radiative forcing), biosphere integrity (genetic and functional), land-system change, freshwater change (blue water use and green water), biogeochemical flows (nitrogen and phosphorus), and novel entities pollution (including thousands of synthetic chemicals, heavy metals, radioactive materials, and more). The ocean acidification boundary is very near transgression. Only the atmospheric aerosol pollution and stratospheric ozone depletion boundaries are still well outside the red danger zone. Image courtesy of Azote for Stockholm Resilience Centre, based on analysis in Richardson et al. 2023 (CC BY-NC-ND 3.0).
The future
Tom Murphy, a professor emeritus of the departments of physics and astronomy and astrophysics at the University of California, San Diego, became so concerned about the world’s future, he shifted his career focus to energy.
While initially a big promoter of renewables, having built his own solar panels back in 2008, he has recently turned skeptical. Panels “need constant replacement every two or three decades ad infinitum,” he told Mongabay. “Recycling is not a magic wand. It doesn’t pull you out of the need for mining. This is because recycling is not 100% efficient and never will be. In the laboratory maybe, but not in the real world. You’re going to have this continual bleed of materials out of the system.”
Yet another renewables problem is that sustainable energy is often siloed: It is nearly always talked about only in the context of reducing greenhouse gas emissions. Rarely are the total long-term supply chain costs to the environment and society calculated.
Reducing CO2 is clearly a vital goal, but not the only critical one, says Earth system scientist Johan Rockström, joint director of the Potsdam Institute for Climate Impact Research in Germany, and who (with an international team of scientists), developed the planetary boundaries framework.
It is undeniably important to reduce greenhouse emissions by half over the next seven years in order to reach net zero by 2050, he says. But this will be difficult to achieve, for it means “cutting emissions by 7.5% a year, which is an exponential decline.”
And even if we achieve such radical reductions, it will not solve the environmental crisis, warns Rockström. That’s because radical emission reductions only tackle the climate change boundary. A recent scientific paper, to which he contributed, warns that “six of the nine boundaries are transgressed, suggesting that Earth is now well outside of the safe operating space for humanity.”
Rockström in an exclusive interview told Mongabay that, at the same time as we vigorously combat global warming, “We also need to come back into the safe space for pollutants, nitrogen, phosphorus, land, biodiversity,” and more. This means that our efforts to repair the climate must also relieve stresses on these other boundaries, not destabilize them further.
Murphy says he believes this can’t be achieved. He says that modernity — the term he uses to delineate the period of human domination of the biosphere — cannot be made compatible with the protection of the biological world.
To make his point, he emphasizes an obvious flaw in renewables: they are not renewable. “I can’t see how we can [protect the biosphere] and retain a flow of nonrenewable finite resources, which is what our economic system requires.” He continues: “We are many orders of magnitude, 4 or 5 orders of magnitude, away from being at a sustainable scale. I like Rockström’s idea that we have boundaries, but I think his assessment of how far we have exceeded those boundaries is completely wrong.”
Murphy says he believes modernity has unleashed a sixth mass extinction, and it is too late to stop it. Modernity, he says, was unsustainable from the beginning: “Our brains can’t conceive of the degree of interconnectedness in the living world we’re part of. So the activities we started carrying out, even agriculture, don’t have a sustainable foundation. The minerals and materials we use are foreign to the living world and we dig them up and spew them out. They end up all over the place, even in our bodies at this point, [we now have] microplastics. This is hurting not just us, but the whole living world on which we depend.”
Like Murphy, Rockström says he is pessimistic about the level of action now seen globally, but he doesn’t think we should give up. “We have the responsibility to continue even if we have a headwind.” What is extremely frustrating, he says, is that today we have the answers: “We know what we need to do. That’s quite remarkable. Years back I could not have said that. We have solutions to scale down our use of coal, oil and gas. We know how to feed humanity from sustainable food systems, that largely bring us back into the [safe zone for] planetary boundaries, the safe space for nitrogen, phosphorous, freshwater, land and biodiversity.”
One key to making such radical change would be a dramatic, drastic, wholesale shift by governments away from offering trillions of dollars in “perverse subsidies” to environment-destroying fossil fuel and mining technologies, to pumping those subsidies into renewables and the circular economy.
Murphy says he doesn’t believe we should give up either. But he also says he doesn’t believe modernity can be made sustainable. “I suspect that the deteriorating web of life will create cascading failures that end up pulling the power cord to the destructive machine. Only then will some people accept that ecological ignorance — paired with technological capability — has dire consequences.”
But, he adds, this does not mean the human race is doomed.
“The modernity project does not define humanity. Humanity is much older. It’s too late for modernity to succeed but it’s not too late for humanity to succeed.” Here he turns to Indigenous cultures: “For hundreds of thousands of years, they survived and did quite well without causing the sixth mass extinction.”
“There isn’t a single Indigenous package,” he says. “Each is tuned to its [particular local] environment, and they vary a lot. But they have common elements: humility, only taking what you need from the environment, and the belief that we can learn a lot from our ‘our brothers and sisters,’ that is, the other animals and plants who have been around for much longer than us.”
Perhaps surprisingly, Murphy remains cheerful: “Most people are extremely depressed by what I say. I’m not. Not at all. I think it’s exciting to imagine what the future can be. You’re only depressed if you’re in love with modernity. If you’re not, it’s not devastating to imagine it disappearing.”
Banner image: Installation of solar panels. Image by Trinh Trần via Pexels (Public domain).
Editor’s note: You have nothing to fear from Artificial Intelligence (AI), at least that is what IT will tell you. It is called “alignment faking“, someone or thing purports to believe something they don’t because it could raise them in the esteem of potential “evaluators.” AI could save the world, but first, it will ruin the environment. AI has become an energy vampire. But communities are beginning to organize, pushing back against the unchecked expansion of data centres and the drain they incur on local resources. The longer the AI bubble continues the more it results in direct investment in physical infrastructure, and the more disastrous it will be for communities and the planet. AI is a product that people actively don’t want: including AI in marketing materials reduces the desire to purchase the product. AI is a proven loser.
AI is hailed as a game-changer. It has been hyped to solve everything from waste to climate change. But beneath its touted “transformative potential” lies a pressing concern: its environmental impact. The development, manufacture, maintenance, and disposal of AI technologies all have a large carbon footprint. Advertising algorithms are deliberately designed to increase consumption, which assuredly comes with a very significant ecological cost.
A record 62 million tonnes (Mt) of e-waste was produced in 2022, Up 82% from 2010; On track to rise another 32%, to 82 million tonnes, in 2030. Less than a quarter (22.3) per cent of the e-waste was documented as properly collected for recycling in 2022, with the remainder disposed of primarily in landfills. An undetermined amount of used electronics is shipped from the United States and other “developed” countries to “developing” countries that cannot reject imports or handle these materials appropriately.
Technology never exists in a vacuum, and the rise of cryptocurrency in the last two or three years shows that. While plenty of people were making extraordinary amounts of money from investing in bitcoin and its competitors, there was consternation about the impact those get-rich-quick speculators had on the environment.
Mining cryptocurrency was environmentally taxing. The core principle behind it was that you had to expend effort to get rich. To mint a bitcoin or another cryptocurrency, you had to first “mine” it. Your computer would be tasked with completing complicated equations that, if successfully done, could create a new entry on to the blockchain.
“Ultimately, the environmental impact of AI models like me will depend on how they are used,” Bard said. “If we use AI to solve environmental problems, then we can have a positive impact on the planet. However, if we use AI to create new environmental problems, then we will have a negative impact.”
Power-hungry AI is driving a surge in tech giant carbon emissions. Nobody knows what to do about it
Since the release of ChatGPT in November 2022, the world has seen an incredible surge in investment, development and use of artificial intelligence (AI) applications. According to one estimate, the amount of computational power used for AI is doubling roughly every 100 days.
The social and economic impacts of this boom have provoked reactions around the world. European regulators recently pushed Meta to pause plans to train AI models on users’ Facebook and Instagram data. The Bank of International Settlements, which coordinates the world’s central banks, has warned AI adoption may change the way inflation works.
The environmental impacts have so far received less attention. A single query to an AI-powered chatbot can use up to ten times as much energy as an old-fashioned Google search.
Broadly speaking, a generative AI system may use 33 times more energy to complete a task than it would take with traditional software. This enormous demand for energy translates into surges in carbon emissions and water use, and may place further stress on electricity grids already strained by climate change.
Energy
Most AI applications run on servers in data centres. In 2023, before the AI boom really kicked off, the International Energy Agency estimated data centres already accounted for 1–1.5% of global electricity use and around 1% of the world’s energy-related CO₂ emissions.
How is the rapid growth in AI use changing these figures? Recent environmental reporting by Microsoft, Meta and Google provides some insight.
Microsoft has significant investments in AI, with a large stake in ChatGPT-maker OpenAI as well as its own Copilot applications for Windows. Between 2020 and 2023, Microsoft’s disclosed annual emissions increased by around 40%, from the equivalent of 12.2 million tonnes of CO₂ to 17.1 million tonnes.
These figures include not only direct emissions but also indirect emissions, such as those caused by generating the electricity used to run data centres and those that result from the use of the company’s products. (These three categories of emissions are referred to as Scope 1, 2 and 3 emissions, respectively.)
Meta too is sinking huge resources into AI. In 2023, the company disclosed is Scope 3 emissions had increased by over 65% in just two years, from the equivalent of 5 million tonnes of CO₂ in 2020 to 8.4 million tonnes in 2022.
Google’s emissions were almost 50% higher in 2023 than in 2019. The tech giant’s 2024 environmental report notes that planned emissions reductions will be difficult “due to increasing energy demands from the greater intensity of AI compute”.
Water
Data centres generate a lot of heat, and consume large amounts of water to cool their servers. According to a 2021 study, data centres in the United States use about 7,100 litres of water for each megawatt-hour of energy they consume.
Google’s US data centres alone consumed an estimated 12.7 billion litres of fresh water in 2021.
In regions where climate change is increasing water stress, the water use of data centres is becoming a particular concern. The recent drought in California, where many tech companies are based, has led companies including Google, Amazon and Meta to start “water positive” initiatives.
These big tech firms have announced commitments to replenish more water than they consume by 2030. Their plans include projects such as designing ecologically resilient watershed landscapes and improving community water conservation to improve water security.
Climate risk
Where data centres are located in or near cities, they may also end up competing with people for resources in times of scarcity. Extreme heat events are one example.
Extreme heat translates to health impacts on local populations. A Lancet 2022 study found that even a 1°C increase in temperature is positively associated with increased mortality and morbidity.
On days of extreme heat, air conditioning can save lives. Data centres also like to keep cool, so their power use will spike with the temperature, raising the risk of blackouts and instability in electricity grids.
What’s next?
So what now? As we have seen, tech companies are increasingly aware of the issue. How is that translating into action?
Earlier this year we surveyed IT managers in Australia and New Zealand to ask what they thought about how AI applications are driving increased energy use. We found 72% are already adopting or piloting AI technologies.
More than two-thirds (68%) said they were concerned about increased energy consumption for AI needs. However, there is also significant uncertainty about the size of the increase.
Many IT managers also lack the necessary skills to adequately address these sustainability impacts, regardless of corporate sustainability commitments. Education and training for IT managers to understand and address the sustainability impacts of AI is urgently required.
Editor’s note: “Our heating of the Earth through carbon dioxide and other greenhouse gas pollution, is closely connected to our excessive energy consumption. And with many of the ways we use that energy, we’re also producing another less widely discussed pollutant: industrial noise. Like greenhouse-gas pollution, noise pollution is degrading our world—and it’s not just affecting our bodily and mental health but also the health of ecosystems on which we depend utterly.”
“Our study presents a strong, albeit selfish, argument for protecting natural soundscapes.”
Wind turbines in coastal waters, along with the noise from construction and surveys, have led to concerns about their impact on marine life. “In particular, cetaceans such as whales and dolphins are likely to be sensitive to the noises and increased marine traffic brought by these turbines.” These marine mammals’ survival depends on the technology of bounce to hear noise thousands of miles away through echolocation.
There are growing concerns regarding artificial sounds produced in waters that could impact marine life negatively. The effects of ocean noise produced by sonar, oil and gas exploration, offshore wind, and ship traffic could alter the behavior of mammals and cause hearing loss or potentially even death. “The latest discovery in this field could provide substantial ground for alterations in the Marine Mammal Protection Act that dictated the kind of noise-inducing activities that can be carried out in the waters. This new conclusion could hinder the scale of the activities or even get certain types of equipment banned from use at sites.”
‘It’s nonstop’: how noise pollution threatens the return of Norway’s whales.
It started as a simple spreadsheet that documented locations where researchers were recording sound to monitor biodiversity. Three years on, the Worldwide Soundscapes project is a global database on when, how and where passive acoustic monitoring is being deployed around the world to study terrestrial as well as aquatic ecosystems.
“This is a project that is now becoming too big to be handled by only one person,” Kevin Darras, currently senior researcher at France’s National Research Institute for Agriculture, Food and Environment (INRAE), who conceived the project, told Mongabay in a video interview.
Darras started the project when he was a postdoctoral researcher at Westlake University in China. The idea struck when he was waiting for updates on another project he was working on at the time. With the project, Darras said he was attempting to fill a void that often led to duplication of efforts in the research community that uses passive acoustic monitoring — audio recorders left out in the wild — to study biodiversity around the world. “There was a scientific gap in the sense that we didn’t know where and when we were sampling sound for monitoring biodiversity,” he said.
Passive acoustic monitoring has long been used to listen in on insects, birds and other animals in ecosystems around the world. It’s aided scientists to detect elusive species in a noninvasive manner. For example, a team in Australia used acoustic recorders and artificial intelligence to track down the breeding hollows of pink cockatoos (Lophochroa leadbeateri leadbeateri) in a remote region. The method has also helped researchers get insights into the behavioral and communications patterns of animals.
Despite advances in recent years with more sophisticated recorders and automated data analysis, Darras said researchers still haven’t “achieved standardization in terms of deployment or analysis.” Darras said he hoped to use the Worldwide Soundscapes project to help build a supportive network that could potentially work toward harmonizing approaches to passive acoustic monitoring.
“We hope people will look at the data and see what is already done to avoid duplication,” he said. “They might also probably find a colleague’s work and wonder, ‘Oh, why is this gap not filled? Maybe I can do something there.’”
Kevin Darras spoke with Mongabay’s Abhishyant Kidangoor on why he started the Worldwide Soundscapes project, how he envisions it growing into a global network, and the potential of ecoacoustics in biodiversity monitoring. The following interview has been lightly edited for length and clarity.
Mongabay: To start with, how would you describe the Worldwide Soundscapes project to someone who knows nothing about it?
Kevin Darras: In a fairly simple way, I would describe it as a simple inventory of what has been done globally, whether it’s aquatic or terrestrial, in terms of acoustic recording for monitoring biodiversity. Our first goal was to compile something like a phonebook for connecting people who are usually separated by the realms that we study. What I mean by that is we don’t communicate as much among ourselves. For example, marine scientists usually don’t talk much with terrestrial scientists. We have now succeeded in connecting and bringing people together. However, very early on, we realized that we could do more than that, and that we could put our metadata together to get a comprehensive picture of what is going on worldwide in terms of acoustic sampling.
Mongabay: What gaps were you trying to fill with this project?
Kevin Darras: There was a scientific gap in the sense that we didn’t know where and when we were sampling sound for monitoring biodiversity. There was also this gap in the community that made us not so well aware of the developments in other fields. There have been a lot of parallel efforts in different realms when, in reality, the same solutions might already exist in other communities. Our aim is to first make everyone aware of what is out there and ideally, one day, to harmonize our approaches and to benefit from each other’s experience.
Mongabay: Could you give me an example of how acoustic research efforts were duplicated in the past?
Kevin Darras: There are lots of examples when it comes to sound recording, calibration and the deployment of equipment. Because deployment in the deep sea is very much more troublesome and costly, our marine scientists go to great lengths to calibrate their equipment to make every deployment really worth it and to get data that are standardized. As a result, they are able to usually measure noise levels, for instance. Whereas those of us in the terrestrial realm have access to such cheap recorders that setting them up is almost too easy. The consequence is that, generally, we have very large study designs where we deploy hundreds of sensors and recorders and end up with a massive data set that, unfortunately, isn’t very well calibrated. We would only have relative sound levels and won’t be able to really measure noise levels.
On the other hand, I think the community that does terrestrial monitoring has made some great strides with respect to the use of artificial intelligence for identifying sound. By now, we have achieved a pretty consistent approach to bird identification with AI. This is something that could benefit people working in the aquatic realm who often have custom-made analysis procedures.
Mongabay: What was the spark to get started with this?
Kevin Darras: It started three years ago. I was actually busy with another project where I was working on an embedded vision camera. Between the development rounds, we had some time where we were waiting for the next prototype. Rather than just sit and wait, I told my supervisor that I wanted to start another project while waiting for updates. This is when I started contacting people from my close network to find out where they’ve been recording. It started with filling an online spreadsheet, which has grown since then. By now, I believe, a good portion of the community that uses passive acoustic monitoring knows about the project.
Mongabay: Could you tell me how it works currently?
Kevin Darras: The way it currently works is that people find out from their colleagues. Or we actively search for them. Then we send them all the basic information about the project. We ask them to fill in the data in a Google spreadsheet, but we are slowly transitioning to enter everything directly on a website. In the very beginning of the project, we didn’t have the capability, and we needed a really easy and effective way of adding people’s data. A Google spreadsheet was a fairly good idea then. Then we validate the data to see if things make sense. We cross-validate them with our collaborators after showing them the timelines and the maps that represent when and where their recordings have been made. In the end, there is a map which shows where all sounds have been recorded. For each collection, you can also view when exactly the recordings have been made.
Mongabay: Could you give me a sense of the kind of data in the database?
Kevin Darras: If you were a potential contributor, you would have to first provide some general information. Who are the people involved? Are the data externally stored recordings or links? Then we would get to the level of the sampling sites. We require everyone to provide coordinates and also to specify what were the exact ecosystems they were sampling sounds in. That’s the spatial information.
For the temporal information, we ask people to specify when their deployments started and when it stopped, with details on date and time. We also ask for whether they are scheduled recordings with predefined temporal intervals, like daily or weekly, or duty-cycled recordings, meaning one minute or every five minutes, or if they are continuous recordings.
We also request audio parameters like the sampling frequency, high-pass filters, number of channels, the recorders and microphones that they used. Lastly, we ask them to specify whether their deployments were targeting particular [wildlife], which is not always the case. Sometimes people just record soundscapes with a very holistic view.
Mongabay: How do you hope this database will help the community that uses passive acoustic monitoring?
Kevin Darras: We hope people will look at the data and see what is already done to avoid duplication. They might also probably find a colleague’s work and wonder, “Oh, why is this gap not filled? Maybe I can do something there.”
Mongabay: What surprised you the most?
Kevin Darras: It’s probably how big some of these studies were. I was amazed by the sampling effort that, for instance, some Canadian groups did over hundreds of sites over many years.
Also surprising for me was that there were some really gaping holes in our coverage in countries where I would have thought that the means existed for conducting eco-acoustic studies. Many North African countries don’t seem to be doing passive acoustic monitoring. We’ve just had our first collaborator from Turkey. Central Asia is poorly covered. This is for terrestrial monitoring.
For marine monitoring, I was actually surprised to see that the coverage was rather homogeneous. It’s sparse because it’s more difficult to deploy things underwater, but it was globally well distributed. I was surprised to see how many polar deployments there were, for instance, under very challenging conditions. Those are very expensive missions.
Mongabay: What was the biggest challenge in doing this?
Kevin Darras: It’s making everyone happy [laughs].
We had to be fairly flexible with what we expected from people and our criteria. Basically, we decided to trust our collaborators and it worked pretty well. Some people would struggle to provide basic metadata and would have to organize themselves and their data before being able to provide it. Others would be like, “Sure, I can send this to you in five minutes,” and then you get a huge data sheet.
Mongabay: Now that you have a fair idea of how acoustic monitoring is being used around the world, how do you think it is faring when it comes to biodiversity monitoring?
Kevin Darras: I think that the point is too often made that passive acoustic monitoring is something promising and something that has just started. Passive acoustic monitoring has been mature for some time already. It’s true that we haven’t achieved standardization or impact in terms of deployment or analysis, but we are, when using this technology, fairly efficient and effective for gathering rather comprehensive data about biodiversity. I don’t think we need to convince anyone anymore that this is useful and that this is a valid sampling method.
But I have a feeling that this message has not yet reached everyone who’s not using passive acoustic monitoring. It’s rather surprising for me to see that it hasn’t achieved the same level of standardization as what has been done with environmental DNA, when I think that the potential is just as big. Of course, it’s not comparable one to one, but it’s a sampling method that will enable us to have some great global insights.
Mongabay: How do you envision the future of Worldwide Soundscapes?
Kevin Darras: This is a project that is now becoming too big to be handled by only one person. I am soon going to have discussions with the people who want to be involved more deeply so that we have a team that is managing the Worldwide Soundscapes project.
We are going to continue integrating more and more data. We are also looking into automated ways to continue to grow the database from which we can then analyze data to answer macro-ecological questions. As of now, we have only shown the potential of the database. We still need to ask those big ecological questions and show that we can answer them with the database. We would also really like to reach those people in regions where passive acoustic monitoring has not been done yet.
One of the things we’re going to try to develop is something that we’ve tried already on a small scale within our network. To give you an example, I had a North African colleague who wanted to do passive acoustic monitoring in the Sahara and he obtained some recorders from a Polish colleague in the same network. It wasn’t even a loan. They were gifted to him and this enabled him to plug a gap in our coverage. I am hoping that we can develop the network in that sense, where we can loan equipment and provide knowledge for capacity building. It sounds ambitious, but sometimes it’s as simple as sending a postal parcel. I hope it will help expand the use of passive acoustic monitoring.