Questioning Lithium-ion Batteries

Questioning Lithium-ion Batteries

Editor’s note: When a hurricane like Helene or Milton ravages coastal communities, already-strained first responders face a novel, and growing, threat: the lithium-ion batteries that power electric vehicles, store PV solar, e-bikes, and countless gadgets. When exposed to the salty water of a storm surge or extreme heat, they are at risk of bursting into flames — and taking an entire house with them.

“Anything that’s lithium-ion and exposed to salt water can have an issue,” said Bill Morelli, the fire chief in Seminole, Florida, and the bigger the battery, the greater the threat. That’s what makes EVs especially hazardous. “[The problem] has expanded as they continue to be more and more popular.”

Also petrochemical-based building materials and furnishings have replaced traditional wood, fabric and metal materials in homes worldwide. But plastics are more flammable and release persistent toxic chemicals when burned or exposed to high heat. Over the last 25 years, wildfires have multiplied and intensified due to global warming, and often now jump the wildland-urban interface, burning whole neighborhoods and leaving behind a dangerous toxic home legacy. After the Camp Fire razed Paradise, California, in 2018, water utilities found high levels of volatile organic compounds in drinking water. Similar issues have arisen in places like Boulder County, Colorado, where the Marshall Fire destroyed nearly 1,000 structures in 2021,

“The extreme heatwaves of 2023, which fueled huge wildfires, and severe droughts, also undermined the land’s capacity to soak up atmospheric carbon. This diminished carbon uptake drove atmospheric carbon dioxide levels to new highs, intensifying concerns about accelerating climate change. Widespread wildfires across Canada and droughts in the Amazon in 2023 released about the same amount of carbon to the atmosphere as North America’s total fossil fuel emissions, underscoring the severe impact of climate change on natural ecosystems.”

The multibillion-dollar chemicals company 3M told customers it sold its firefighting foams to as safe and biodegradable, while having knowledge that they contained toxic per- and polyfluoroalkyl substances (PFAS), according to newly uncovered documents, reported The Guardian. A team of academic researchers, lawyers and journalists from 16 European countries has exposed a huge lobbying campaign aimed at gutting a proposed EU-wide restriction on the use of “forever chemicals”.

The following story talks about the Moss Landing fire but there was also a fire that erupted in southeast Missouri at one of world’s largest lithium-ion battery recycling facilities and also in Madison County, Illinois.


 

By KATIE SINGER / Katie Singer’s Substack

While finishing this Substack, I learned about the explosive fire that started January 16, 2025 at Moss Landing, California’s Vistra Power Plant, the world’s largest battery energy storage facility, housing tens of thousands of lithium-ion batteries. By Friday, January 17, flames had consumed 75% of the facility’s batteries. Toxic fumes from the batteries’ chemicals forced evacuations and closed roads around Moss Landing. Because the highly-charged batteries can’t be extinguished—they must burn out—this fire and its toxins could burn for a long time.

Batteries’ toxic gases can cause respiratory, skin and eye problems. Toxic gases from burning lithium-ion batteries can contaminate wildlife such as Monterey Bay’s unique tidal wetland.

This is the fourth fire at the Moss Landing battery storage facility.

Referring to last week’s explosive fire, County Supervisor Glenn Church said, “This is a wake-up call for the industry. If we’re going to move ahead with sustainable energy, we need a safe battery system in place. State of the art safety protocols did not work.”

County officials lifted evacuation orders Friday evening after the U.S. Environmental Protection Agency found “no threat to human health.” Still, Highway 1 remains closed, and health officials in Monterey, San Venito and Santa Cruz counties advise residents to stay indoors, turn off ventilation systems and limit outdoor exposure. Www.ksbw.com provides live updates.

WILDFIRES AND URBAN FIRES

When the Los Angeles fires started January 7, I learned about the differences between wild and urban fires. Wildfires occur in forests or grasslands, fueled by trees or other vegetation. More than 80% of wildfires start by human activities like abandoned cigarettes, campfires and barbeques. Wildfire smoke can penetrate deep into peoples’ lungs and aggravate heart and lung diseases.

Urban fires—conflagrations—are fueled by combustible construction materials including wood framing, plastics, metals, furniture fabric and solar panels (hazardous waste). Because of houses’ flammable contents, urban fires burn extremely hot and generate toxic emissions. High winds and insufficient water supply intensify urban fires. Burning houses emit chemical toxins and generate more heat than burning trees (which, if alive, hold fire-resistant moisture).

While powerlines and transformers are designed to withstand wind speeds up to 56mph, some gusts in the LA fires exceeded 100mph.

INCLUDING LITHIUM-ION BATTERIES IN FIRE RISK ASSESSMENTS

Here’s a question: How do lithium-ion batteries contribute to urban fires?

Like much of the world, Southern California is now dotted with lithium batteries at every telecom cell site (for backup in the event of a power outage); in every electric vehicle, e-bike and hoverboard; in every EV charger; in laptops, tablets and smartphones—and their chargers; in smart utility meters on grid-connected houses and buildings; in off-grid rooftop solar PV systems’ batteries; in battery energy storage systems (BESS) for large-scale solar facilities and wind facilities.

That’s a lot of lithium-ion batteries.

If a lithium-ion battery’s chemicals heat up and can’t cool down, the battery can catch fire, explode and release toxic, flammable gases such as fluoride. Like trick birthday candles, EV batteries (holding energy to burn for as much as 24 hours) can re-ignite. Lithium-ion batteries’ temperature can quickly reach 932 degrees Fahrenheit (500 degrees Celsius). They can burn as high as 2200F (1100C). An EV fire burns at 5,000 degrees F (2,760 C). A gas-powered vehicle fire burns at 1,500 F (815C).

Because of the increase and severity of battery storage systems’ explosions and fires, The National Fire Protection Association is considering an update to its Battery Safety Code. These systems should be designed to prevent explosions—not just fires.

 

RECOGNIZING THE FIRE RISKS CAUSED BY DRY AND COVERED SOIL

LA has endured eight months without rain. Drought increases fire risk.

Do fire risks also increase when soil can’t absorb and hold water? Soil’s ability to absorb and hold water is one of the Earth’s main cooling mechanisms. How do we reconcile this when we’ve covered land with paved roads, houses, malls, parking lots, data centers and battery storage facilities?

How can we re-hydrate a dry region?

REBUILDING QUESTIONS

When rebuilding, what policies will ensure that fire’s toxic emissions (to air, soil and groundwater) will not affect future residents and farmers? Given that Governor Newsom has suspended environmental reviews to speed rebuilding in wildfire zones, what will protect residents in rebuilt areas from toxic exposures?

What materials and practices prevent new fires?

What measures would prevent lithium-ion batteries (at cell sites, in electric vehicles, smart meters, laptops, tablets, smartphones, rooftop solar system batteries, etc.) from catching fire and exploding? Could we prohibit lithium-ion batteries until they’re proven safe and ecologically sound from cradle-to-grave? New Hampshire legislators have introduced an ACT that would allow towns to decline 5G cell sites.

How could rebuilding Los Angeles respect the Earth? To reduce fire risk, support healthy water cycling and increase locally-produced food, could rebuilding policies encourage healthy soil structure?

For inspired building, see Mully (about a Kenyan who has fed, housed and educated 27,000+ orphans and turned dry dirt into an oasis); The Power of Community (about Cuba after the USSR quit supplying it with oil, overnight, in 1989); and Alpha Lo & Didi Pershouse speaking about rehydrating Los Angeles.

To provide much-needed affordable housing in LA and elsewhere, would any mansion-owners turn their homes into multiple-family units?

RECONSIDER “SUSTAINABILITY”

Many communities and corporations aim to sustain themselves by installing battery energy storage systems and solar facilities. According to the California Energy Commission, since 2020, battery storage in the state has increased sevenfold—from 1,474 megawatts in 2020 to 10,383 megawatts by mid-2024. One megawatt can power 750 homes.

In New Mexico, AES Corporation has proposed building a 96 MW, 700-acre solar facility with 45 MWs/39 battery containers in Santa Fe County. (Each battery is about 39’ x 10’ x 8’.) Santa Fe’s Green Chamber of Commerce, the Sierra Club’s Rio Grande Chapter, the Global Warming Express and 350 Santa Fe support AES’s project.

Opponents of AES’s facility include the San Marcos Association, the Clean Energy Coalition and Ashley Schannauer (formerly a hearing officer for the state’s Public Regulatory Commission).

I frequently hear people call battery storage, solar PVs, industrial wind and EVs “sustainable.” Looked at from their cradles to their graves, this is simply not true. Mining lithium ravages ecosystems. So does burning coal and trees to make solar panels’ silicon. Refining lithium and making silicon electrically-conductive takes millions of gallons of water, daily. At end-of-life, these technologies are hazardous waste.

Meanwhile, I have many friends with rooftop solar systems and EVs. I would welcome forums about reducing our overall use of energy, water, extractions and international supply chains. I would welcome learning how to live with less.

As survivors of the LA fires, battery fires, Hurricane Helene, Israel’s decimation of Gaza and other catastrophes rebuild, what would communities look like if we considered our technologies’ impacts to ecosystems and public health from their cradles to graves? What would our communities look like if we think, “Ecosystems and public health first?”

 

FOR MORE INFO:

Jeff Gibbs and Michael Moore’s documentary, “Planet of the Humans

Julia Barnes’ film, “Bright Green Lies

https://www.watchduty.org

alerts and monitors wildfires in the American West.

https//mutualaidla.org

lists mutual aid organizations.

Science and the California Wildfires with George Wuerthner

Sandoval County, NM, also faces a large-scale solar project with 220 MW of solar panels and 110 MW of battery storage.

New Mexicans for Responsible Renewables supports New Mexico’s avoiding unnecessary risks to our communities and further destruction to our environment.

THE POWER GRID

Discovering Power’s Traps: a primer for electricity users

Fire hazards at the battery storage system coming near you

SOS: San Onofre Syndrome: Nuclear Power’s Legacy Note: The documentary starts 2025 with screenings around California, Eugene, Madrid and on Amazon Prime. See also “Risks of geologic disposal of weapons plutonium.”

A Time-Sensitive Invitation to Protect New Mexico from Smart Meters’ Fire Hazards

SOLAR PVs

21 questions for solar PV explorers

Call Me a NIMBY

Do I report what I’ve learned about solar PVs—or live with it privately?

E-VEHICLES

How/can we protect the Earth when we need a car?

Who’s in charge of EV chargers?

When Land I Love Holds Lithium: Max Wilbert on Thacker Pass, Nevada

Banner Moss Landing battery plant fire, January 16-17, 2025.

MY MISTAKE While writing article I got help from a physicist of fire ignition, an electrical engineer, a forensic fire investigator and an electrician. I also went to the Internet, which informed me that in the event of an outage, cell sites’ power is backed up by lithium-ion batteries. This isn’t totally correct. While 5G small cells primarily use lithium ion batteries, larger cell towers usually backup with lead-acid batteries. I apologize for this error.

Remembering the Franklin River Campaign

Remembering the Franklin River Campaign

On December 14th 1982, a blockade was launched to stop the construction of a hydroelectric dam that would have flooded Tasmania’s Franklin and Gordon rivers and surrounding old-growth forests. Over the next 3 months, over 1,340 people were arrested for trespassing, occupying roads and work sites, and chaining themselves to equipment. The protest gained widespread national and global support and played a major role in the cancellation of the project.

Tasmanian Wilderness Society blocks dam construction (Franklin River Campaign) 1981-83

 

In 1976, the Hydro Electric Commission of Tasmania solidified their plans with the Australian government to build a dam across the Franklin and Gordon Rivers, in the Franklin-Gordon Wild Rivers National Park. The Tasmanian Wilderness Society formed not long after this announcement to take action against the Hydro Electric Commission and their plans to bulldoze the surrounding wilderness for the construction of the dam. The director of the Wilderness Society and leader of the anti-dam campaign for the following seven years was Bob Brown, a local environmentalist and general practitioner.

From 1976 through 1981, the Tasmanian Wilderness Society focused on creating awareness and education through public meetings, pamphlets, and tours of the Franklin River.  They focused heavily on the danger to endangered species and ancient rain forests that flooding would have as a result of the Hydro Electric dam being built.

In 1981, the discovery of ancient aboriginal paintings in caves of the lower Franklin River region ignited the controversy. The caves were filled with not only Aboriginal paintings, but campfires, tools and animal bones that dated back thousands of years. This discovery created an even larger debate over the construction of the dam, bringing it into the political sphere, as Australia was nearing both state and federal elections. Candidates chose a side of the issue to include in their platform. Throughout their actions, the Tasmanian Wilderness Society maintained pressure to urge politicians to take a definite stance on the Franklin Dam issue.

The Tasmanian state government announced plans to hold a referendum to engage citizens in the Hydro Electric Commission’s decision. The Wilderness Society asked that a “NO DAMS” option be included in the referendum.  In the lead-up to the referendum, the campaigners distributed yellow, triangular “NO DAMS” stickers.  The Tasmanian government announced that the referendum would have two options, both of which took the construction of the dam as given.  The two options only differed by location: Gordon Below Franklin and Gordon above Olga.  The Wilderness Society encouraged voters to take part in a “Write-in”, by writing “NO DAMS” on their ballot in protest.  When the government held the referendum on 12 December 1981, 33% of the voters wrote “NO DAMS” on their ballots.

Although federally the Australian Labour Party was quite popular in their anti-dam platform, pro-dam political parties were more popular in the Tasmanian state.  In May 1982, the Liberal party under Robin Gray (a pro-dam politician) won the majority of seats in Tasmania and Gray became the Premier. Upon his election, he announced plans to begin construction. The dam itself was to cover 33 kilometers of the Franklin River and 37 kilometers of the Gordon River.

In response to this decision, in August and September, Bob Brown went on tour screening films of the Franklin River to raise support and awareness.  Brown and the Wilderness Society also organized rallies to gain the attention of influential political figures. During a Melbourne rally, David Bellamy, a British botanist and T.V. presenter toured expressed their anti-dam positions to the 5,000 participants.  The goal of this portion of the campaign was to increase pressure on the Prime Minister Malcolm Fraser to intervene through Tasmanian State government and stop the dam. Fraser did not intervene and override the state legislation, as he believed it was a state government issue
and not a federal one.

In November 1982, 14,000 people converged on the streets of Melbourne for another rally.  Bob Brown announced that they would blockade the construction of the dam site beginning on 14 December 1982.

On 14 December 1982, 2,500 people converged at the dam site to participate in the blockade.  Protesters made a human chain through the forest to prevent construction workers from entering the site.  Protesters also blockaded by water on canoes, to prevent police from bringing machinery into the site by a barge. These blockaders maintained morale and enthusiasm through the use of song. Protesters developed songs over the course of the campaign that were regularly sung during rallies, marches, in jail, and at the blockade site. Folk singer Shane Howard wrote the official anthem of the campaign, titled “Let the Franklin Flow”. During the course of the blockade, police arrested 1,440 people. David Bellamy and Claudio Alcorso (a Hobart Millionaire) participated in the blockade and were arrested.

On 1 March 1983, the Wilderness Society held a day of action during which 231 people were arrested in their boats on the Gordon River and the Wilderness Society’s flag was flown above the Hydro Electric Commission building in Hobart, Australia.

The Tasmanian Wilderness Society drew further attention on 2 March 1983 by printing full-page colour photographs in Australian newspapers of the Franklin River area. The captions on these publications read, “Could you vote for a party that would destroy this?” This was an attention-grabbing act as few publications used colour at the time.

On 5 March 1983, the Australian Labour Party under new Prime Minister, Bob Hawke (who maintained an anti-dam platform) won the federal election and announced that he
would halt the dam construction. The Australian Labour Party introduced regulations under the National Parks and Wildlife Conservation Act 1975.  Additionally, Hawke declared the Franklin River area a World Heritage site, outlawing the dam under the World Heritage Properties Conservation Act 1983.

The Tasmanian state ignored the new regulations, as they believed that the federal government could not legally intervene in this state-level issue. The company contracted by the Tasmanian government continued clearing the site until the federal government brought the Tasmanian government to High Court on 31 May 1983. On 1 July 1983, the High Court ruled in favour of the federal government and proclaimed that they could legally enforce the international standards for a World Heritage Site on a state government.

The Franklin River campaign was so successful that it largely ended the generation of electricity through hydro dams in Australia. The federal government demanded that the Tasmanian government give a compensation package of $270 million to the Wilderness Society.

Sources

Walker, J. (2013, July 01). The day the franklin river was saved. Retrieved from https://web.archive.org/web/20130817151559/http://www.australiangeographic.com.au/outdoor/anniversary-of-the-franklin-river-campaigns-success.htm (Link not working 2 March 2022 – Australian Geographic)

The Wilderness Society. (n.d.). History of the franklin river campaign 1976-83. Retrieved from http://www.wilderness.org.au/history-franklin-river-campaign-1976-83.  Link not working 2 March 2022

ABC. (Producer). (1986, August 15). Conservation politics [Web Video]. Retrieved from http://www.abc.net.au/archives/80days/stories/2012/01/19/3411644.htm

Gibbs, C. J. Legal Database, (1983). Commonwealth v. Tasmania (the Tasmanian dam case). Retrieved from website: http://law.ato.gov.au/atolaw/view.htm?DocID=JUD/158CLR1/00002 (Link not working 2 March 2022)

Documentary – The Franklin River Blockade, The Wilderness Society, 2006

Watch a 20-minute documentary, including footage of various blockade actions. It can be viewed in two parts.

 

The Wilderness Society. (Producer). (2006, October 17). The Franklin River Blockade 1983, Tasmania (Part 1 of 2) [Web Video]. Retrieved from https://www.youtube.com/watch?v=rGpy8_v3tmI

The Wilderness Society. (Producer). (2006, October 17). The Franklin River Blockade 1983, Tasmania (Part 2 of 2) [Web Video]. Retrieved from https://www.youtube.com/watch?v=HhCGFHkzifQ

 

The Story of the Tasmanian Dam Case, Chris McGrath, 2015

 

 

The story of the Tasmanian Dam case in 1983 from a lecture on Commonwealth environmental laws at The University of Queensland, Brisbane, Australia, given by Dr Chris McGrath in 2015.

 

To conclude then, while the Franklin blockade demonstrates the limitations of protest in Australia it shows that symbolic protest can influence important decisions. Symbolic protest will be of use to protesters in a limited set of circumstances.

Listen

Song – Let the Franklin Flow

The Franklin River blockade became one of the most iconic in Australian history, stopping the damming of the river and bringing footage of rugged forests and civil disobedience into loungerooms of the country on the news. Members of Goanna (playing as the Franklin Gordon River Ensemble) soundtracked the blockade with the singalong anthem Let The Franklin Flow.

Podcast – Franklin Dam 

A short podcast on the Australian Franklin River Dam protests including, what happened, who was involved and what changed in Australia as a result.

Teaching Resources

Easy Read

Here is an Easy Read Guide called The Franklin River Story. Easy Read uses clear, everyday language matched with images to make sure everyone understands.

Guide cover reads 'The Franklin River Story. The subheading reads 'Easy Read guide 2023. There is a yellow triangle sticker that reads 'No Dams' over a flowing river. There is an Easy Read logo on bottom right and The Commons logo on top left. The website address www.commonslibrary.org appears bottom left.

Explore Further

Net Zero Plans Are Largely Meaningless

Net Zero Plans Are Largely Meaningless

Editor’s note: “75 of the world’s largest 114 fossil fuel companies have now made net zero by 2050 commitments, yet not a single fossil fuel company has committed to phasing out oil and gas production by 2050 nor have any committed to ending exploration for new oil and gas fields or halting the extraction of existing reserves.”

Real Zero, not greenwashed ‘net zero,’ is essential. As the Corporate Accountability report concludes, it’s time to reject the big polluters’ agenda and implement programs that rapidly phase out fossil fuels and truly eliminate greenhouse gas emissions.”

We “obsess” over getting to “Net Zero” yearly CO2 increases in the atmosphere. The Moderates in Climate Science THEORIZE that when this happens, the GMST will IMMEDIATELY stop going up and will level off.

DOES IT LOOK LIKE “NET ZERO” is going to happen?

If your child is born this year, they are likely going to live through +1.5°C of warming by the time they are 25. A fact that is likely going to cause a 40% to 50% drop in the global food supply and a reduction of 2.5 billion — 4 billion in the global population by 2050, at a minimum.


 

The overshoot myth of bargaining: you can’t keep burning fossil fuels and expect scientists of the future to get us back to 1.5°C

Melting Antarctic glacier.
Shutterstock/Bernhard Staehli

James Dyke, University of Exeter; Robert Watson, University of East Anglia, and Wolfgang Knorr, Lund University

Record breaking fossil fuel production, all time high greenhouse gas emissions and extreme temperatures. Like the proverbial frog in the heating pan of water, we refuse to respond to the climate and ecological crisis with any sense of urgency. Under such circumstances, claims from some that global warming can still be limited to no more than 1.5°C take on a surreal quality.

For example, at the start of 2023’s international climate negotiations in Dubai, conference president, Sultan Al Jaber, boldly stated that 1.5°C was his goal and that his presidency would be guided by a “deep sense of urgency” to limit global temperatures to 1.5°C. He made such lofty promises while planning a massive increase in oil and gas production as CEO of the Abu Dhabi National Oil Company.

We should not be surprised to see such behaviour from the head of a fossil fuel company. But Al Jaber is not an outlier. Scratch at the surface of almost any net zero pledge or policy that claims to be aligned with the 1.5°C goal of the landmark 2015 Paris agreement and you will reveal the same sort of reasoning: we can avoid dangerous climate change without actually doing what this demands – which is to rapidly reduce greenhouse gas emissions from industry, transport, energy (70% of total) and food systems (30% of total), while ramping up energy efficiency.

A particularly instructive example is Amazon. In 2019 the company established a 2040 net zero target which was then verified by the UN Science Based Targets initiative (SBTi) which has been leading the charge in getting companies to establish climate targets compatible with the Paris agreement. But over the next four years Amazon’s emissions went up by 40%. Given this dismal performance, the SBTi was forced to act and removed Amazon and over 200 companies from its Corporate Net Zero Standard.

This is also not surprising given that net zero and even the Paris agreement have been built around the perceived need to keep burning fossil fuels, at least in the short term. Not do so would threaten economic growth, given that fossil fuels still supply over 80% of total global energy. The trillions of dollars of fossil fuel assets at risk with rapid decarbonisation have also served as powerful brakes on climate action.

Overshoot

The way to understand this doublethink: that we can avoid dangerous climate change while continuing to burn fossil fuels – is that it relies on the concept of overshoot. The promise is that we can overshoot past any amount of warming, with the deployment of planetary-scale carbon dioxide removal dragging temperatures back down by the end of the century.

This not only cripples any attempt to limit warming to 1.5°C, but risks catastrophic levels of climate change as it locks us in to energy and material-intensive solutions which for the most part exist only on paper.

To argue that we can safely overshoot 1.5°C, or any amount of warming, is saying the quiet bit out loud: we simply don’t care about the increasing amount of suffering and deaths that will be caused while the recovery is worked on.


This article is part of Conversation Insights.

Our co-editors commission long-form journalism, working with academics from many different backgrounds who are engaged in projects aimed at tackling societal and scientific challenges.


A key element of overshoot is carbon dioxide removal. This is essentially a time machine – we are told we can turn back the clock of decades of delay by sucking carbon dioxide directly out of the atmosphere. We don’t need rapid decarbonisation now, because in the future we will be able to take back those carbon emissions. If or when that doesn’t work, we are led to believe that even more outlandish geoengineering approaches such as spraying sulphurous compounds into the high atmosphere in an attempt to block out sunlight – which amounts to planetary refrigeration – will save us.

The 2015 Paris agreement was an astonishing accomplishment. The establishment of 1.5°C as being the internationally agreed ceiling for warming was a success for those people and nations most exposed to climate change hazards. We know that every fraction of a degree matters. But at the time, believing warming could really be limited to well below 2°C required a leap of faith when it came to nations and companies putting their shoulder to the wheel of decarbonisation. What has happened instead is that the net zero approach of Paris is becoming detached from reality as it is increasingly relying on science fiction levels of speculative technology.

There is arguably an even bigger problem with the Paris agreement. By framing climate change in terms of temperature, it focuses on the symptoms, not the cause. 1.5°C or any amount of warming is the result of humans changing the energy balance of the climate by increasing the amount of carbon dioxide in the atmosphere. This traps more heat. Changes in the global average temperature is the established way of measuring this increase in heat, but no one experiences this average.

Climate change is dangerous because of weather that affects particular places at particular times. Simply put, this extra heat is making weather more unstable. Unfortunately, having temperature targets makes solar geoengineering seem like a sensible approach because it may lower temperatures. But it does this by not reducing, but increasing our interference in the climate system. Trying to block out the sun in response to increasing carbon emissions is like turning on the air conditioning in response to a house fire.

In 2021 we argued that net zero was a dangerous trap. Three years on and we can see the jaws of this trap beginning to close, with climate policy being increasingly framed in terms of overshoot. The resulting impacts on food and water security, poverty, human health, the destruction of biodiversity and ecosystems will produce intolerable suffering.

The situation demands honesty, and a change of course. If this does not materialise then things are likely to deteriorate, potentially rapidly and in ways that may be impossible to control.

Au revoir Paris

The time has come to accept that climate policy has failed, and that the 2015 landmark Paris agreement is dead. We let it die by pretending that we could both continue to burn fossil fuels and avoid dangerous climate change at the same time. Rather than demand the immediate phase out of fossil fuels, the Paris agreement proposed 22nd-century temperature targets which could be met by balancing the sources and sinks of carbon. Within that ambiguity net zero flourished. And yet apart from the COVID economic shock in 2020, emissions have increased every year since 2015, reaching an all time high in 2023.

Despite there being abundant evidence that climate action makes good economic sense (the cost of inaction vastly exceeds the cost of action), no country strengthened their pledges at the last three COPs (the annual UN international meetings) even though it was clear that the world was on course to sail past 2°C, let alone 1.5°C. The Paris agreement should be producing a 50% reduction in greenhouse gas emissions by 2030, but current policies mean that they are on track to be higher than they are today.

Net Zero
Greenhouse gas emissions continue to rise.
Catazul/Pixabay, CC BY

Editor’s note: DGR knows that “renewable” technologies are not sustainable and that the only transition will be to a future that does not include civilization.

We do not deny that significant progress has been made with renewable technologies. Rates of deployment of wind and solar have increased each year for the past 22 years and carbon emissions are going down in some of the richest nations, including the UK and the US. But this is not happening fast enough. A central element of the Paris agreement is that richer nations need to lead decarbonisation efforts to give lower income nations more time to transition away from fossil fuels. Despite some claims to the contrary, the global energy transition is not in full swing. In fact, it hasn’t actually begun because the transition demands a reduction in fossil fuel use. Instead it continues to increase year-on-year.

And so policymakers are turning to overshoot in an attempt to claim that they have a plan to avoid dangerous climate change. A central plank of this approach is that the climate system in the future will continue to function as it does today. This is a reckless assumption.

2023’s warning signs

At the start of 2023, Berkeley Earth, NASA, the UK Met Office, and Carbon Brief predicted that 2023 would be slightly warmer than the previous year but unlikely to set any records. Twelve months later and all four organisations concluded that 2023 was by some distance the warmest year ever recorded. In fact, between February 2023 and February 2024 the global average temperature warming exceeded the Paris target of 1.5°C.

The extreme weather events of 2023 give us a glimpse of the suffering that further global warming will produce. A 2024 report from the World Economic Forum concluded that by 2050 climate change may have caused over 14 million deaths and US$12.5 trillion in loss and damages.

Currently we cannot fully explain why global temperatures have been so high for the past 18 months. Changes in dust, soot and other aerosols are important, and there are natural processes such as El Niño that will be having an effect.

But it appears that there is still something missing in our current understanding of how the climate is responding to human impacts. This includes changes in the Earth’s vital natural carbon cycle.

Around half of all the carbon dioxide humans have put into the atmosphere over the whole of human history has gone into “carbon sinks” on land and the oceans. We get this carbon removal “for free”, and without it, warming would be much higher. Carbon dioxide from the air dissolves in the oceans (making them more acidic which threatens marine ecosystems). At the same time, increasing carbon dioxide promotes the growth of plants and trees which locks up carbon in their leaves, roots, trunks.

All climate policies and scenarios assume that these natural carbon sinks will continue to remove tens of billions of tons of carbon from the atmosphere each year. There is evidence that land-based carbon sinks, such as forests, removed significantly less carbon in 2023. If natural sinks begin to fail – something they may well do in a warmer world – then the task of lowering global temperatures becomes even harder. The only credible way of limiting warming to any amount, is to stop putting greenhouse gasses into the atmosphere in the first place.

Science fiction solutions

It’s clear that the commitments countries have made to date as part of the Paris agreement will not keep humanity safe while carbon emissions and temperatures continue to break records. Indeed, proposing to spend trillions of dollars over this century to suck carbon dioxide out of the air, or the myriad other ways to hack the climate is an acknowledgement that the world’s largest polluters are not going to curb the burning of fossil fuels.

Direct Air Capture (DAC), Bio Energy Carbon Capture and Storage (BECCS), enhanced ocean alkalinity, biochar, sulphate aerosol injection, cirrus cloud thinning – the entire wacky races of carbon dioxide removal and geoengineering only makes sense in a world of failed climate policy.

Net Zero
Is ‘cloud thinning’ really a possibility?
HarmonyCenter/Pixabay, CC BY

Over the following years we are going to see climate impacts increase. Lethal heatwaves are going to become more common. Storms and floods are going to become increasingly destructive. More people are going to be displaced from their homes. National and regional harvests will fail. Vast sums of money will need to be spent on efforts to adapt to climate change, and perhaps even more compensating those who are most affected. We are expected to believe that while all this and more unfolds, new technologies that will directly modify the Earth’s atmosphere and energy balance will be successfully deployed.

What’s more, some of these technologies may need to operate for three hundred years in order for the consequences of overshoot to be avoided. Rather than quickly slow down carbon polluting activities and increasing the chances that the Earth system will recover, we are instead going all in on net zero and overshoot in an increasingly desperate hope that untested science fiction solutions will save us from climate breakdown.

We can see the cliff edge rapidly approaching. Rather than slam on the brakes, some people are instead pushing their foot down harder on the accelerator. Their justification for this insanity is that we need to go faster in order to be able to make the jump and land safely on the other side.

We believe that many who advocate for carbon dioxide removal and geoengineering do so in good faith. But they include proposals to refreeze the Arctic by pumping up sea water onto ice sheets to form new layers of ice and snow. These are interesting ideas to research, but there is very little evidence this will have any effect on the Arctic let alone global climate. These are the sorts of knots that people tie themselves up in when they acknowledge the failure of climate policy, but refuse to challenge the fundamental forces behind such failure. They are unwittingly slowing down the only effective action of rapidly phasing out fossil fuels.

That’s because proposals to remove carbon dioxide from the air or geoengineer the climate promise a recovery from overshoot, a recovery that will be delivered by innovation, driven by growth. That this growth is powered by the same fossil fuels that are causing the problem in the first place doesn’t feature in their analysis.

The bottom line here is that the climate system is utterly indifferent to our pledges and promises. It doesn’t care about economic growth. And if we carry on burning fossil fuels then it will not stop changing until the energy balance is restored. By which time millions of people could be dead, with many more facing intolerable suffering.

Major climate tipping points

Even if we assume that carbon removal and even geoengineering technologies can be deployed in time, there is a very large problem with the plan to overshoot 1.5°C and then lower temperatures later: tipping points.

The science of tipping points is rapidly advancing. Late last year one of us (James Dyke) along with over 200 academics from around the world was involved in the production of the Global Tipping Points Report. This was a review of the latest science about where tipping points in the climate system may be, as well as exploring how social systems can undertake rapid change (in the direction that we want) thereby producing positive tipping points. Within the report’s 350 pages is abundant evidence that the overshoot approach is an extraordinarily dangerous gamble with the future of humanity. Some tipping points have the potential to cause global havoc.

The melt of permafrost could release billions of tons of greenhouse gasses into the atmosphere and supercharge human-caused climate change. Fortunately, this seems unlikely under the current warming. Unfortunately, the chance that ocean currents in the North Atlantic could collapse may be much higher than previously thought. If that were to materialise, weather systems across the world, but in particular in Europe and North America, would be thrown into chaos. Beyond 1.5°C, warm water coral reefs are heading towards annihilation. The latest science concludes that by 2°C global reefs would be reduced by 99%. The devastating bleaching event unfolding across the Great Barrier Reef follows multiple mass mortality events. To say we are witnessing one of the world’s greatest biological wonders die is insufficient. We are knowingly killing it.

We may have even already passed some major climate tipping points. The Earth has two great ice sheets, Antarctica, and Greenland. Both are disappearing as a consequence of climate change. Between 2016 and 2020, the Greenland ice sheet lost on average 372 billion tons of ice a year. The current best assessment of when a tipping point could be reached for the Greenland ice sheet is around 1.5°C.

This does not mean that the Greenland ice sheet will suddenly collapse if warming exceeds that level. There is so much ice (some 2,800 trillion tons) that it would take centuries for all of it to melt over which time sea levels would rise seven metres. If global temperatures could be brought back down after a tipping point, then maybe the ice sheet could be stabilised. We just cannot say with any certainty that such a recovery would be possible. While we struggle with the science, 30 million tons of ice is melting across Greenland every hour on average.

Net Zero
Ice sheets in Greenland and Antarctica are being affected by global warming.
Pexels from Pixabay, CC BY

The take home message from research on these and other tipping points is that further warming accelerates us towards catastrophe. Important science, but is anyone listening?

It’s five minutes to midnight…again

We know we must urgently act on climate change because we are repeatedly told that time is running out. In 2015, Professor Jeffrey Sachs, the UN special adviser and director of The Earth Institute, declared:

The time has finally arrived – we’ve been talking about these six months for many years but we’re now here. This is certainly our generation’s best chance to get on track.

In 2019 (then) Prince Charles gave a speech in which he said: “I am firmly of the view that the next 18 months will decide our ability to keep climate change to survivable levels and to restore nature to the equilibrium we need for our survival.”

“We have six months to save the planet,” exhorted International Energy Agency head Fatih Birol – one year later in 2020. In April 2024, Simon Stiell, executive secretary of the United Nations Framework Convention on Climate Change said the next two years are “essential in saving our planet”.

Either the climate crisis has a very fortunate feature that allows the countdown to catastrophe to be continually reset, or we are deluding ourselves with endless declarations that time has not quite run out. If you can repeatedly hit snooze on your alarm clock and roll over back to sleep, then your alarm clock is not working.

Or there is another possibility. Stressing that we have very little time to act is intended to focus attention on climate negotiations. It’s part of a wider attempt to not just wake people up to the impending crisis, but generate effective action. This is sometimes used to explain how the 1.5°C threshold of warming came to be agreed. Rather than a specific target, it should be understood as a stretch goal. We may very well fail, but in reaching for it we move much faster than we would have done with a higher target, such as 2°C. For example, consider this statement made in 2018:

Stretching the goal to 1.5 degrees celsius isn’t simply about speeding up. Rather, something else must happen and society needs to find another lever to pull on a global scale.

What could this lever be? New thinking about economics that goes beyond GDP? Serious consideration of how rich industrialised nations could financially and materially help poorer nations to leapfrog fossil fuel infrastructure? Participatory democracy approaches that could help birth the radical new politics needed for the restructuring of our fossil fuel powered societies? None of these.

The lever in question is Carbon Capture and Storage (CCS) because the above quote comes from an article written by Shell in 2018. In this advertorial Shell argues that we will need fossil fuels for many decades to come. CCS allows the promise that we can continue to burn fossil fuels and avoid carbon dioxide pollution by trapping the gas before it leaves the chimney. Back in 2018, Shell was promoting its carbon removal and offsets heavy Sky Scenario, an approach described as “a dangerous fantasy” by leading climate change academics as it assumed massive carbon emissions could be offset by tree planting.

Since then Shell has further funded carbon removal research within UK universities presumably in efforts to burnish its arguments that it must be able to continue to extract vast amounts of oil and gas.

Shell is far from alone in waving carbon capture magic wands. Exxon is making great claims for CCS as a way to produce net zero hydrogen from fossil gas – claims that have been subject to pointed criticism from academics with recent reporting exposing industry wide greenwashing around CCS.

But the rot goes much deeper. All climate policy scenarios that propose to limit warming to near 1.5°C rely on the largely unproven technologies of CCS and BECCS. BECCS sounds like a good idea in theory. Rather than burn coal in a power station, burn biomass such as wood chips. This would initially be a carbon neutral way of generating electricity if you grew as many trees as you cut down and burnt. If you then add scrubbers to the power station chimneys to capture the carbon dioxide, and then bury that carbon deep underground, then you would be able to generate power at the same time as reducing concentrations of carbon dioxide in the atmosphere.

Unfortunately, there is now clear evidence that in practice, large-scale BECCS would have very adverse effects on biodiversity, and food and water security given the large amounts of land that would be given over to fast growing monoculture tree plantations. The burning of biomass may even be increasing carbon dioxide emissions. Drax, the UK’s largest biomass power station now produces four times as much carbon dioxide as the UK’s largest coal-fired power station.

Five minutes to midnight messages may be motivated to try to galvanise action, to stress the urgency of the situation and that we still (just) have time. But time for what? Climate policy only ever offers gradual change, certainly nothing that would threaten economic growth, or the redistribution of wealth and resources.

Despite the mounting evidence that globalised, industrialised capitalism is propelling humanity towards disaster, five minutes to midnight does not allow time and space to seriously consider alternatives. Instead, the solutions on offer are techno fixes that prop up the status quo and insists that fossil fuel companies such as Shell must be part of the solution.

That is not to say there are no good faith arguments for 1.5°C. But being well motivated does not alter reality. And the reality is that warming will soon pass 1.5°C, and that the Paris agreement has failed. In the light of that, repeatedly asking people to not give up hope, that we can avoid a now unavoidable outcome risks becoming counterproductive. Because if you insist on the impossible (burning fossil fuels and avoiding dangerous climate change), then you must invoke miracles. And there is an entire fossil fuel industry quite desperate to sell such miracles in the form of CCS.

Four suggestions

Humanity has enough problems right now, what we need are solutions. This is the response we sometimes get when we argue that there are fundamental problems with the net zero concept and the Paris agreement. It can be summed up with the simple question: so what’s your suggestion? Below we offer four.

1. Leave fossil fuels in the ground

The unavoidable reality is that we need to rapidly stop burning fossil fuels. The only way we can be sure of that is by leaving them in the ground. We have to stop exploring for new fossil fuel reserves and the exploitation of existing ones. That could be done by stopping fossil fuel financing.

At the same time we must transform the food system, especially the livestock sector, given that it is responsible for nearly two thirds of agricultural emissions. Start there and then work out how best the goods and services of economies can be distributed. Let’s have arguments about that based on reality not wishful thinking.

2. Ditch net zero crystal ball gazing targets

The entire framing of mid and end-century net zero targets should be binned. We are already in the danger zone. The situation demands immediate action, not promises of balancing carbon budgets decades into the future. The SBTi should focus on near-term emissions reductions. By 2030, global emissions need to be half of what they are today for any chance of limiting warming to no more than 2°C.

It is the responsibility of those who hold most power – politicians and business leaders – to act now. To that end we must demand twin targets – all net zero plans should include a separate target for actual reductions in greenhouse gas emissions. We must stop hiding inaction behind promises of future removals. It’s our children and future generations that will need to pay back the overshoot debt.

3. Base policy on credible science and engineering

All climate policies must be based on what can be done in the real world now, or in the very near future. If it is established that a credible amount of carbon can be removed by a proposed approach – which includes capture and its safe permanent storage – then and only then can this be included in net zero plans. The same applies to solar geoengineering.

Speculative technologies must be removed from all policies, pledges and scenarios until we are sure of how they will work, how they will be monitored, reported and validated, and what they will do to not just the climate but the Earth system as a whole. This would probably require a very large increase in research. As academics we like doing research. But academics need to be wary that concluding “needs more research” is not interpreted as “with a bit more funding this could work”.

4. Get real

Finally, around the world there are thousands of groups, projects, initiatives, and collectives that are working towards climate justice. But while there is a Climate Majority Project, and a Climate Reality Project, there is no Climate Honesty Project (although People Get Real does come close). In 2018 Extinction Rebellion was formed and demanded that governments tell the truth about the climate crisis and act accordingly. We can now see that when politicians were making their net zero promises they were also crossing their fingers behind their backs.

We need to acknowledge that net zero and now overshoot are becoming used to argue that nothing fundamental needs to change in our energy intensive societies. We must be honest about our current situation, and where we are heading. Difficult truths need to be told. This includes highlighting the vast inequalities of wealth, carbon emissions, and vulnerability to climate change.

The time for action is now

We rightly blame politicians for failing to act. But in some respects we get the politicians we deserve. Most people, even those that care about climate change, continue to demand cheap energy and food, and a constant supply of consumer products. Reducing demand by just making things more expensive risks plunging people into food and energy poverty and so policies to reduce emissions from consumption need to go beyond market-based approaches. The cost of living crisis is not separate from the climate and ecological crisis. They demand that we radically rethink how our economies and societies function, and whose interests they serve.

To return to the boiling frog predicament at the start, it’s high time for us to jump out of the pot. You have to wonder why we did not start decades ago. It’s here that the analogy offers valuable insights into net zero and the Paris agreement. Because the boiling frog story as typically told misses out a crucial fact. Regular frogs are not stupid. While they will happily sit in slowly warming water, they will attempt to escape once it becomes uncomfortable. The parable as told today is based on experiments at the end of the 19th century that involved frogs that had been “pithed” – a metal rod had been inserted into their skulls that destroyed their higher brain functioning. These radically lobotomised frogs would indeed float inert in water that was cooking them alive.

Promises of net zero and recovery from overshoot are keeping us from struggling to safety. They assure us nothing too drastic needs to happen just yet. Be patient, relax. Meanwhile the planet burns and we see any sort of sustainable future go up in smoke.

Owning up to the failures of climate change policy doesn’t mean giving up. It means accepting the consequences of getting things wrong, and not making the same mistakes. We must plan routes to safe and just futures from where we are, rather where we would wish to be. The time has come to leap.


For you: more from our Insights series:

To hear about new Insights articles, join the hundreds of thousands of people who value The Conversation’s evidence-based news. Subscribe to our newsletter.The Conversation

James Dyke, Associate Professor in Earth System Science, University of Exeter; Robert Watson, Emeritus Professor in Environmental Sciences, University of East Anglia, and Wolfgang Knorr, Senior Research Scientist, Physical Geography and Ecosystem Science, Lund University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Methane Emissions Crisis Worse Than Ever Before

Methane Emissions Crisis Worse Than Ever Before

Editor’s notes: Methane(CH4) is the main component of natural gas. The word comes from the Greek methy “wine” + hylē “wood.” However, marketers came up with the term natural gas rather than methane gas to give it a clean, green image. Methane is produced by decaying organic material. Natural sources, such as wetlands, account for roughly 40% of today’s global methane emissions. But the majority comes from human activities, such as farms, landfills, dams and wastewater treatment plants – and fuel production. Oil, gas, and coal together make up about a third of global methane emissions. It can leak anywhere along the supply chain, from the wellhead and processing plant, through pipelines and distribution lines, all the way to the burner of your home’s stove or furnace. Once it reaches the atmosphere, methane’s super heat-trapping properties render it a major agent of warming. Over the last 20 years, methane has caused 85 times more warming than the same amount of carbon dioxide. But methane doesn’t stay in the atmosphere for long. Unlike carbon dioxide, which lingers in the atmosphere for a century or more, methane only sticks around for about a dozen years.

Unlit or inefficient flares are another big source. Some companies routinely burn off excess gas that they can’t easily capture or don’t have the pipeline capacity to transport, but that still releases methane and carbon dioxide into the atmosphere. Global oil and gas operations emitted more methane in 2021 than Canada consumed that entire year, according to IEA estimates.

The only way to keep wetlands carbon in the ground is to quickly reduce and ultimately eliminate greenhouse gas emissions from human activities. Failing to do so will only give global warming a helping hand – as warming thaws wetlands and releases more methane, carbon and nitrogen from ancient stores, thus creating a continuous positive feedback loop. In total, methane is responsible for almost half of the global temperature rises since the industrial era.

The rapid growth in the atmospheric methane burden that began in late 2006 is very different from methane’s past observational record. Atmospheric methane’s unprecedented current growth is similar to ice core methane records during glacial-interglacial “termination” events marking global reorganizations of the planetary climate system.

Civilization, being what it is, cannot stop itself from using technology to mitigate the consequences of technological uses. Since civilization can not, on its own, take the necessary steps to relieve its addiction to modernity, it doubles down with solar panels and wind turbines. They are now looking at ways to geoengineer methane emissions. All in a doomed attempt to find a false solution to an overshoot predicament. This system can not continue, and it will be an outside force that brings it down. When that happens it would be best to have as much of the natural world left as possible.


By Olivia Rosane staff writer for Common Dreams

The number of methane “super-emitters” detected by a satellite company has surged by approximately one-third over the past year, despite pledges from fossil fuel companies to reduce their emissions of the highly potent greenhouse gas.

Stephane Germain, the CEO of methane-tracking company GHGSat, told The Associated Press last month that company satellites had detected around 20,000 oil and gas operations, coal mines, and landfills that spewed 220 pounds of methane per hour since the end of 2023—up from around 15,000 the year before.

“The past year, we’ve detected more emissions than ever before,” Germain said, adding that existing data on methane emissions is only “scratching the surface” of the reality.

GHGSat’s data covers the period since 50 fossil fuel companies pledged to end flaring and reduce methane emissions from their operations to “near zero” by 2030 at the United Nations Climate Change Conference, or COP28, in Dubai.

At the time, more than 320 civil society organizations criticized the pledge and other voluntary commitments as a “dangerous distraction.”

“The only safe and effective way to ‘clean up’ fossil fuel pollution is to phase out fossil fuels,” the groups wrote in an open letter. “Methane emissions and gas flaring are symptoms of a more than century-long legacy of wasteful, destructive practices that are routine in the oil and gas industry as it pursues massive profits without regard for the consequences.”

“That the industry, at this crucial moment in the climate emergency, is offering to clean up its mess around the edges in lieu of the rapid oil and gas phaseout that is needed is an insult to the billions impacted both by climate change and the industry’s appalling legacy of pollution and community health impacts,” they continued.

Yet now it seems as if the industry isn’t even attempting to clean up its mess around the edges.

Germain, who is sharing his company’s data ahead of the next round of climate talks at COP29 in Baku, Azerbaijan, said that nearly half of the methane super-emitters GHGSat detected were oil and gas related. Another third were landfills or waste facilities, and 16% from mining. Geographically, most of the super-emitting sites are in North America and Eurasia.

A methane flare is seen at Pawnee National Grasslands. (Photo: WildEarth Guardians/flickr/cc)

The data comes amid growing concerns about the extent of methane emissions and how they threaten efforts to rapidly reduce greenhouse gas pollution this decade and limit global temperature rise to 1.5°C. Methane is a more powerful greenhouse gas than carbon dioxide—with about 80 times its heat-trapping potential over its first 20 years in the atmosphere—but it also dissipates much more quickly. This means that curbing methane emissions could be an effective near-term part of halting temperature rise.

However, a series of studies published this year show these emissions moving in the wrong direction. A Nature analysis concluded in March that U.S. oil and gas operations were emitting around three times the methane that the U.S. government thought. A Frontiers of Science paper in July found that the growth rate of atmospheric methane concentrations had seen an “abrupt and rapid increase” in the early 2020s, due largely to the fossil fuel industry as well as releases from tropical wetlands.

The danger of methane emissions is one reason that the climate movement has mobilized to stop the buildout of liquefied natural gas (LNG) infrastructure, as methane routinely leaks in the process of drilling for and transporting the fuel. A September study found that, despite industry claims it could act as a bridge fuel, LNG actually has a 33%. greater greenhouse gas footprint than coal when its entire lifecycle is taken into account.

The fate of the LNG buildout, at least in the U.S., could be decided by the outcome of the 2024 presidential election. The Biden-Harris administration paused the approval of new LNG exports while the Department of Energy considers the latest climate science. While a Trump-appointed judge then halted the pause, this does not actually stop the DOE from continuing its analysis. A second Trump administration, however, would be almost guaranteed not to look further into the risk of methane emissions before it approves more LNG exports. Former President Donald Trump has promised to “drill, baby, drill” and offered a policy wishlist to fossil fuel executives who back his campaign.

A document leaked in October showed that a major oil and gas trade association had drafted plans for a second Trump administration, including ending Biden administration regulations to curb methane emissions, such as an emissions fee.

As Mattea Mrkusic, a senior energy transition policy lead at Evergreen Action, warned, “Under Trump, we could double down on even more dirty fossil fuel infrastructure that’ll lock us into harmful pollution for decades to come.”

Banner Image by Carl Young via Wikimedia Commons (CC BY-SA 4.0).

Battery Storage Systems Are a Fire Hazard

Battery Storage Systems Are a Fire Hazard

By Katie Singer https://katiesinger.substack.com/p/bess-fire-hazards

On Friday, August 30, Applied Energy Services Corporation (AES), a global utility and power generation company, submitted a proposal to Santa Fe, New Mexico county commissioners to build a 700-acre solar facility with a battery energy storage system (BESS).

On September 5th, a thermal runaway fire started at the AES-built SDG&E (San Diego Gas and Electric) Battery Storage Facility in Escondido, California. (With a thermal runaway fire, excessive heat causes a chemical reaction that spreads to other batteries.) Authorities issued a mandatory evacuation order for the immediate area, and a “shelter in place” order for areas as far as over a mile away from the fire. (To shelter in place, people must go indoors, shut doors and windows, and “self-sustain” until emergency personnel provide additional direction.) Schools up to three miles away from the fire were evacuated Thursday and canceled for Friday. 500 businesses closed.

As of this morning, Saturday, September 7th, officials have not yet lifted orders to evacuate and shelter in place.

On social media, people have reported smelling “burning plastic” inside their homes (despite windows being closed) and feeling ill.

People from Oceanside to Encinitas encountered a strong chemical smell starting around 5 pm Friday, the 6th. Around 8:30 pm, San Diego County Air Pollution Control District officials said that this smell was not related to the BESS fire in Escondido. Due to the odors’ fleeting nature, they were unable to identify its source.

This is the 3rd AES BESS thermal runaway fire in five years. Officials predict that it could take up to 48 hours to extinguish.

A May 2024 battery fire in Otay Mesa, California kept firefighters on the scene for nearly 17 days. They sprayed eight million gallons of water on the site. The county’s hazmat team tested water runoff and smoke and reported no toxic or dangerous levels. (Is the keyword in this last sentence “reported?”)

For a list of battery energy storage “failure incidents,” see Electric Power Research Institute’s database. Globally, 63 utility and industrial-scale battery energy storage systems endured failure events from 2011 to 2023. After South Korea, the U.S. has experienced the most major battery energy storage-related fires, with California (six, with this Escondido fire) and New York (four) reporting the most incidents.

Back in Santa Fe County, petitioners emailed and hand-delivered a request to county commissioners on July 23 and August 23 to enact a moratorium on AES’s solar facility and battery energy storage system. Commissioners did not review these petitions before AES submitted its application on August 30th. A moratorium cannot apply to a pending application.

AES’s Escondido Battery Energy Storage facility has 24 BESS battery containers. The corporation plans to install 38 battery containers at its Rancho Viejo BESS facility.

For updates, visit New Mexicans for Responsible Renewable Energy.

Please also read my September 5th post, 21 questions for solar PV explorers, and check out Shauna and Harlie Rankin’s video, “Government announces 31 million acre land grab from U.S. ranchers (for solar and wind facilities).” It explains that federal officials and corporations have joined forces to install “renewable power” corridors—five miles wide, 70 miles long, and larger—around the U.S. by 2030. These corridors will cover farm and ranchland with solar and wind facilities.

I also highly recommend Calvin L. Martin’s August 2019 report, “BESS Bombs: The huge explosive toxic batteries the wind & solar companies are sneaking into your backyard.” Part 1 and Part 2. I recommend reading this report even though powers-that-be removed its videos.

According to basic engineering principles, no technology is safe until proven safe. Will legislators continue to dedicate billions of dollars to subsidizing solar power, wind power, battery storage and EVs? Will commissioners and regulators say, “We have to expect some thermal runaway fires in order to mitigate climate change threats?” Or, will they build safety features into BESS like this firefighter suggests? Will they protect the public and insist on certified reports from liability-carrying professional engineers that all hazards have been mitigated before they permit new facilities and new battery storage systems?

 

21 questions for solar PV explorers

1.  Do you agree with Herman Daly’s principles—don’t take from the Earth faster than it can replenish, and don’t waste faster than it can absorb?

2.  Should solar PV evaluations recognize the extractions, water, wood, fossil fuels and intercontinental shipping involved in manufacturing solar PV systems?

3.  How should a manufacturer prove that slave laborers did not make any part of its solar PV system?

4.  Should evaluations of solar PVs’ ecological impacts include impacts from chemicals leached during PVs’ manufacture?

5.  Should evaluations assess the ecological impacts of spraying large-scale solar facilities’ land with herbicides to kill vegetation that could dry and catch fire?

6.  Does your fire department have a plan for responding to a large-scale solar facility fire on a sunny day—when solar-generated electricity cannot be turned off?

7.  Since utilities can’t shut off rooftop solar’s power generation on a sunny day, firefighters will not enter the building: they could be electrocuted. Meanwhile, every solar panel deployed on a rooftop increases a building’s electrical connections and fire hazards. How/can your fire department protect buildings with rooftop solar?

8.  Solar panels are coated with PFAs in four places. Panels cracked during hailstorms can leach chemicals into groundwater. Who will monitor and mitigate the chemicals leached onto land under solar panels?

9.  To keep clean and efficient, solar panels require cleaning. Per month, how much water will the solar PV facility near you require?

10.  Covering land with paved roads, parking lots, shopping malls, data centers…and large solar facilities…disrupts healthy water cycling and soil structure. Should evaluations assess the impact of these losses? How/can you restore healthy water cycling and soil structure?

11.  Since solar PVs generate power only when the sun shines—but electricity users expect its availability 24/7—such customers require backup from the fossil-fuel-powered grid or from highly toxic batteries. Should marketers stop calling solar PVs “renewable,” “green,” “clean,” “sustainable” and “carbon neutral?”

12.  Inverters convert the direct current (DC) electricity generated by solar panels to alternating current (AC)—the kind of electricity used by most buildings, electronics and appliances. (Boats and RVs do not connect to the grid; they use DC—batteries—to power their appliances.) Inverters “chop” the electric current on building wires, generating a kind of radiation. What are the hazards of such radiation? How/can you mitigate it?

13.  At their end-of-usable-life, solar PVs are hazardous waste. Who pays the ecological costs to dispose of them?

14.  Who pays the financial bill to dispose of solar PV systems at their end-of-usable-life? If you’ve got a large-scale solar facility, did your county commissioners require the corporation to post a bond so that if/when it goes bankrupt, your county doesn’t pay that financial bill?

15.  After a solar facility’s waste has been removed, how/will the land be restored?

16.  From cradles-to-graves, who is qualified to evaluate solar PVs’ ecological soundness? Should the expert carry liability for their evaluation? Should consumers require a cradle-to-grave evaluation from a liability-carrying expert before purchasing a solar PV system?

17.  Do solar PVs contribute to overshoot—using water, ores and other materials faster than the Earth can replenish them?

18.  If overshoot is a primary problem, and climate change, loss of wildlife species and pollution are consequences of overshoot, do we change our expectations of electric power, devices, appliances and the Internet?

19.  Can you name five unsustainable expectations about electric power?

20.  Can you name five sustainable expectations about electric power?

21.  In your region (defined by your watershed), who knows how to live sustainably?

RELATED NEWS

SUBSIDIZING SOLAR

U.S. subsidies of semiconductor and green energy manufacturers could reach $1 trillion.

When it opened in 2014, the Ivanpah Solar Power Facility in the Mojave Desert was the world’s largest solar thermal power station. Read about its daily consumption of natural gas, the subsidies it used to fund its $2.2 billion cost, its devastation of 3500 acres of desert habitat, its fire, and its annual production of electricity.

END-OF-LIFE-E-WASTE

End-of-life-e-waste (including from solar panels) poisons Ghana, Malaysia and Thailand —and harms children who scour junkyards for food and schooling money. Actual end-of-life-e-waste rises five times faster than documented e-waste. Of course, the vast majority of e-waste occurs during manufacturing (mining, smelting, refining, “doping” of chemicals, intercontinental shipping of raw materials, etc.).

INSPIRATION

The new Just Transition Litigation Tracking Tool from the Business & Human Rights Resource Centre has documented, up to 31 May 2024, 60 legal cases launched around the world by Indigenous Peoples, other communities and workers harmed by “renewable” supply chains. Cases brought against states and/or the private sector in transition mineral mining and solar, wind and hydropower sectors challenge environmental abuses (77% of tracked cases), water pollution and/or access to water (80%), and abuse of Indigenous Peoples’ rights (55%), particularly the right to Free, Prior and Informed Consent (FPIC – 35% of cases). These cases should warn companies and investors that expensive, time-consuming litigation can quickly eat up the benefits of such shortcuts.

For two decades, a small group of nuns in rural Kansas has taken on Netflix, Amazon and Google on social issues. Even when their stocks amount to only $2,000, the nuns propose resolutions at shareholders’ meetings. For example, the sisters have asked Chevon to assess its human rights policies, and for Amazon to publish its lobbying expenditures.

When Rio Tinto proposed mining lithium in Serbia’s Jadar Valley (whose deposits could cover 90% of Europe’s current lithium needs), the corporation claimed that mining would meet environmental protection requirements. Locals learned about the mining’s potentially devastating impacts on groundwater, soil, water usage, livestock and biodiversity from tailings, wastewater, noise, air pollution and light pollution. 100,000 Serbians took to the streets, blocked railways—and moved President Aleksandar Vucic to promise that mining will not proceed until environmentalists’ concerns are satisfied.

 

Photo by Justin Lim on Unsplash