Lithium: Mining Mountains of Water

Lithium: Mining Mountains of Water

In this article Rebecca Wildbear talks about how civilization is wasting our planet’s scarce water sources for mining in its desperate effort to continue this devastating way of life.


By Rebecca Wildbear

Nearly a third of the world lacks safe drinking water, though I have rarely been without. In a red rock canyon in Utah, backpacking on a week-long wilderness training in my mid-twenties, it was challenging to find water. Eight of us often scouted for hours. Some days all we could find to drink was muddy water. We collected rain water and were grateful when we found a spring.

Now water is scarce, and the demand for it is growing. Globally, water use has risen at more than twice the rate of population growth and is still increasing. Ninety percent of water used by humans is used by industry and agriculture, and when groundwater is overused, lakes, streams and rivers dry up, destroying ecosystems and species, harming human health, and impacting food security. Life on Earth will not survive without water.

In the Navajo Nation in Arizona, Utah, and New Mexico, a third of houses lack running water, and in some towns, it is ninety percent. Peabody Energy Corporation, the largest coal producer and a Fortune 500 company, pulled so much water from the Navajo aquifer before closing its mining operation that many wells and springs have run dry. Residents now have to drive 17 miles to wait in line for an hour at a communal well, just to get their drinking water.

Worldwide, the majority of drinkable water comes from underground reservoirs called aquifers. Aquifers feed streams, lakes, and rivers, but their waters are finite. Large aquifers exist beneath deserts, but these were created eons ago in wetter times. Expert hydrologists say that like oil, once the “fossil” waters of ancient reservoirs are mined, they are gone forever.

Peabody’s Black Mesa Mine extracted, pulverized, and mixed coal with water drawn from the Navajo aquifer to form a slurry. This was sent along a 273-mile-long pipeline to the Mojave Generating Station in Laughlin, Nevada, to power Los Angeles. Every year, the mine extracted 1.4 billion gallons (4,000+ acre feet) of water from the aquifer, an estimated 45 billion gallons (130,000+ acre feet) in all.

Pumping out an aquifer draws down the water level and empties it forever. Water quality deteriorates and springs and soil dry out. Agricultural irrigation and oil and coal extraction are the biggest users of waters from aquifers in the U.S. Some predict that the Ogallala aquifer, once stretching beneath five mid-western states, may be able to replenish after six thousand years of rainfall.

Rain is the most accurate measure of available water in a region, yet over-pumping water beyond its capacity to refill is widespread in the western U.S. and around the world. The Middle East ran out of water years ago—it was the first major region in the world to do so. Studies predict that two thirds of the world’s population are at risk of water shortages by 2025. As ground water levels fall, lakes, rivers, and streams are depleted, and the land, fish, trees, and animals die, leaving a barren desert.

Mining in the Great Basin

The skyrocketing demand for lithium, one of the minerals needed for the production of electric cars, is based on the misperception that green technology helps the planet. Yet, as Argentine professor of thermodynamics and lithium mining expert Dr. Daniel Galli said at a scientific meeting, lithium mining is “really mining mountains of water.” Lithium Americas plans to pump massive amounts of water—up to 1.7 billion gallons (5,200 acre feet) annually—from an aquifer in the Quinn River Valley in Nevada’s Great Basin, the largest desert in the United States.

Thacker Pass, the site of the proposed 1.3 billion dollar open-pit lithium mine, would pump 1,200 acre feet more water per year than Peabody Energy Corporation extracted from the Navajo aquifer. Yet, the Quinn River aquifer is already over-allocated by fifty percent, and more than 10 billion gallons (30,000 acre feet) per year. Nevada is one of the driest states in the nation, and Thacker Pass is only the first of many proposed lithium mines in the state. Multiple active placer claims (7,996) have been located in 18 different hydrographic basins.

Deceit about water fuels these mines. Lithium Americas’ environmental impact assessment is grossly inaccurate, according to hydrologist Dr. Erick Powell. By classifying year-round creeks as “ephemeral” and underreporting the flow rate of 14 springs, Lithium Americas is claiming there is less water in the area than there actually is. This masks the real effects the mine would have—drying up hundreds of square miles of land, drawing down the groundwater level, sucking water from neighboring aquifers—all while claiming its operations would have no effect.

Peabody Energy Corporation’s impact assessment similarly misrepresented how their withdrawals would harm the Navajo aquifer. Peabody Energy used a flawed method to measure the withdrawals, according to former National Science Research Fellow Daniel Higgins. Now Navajo Nation wells require drilling down 2,000–3,000 feet, and the water is depressurized and slow to flow to the surface.

Thacker Pass lithium mine would pump groundwater at a disturbing rate, up to 3,250 gallons per minute. Once used, wastewater would contaminate local groundwater with dangerous heavy metals, including a “plume” of antimony that would last at least 300 years. Lithium Americas plans to dig the mine deeper than the groundwater level and keep it dry by continuously pumping water out, but when the pumping stops, groundwater would seep back in, picking up the toxins.

It hurts me to think about this. I imagine water being rapidly extracted from my own body, my bloodstream poisoned. The best tasting water rises to the surface when it is ready, after gestating as long as it likes in the dark Earth. Springs are sacred. When I feel welcome, I place my lips on the earthy surface and fill my mouth with their sweet flavor and vibrant texture.

Mining in the Atacama Desert

Thirteen thousand feet above sea level, the indigenous Atacamas people live in the Atacama Desert, the most arid desert in the world and the driest place on Earth. For millennia, they have used their scarce supply of water and sparse terrain carefully. Their laws and spirituality have always been intertwined with the health and well-being of the land and water. Living in mud-brick homes, pack animals, llama and alpaca, provide them with meat, hide, and wool.

But lithium lies beneath their ancestral land. Since 1980, mining companies have made billions in the Salar de Atacama region in Chile, where lithium mining now consumes sixty-five percent of the water. Some local communities need to have water driven in, and other villagers have been forced to abandon their settlements. There is no longer enough water to graze their animals. Beautiful lagoons hundreds of flamingos call home have gone dry. The birds have disappeared, and the ground is hard and cracked.

In addition to the Thacker Pass mine proposal, Lithium Americas has a mine in the Atacama Desert, a joint Canadian-Chilean venture named Minera Exar in the Cauchari-Olaroz basin in Jujuy, Argentina. Digging for lithium began in Jujuy in 2015, and there is already irreversible damage, according to a 2018 hydrology report. Watering holes have gone dry, and indigenous leaders are scared that soon there will be nothing left.

Even more water is needed to mine the traces of lithium found in brine than in an open-pit mine. At the Sales de Jujuy plant, the wells pump at a rate of more than two million gallons per day, even though this region receives less than four inches of rain a year. Pumping water from brine aquifers decreases the amount of fresh groundwater. Freshwater refills the spaces emptied by brine pumping and is irreversibly mixed with brine and salinized.

The Sanctity of Water

As a river guide, I live close to water. Swallowed by its wild beauty, I am restored to a healthier existence. Far from roads, cars, and cities, I watch water swirl around rocks or ripple over sand. I merge with its generous flow, floating through mountains, forest, or canyon. Rivers teach me how to listen to the currents—whether they cascade in a playful bubble, swell in a loud rush, or ebb in a gentle silence—for clues about what lies ahead.

The indigenous Atacamas peoples understand that water is sacred and have purposefully protected it for centuries. Rather than looking at how nature can be used, our culture needs to emulate the Atacamas peoples and develop the capacity to consider its obligations around water. Instead of electric cars, what we need is an ethical approach to our relationship with the land. Honoring the rights of water, species, and ecosystems is the foundation of a sustainable society. Decisions can be made based on knowledge of the land, weather patterns, and messages from nature.

For millennia, indigenous peoples have perceived water, animals, and mountains as sentient. If humans today could recognize their intelligence, perhaps they would understand that underground reservoirs have a value and purpose, beyond humans. When I enter a cave, I am walking into a living being. My eyes adjust to the dark. Pressing my hand against the wall, I steady myself on the uneven ground, hidden by varying amounts of water. Pausing, I listen to a soft dripping noise, echoing like a heartbeat as dew slides off the rocks. I can almost hear the cave breathing.

The life-giving waters of aquifers keep everything alive, but live unseen under the ground. As a soul guide, I invite people to be nourished by the visions of their dreams, a parallel world that is also seemingly invisible. Our dominant culture dismisses the value of these perceptions, just as it usurps water by disregarding natural cycles. Yet to create a sustainable world, humans need to be able to listen to nature and their dreams. The depths of our souls are inextricably linked to the ancient waters that flow underground. Dreams arise like springs from an aquifer, seeding our visionary potential, expanding our consciousness, and revealing other ways to live, radically different than empire.

Water Bearers

I set my backpack down on a high sandstone cliff overlooking a large watering hole. Ten feet below the hole, the red rock canyon drops into a much larger pool. My friend hikes down to it, filling her cookpot with water. She balances it atop her head on the way up, moving her hips to keep the pot steady. Arriving back, she pours the water into the smaller hole from which we drink and returns to the large pool to gather more.

Women in all societies have carried water throughout history. In many rural communities, they still spend much of the day gathering it. Sherri Mitchell of the Penobscot Nation calls women “the water bearers of the Universe.” The cycles in a woman’s body move in relation with the Earth’s tides, guiding them to nourish and protect the waters of Earth. We all need to become water bearers now.

Indigenous peoples, who have always been the Earth’s greatest defenders, protect eighty percent of global diversity, even though they comprise less than five percent of the world’s population. They understand water is sacred, and the world’s groundwater systems must be defended. For six years, indigenous peoples have been fighting to prevent lithium mining in the Salinas Grandes salt flats, in Jujuy, Argentina. Five hundred indigenous people camped on the land with signs: “No to lithium. Yes, to water and life in our territories.”

In February 2021, President Biden signed executive orders supporting the domestic mining of “critical” minerals like lithium, but two lawsuits, one by five Nevada-based conservation groups, have been filed against the Bureau of Land Management for approving the Thacker Pass lithium mine. Environmentalists Max Wilbert and Will Falk are organizing a protest to protect Thacker Pass. Local residents, including Northern Paiute and Western Shoshone peoples, are speaking out, fighting to protect their land and water.

We can see when a river runs dry, but most people are not aware of the invisible, slow-burning disaster happening under the ground. Some say those who oppose lithium mining should give up cell phones. If that is true, perhaps those who favor mines should give up drinking water. Protecting water needs to be at the center of any plan for a sustainable future.

The “fossil water” found in deserts should be used only in emergency, certainly not for mining. Sickened by corporate water grabbing, I support those trying to stop Thacker Pass Lithium mine and aim to join them. The aquifers there have nurtured so many for so long—eagles, pronghorn antelope, mule deer, old-growth sagebrush, hawks, falcons, sage-grouse, and Lahontan cutthroat trout. I pray these sacred wombs of the Earth can live on to nourish all of life.


For more on the issue:

Cambodia puts its arduous titling process for Indigenous land up for review

Cambodia puts its arduous titling process for Indigenous land up for review

Ethnic Kui Indigenous people have for generations mined the mountains and streams of Cambodia’s Romtom commune for their livelihoods. But those traditions shifted as Delcom, a Malaysian-owned gold-mining company, began digging up the land in the early 2010s and confronting artisanal miners with armed guards. Miners at that time said their peers had gone abroad to seek new jobs, while those who remained were broke.

This article originally appeared on Mongabay.

by Danielle Keeton-Olsen


  • Since 2009, Cambodia has had a legal process by which Indigenous communities can obtain legal title to their traditional land.
  • Of around 455 Indigenous communities in Cambodia, 33 have been granted land titles.
  • People who have engaged in the Indigenous land titling process say it is time-consuming and arduous, and that even successful claimants are often granted title to just a fraction of their customary land.
  • This year, Cambodia has launched a review of its communal land titling process. Even people involved in the review are unsure what prompted it or what impacts the review might have.

Several years later, the community faced new pressure from Delcom. The company began stretching itself further, eating into farmland, and again choking the Kui communities’ livelihoods. With renewed frustrations, residents spoke to environmental activists; during the interviews one woman named a person she was told was in charge of the area, without knowing that the man is a powerful general named in several notorious land disputes.

Unbeknown to the residents living around it, the Delcom gold mine had been transferred from a Malaysian conglomerate to Chinese owners, a transaction whose details remain scant.

Under Cambodian law, a mechanism exists that should allow the Kui to make a case to own and use land they have been occupying for generations. However, as of late 2020, the Kui residents are still fighting for the rights to their land, and, like most of Cambodia’s Indigenous communities, have not successfully made a legal claim.

In reality, Cambodia’s strong laws for protecting Indigenous land are bogged down by a time-consuming process and blocked by land concessions.

This year, as land prices surge and the country is extracting private land from protected areas, the Cambodian government is reviewing its Indigenous communal land titling application process, and Indigenous land use in general. What motivated the reevaluation, and how Indigenous land rights might change as a result, is still opaque. But Indigenous NGOs and advocates say that truly protecting Indigenous cultures and their ties to Cambodia’s forests would require fundamental changes to the process of registering and protecting Indigenous land rights.

Rainforest stream with waterfall in Cambodia. Image by Rhett A. Butler/Mongabay.

The process for Indigenous land titling

Cambodia agreed to the U.N.’s declaration on Indigenous rights in 2007, which explicitly grants Indigenous groups authority over land they’ve held “by reason of traditional ownership,” to use or develop as they please. Two years later, the government enshrined the right of Indigenous groups to hold their traditional land, and the procedure for doing so, into its laws.

Since then, 33 communities have received land rights, or just 7% of the total 455 Indigenous communities known in Cambodia, according to data compiled by Cambodian nonprofit network NGO Forum.

The process is arduous. Before an Indigenous village and the NGO assisting it can begin surveying land to claim ownership, an individual Indigenous community has to gain recognition from its provincial authorities and Cambodia’s Rural Development Ministry, and then register legally with the Interior Ministry. About a third of Cambodia’s Indigenous communities have done so, according to NGO Forum data.

The next step is mapping and designating areas for homes, rotational farmland, ancestral burial grounds, and spirit forests and mountains. Usually a local NGO steps in to assist with GPS coordinates and creating the map. They then present the map to the Land Ministry, which confirms the area, ensures it doesn’t overlap with other land users, and finally issues the title.

Indigenous land titles also come with a condition to protect a piece of the forest, usually tied to the community as ancestral burial sites and spaces of spiritual significance.

Currently, 86 communities have applications in the works, while an additional 33 have received land titles in the end, according to NGO Forum data.

Children biking through a field in rural Cambodia. Four decades after the Khmer Rouge destroyed land records, many people in rural areas have weak land titles or none at all. Image by Bryon Lippincott via Flickr (CC BY-ND 2.0).

Cambodia’s conflict-ridden land records

All property records in Cambodia were destroyed during the 1975-1979 reign of the Khmer Rouge, part of the totalitarian leaders’ efforts to revoke private property and establish Cambodia as a radical, isolated agrarian state.

Cambodia’s Land Law was finally restored in 2001, but land ownership remains ambiguous and many, particularly in the provinces, have “soft titles” from the local government, rather than sturdier “hard titles” granted by the national government. Others live without land titles at all, since proving ownership is complex, and generally relies on proving a family or community has occupied land for the long term.

Both Indigenous and non-Indigenous land ownership nationwide has also been complicated by an economic land concession campaign that began in the early 2000s, in which the government granted huge swaths of public land to private companies. Though the program was suspended after receiving sharp international criticism for deforestation and land grabbing in and around concessions, the government has continued to grant huge territories with little public explanation.

Cambodian Prime Minister Hun Sen announced last July that people who can prove they’ve lived in a protected area for more than 10 years can be granted land titles, which spurred a rapid surveying campaign in Mondulkiri province in the second half of the year and revealed a number of illegal land grants issued by local and national officials.

Simultaneously, land prices are rising throughout the country, with land in Mondulkiri’s city center costing as much as $1,500 per square meter (about $140 per square foot), according to some real estate agents, and provincial land also increasing in value as the country develops more tourism projects.

Pros and cons of the current process

Pheap Sophea, a natural resources governance program manager for the NGO Forum, said Cambodia’s Indigenous land titling program has been successful in working to “preserve traditional culture, good habits, protect land security and improve the livelihoods of Indigenous communities,” both for the communities who received the land and those in the process. However, he says several aspects of the process need to be simplified and clearly communicated to the Indigenous groups who are in the process of or eligible for receiving land titles.

Grassroots NGOs supporting Indigenous communities have more pointed critiques.

Yun Lorang, coordinator for Cambodia Indigenous People Alliance, says the process takes too long, at least three years.

“We don’t have an experience of success yet,” he told Mongabay.

Lorang says the land titles, when approved, do secure some of the land that Indigenous communities hold, but never cover the whole area they’ve been using for decades. The law allows only state-owned land to be allocated as Indigenous land, and limits the amount of area that Indigenous groups can use for spiritual purposes: 7 hectares (17.3 acres) each for spirit forest area and for ancestral burial ground.

“Sacred and burial land are bigger than 7 hectares,” Lorang said. “Based on customary rules and practices, community land’s size is more than 5,000 hectares [12,400 acres], but the government offers only 1,000 to 1,500 hectares [2,500-3,700 acres].”

Indigenous land claims often overlap with company developments, and when that happens, it’s usually the economic interest that wins out.

When the Lower Sesan II hydropower dam flooded its reservoir, it split two Indigenous villages down the middle. Thousands of families went to live in rows of cookie-cutter houses along National Road 78, while a small group picked up the remains of their homes and stood their ground.

The Bunong Indigenous people of Kbal Romeas, one of the two villages along the Sesan River that were hit immediately by the dam’s floods, lost their homes, school, health center, and critically, ancestral burial ground, to the floods.

Calling themselves “Old Kbal Romeas,” the remaining residents rebuilt their homes on a cleared section of land that was part of their rotational agriculture area, though one woman said she felt the new territory was a “bad land” that brought her trouble.

Old Kbal Romeas successfully gained recognition as an official Indigenous community from the Interior Ministry and were permitted to rebuild their homes by Stung Treng province authorities in 2018. They began plotting their land with the grassroots group Cambodian Indigenous People’s Organization in preparation for a title application, but found they were competing with a rubber concession that had reasserted its territorial claims.

“We’re concerned we can’t defeat them. They are powerful,” Old Kbal Romeas community leader Sran Lanj said in September 2020. “My community and I are powerless. They put pressure on us to accept [a deal], and it’s like they are compelling us to give our land to them.”

After mapping their territory for an Indigenous land title, Old Kbal Romeas residents say they have around 7,000 hectares (17,300 acres) of land — half of which is flooded — but they still want the control over the area.

The government instead offered them 941 hectares (2,325 acres), and the residents refused to accept.

“Nine hundred and forty-one [hectares] of land for this number of families is enough,” said Stung Treng provincial land department director Minh Sichay. “It should be acceptable. Why do they demand 3,500?”

The review

NGOs, the U.N. human rights commission and a conservation group all confirmed to Mongabay that Cambodia’s Interior Ministry is reviewing both registered Indigenous communities and their communal land rights — both applications and granted titles — though none of the stakeholders said they knew the motive for the review.

Sophea, from the NGO Forum, said his organization was working with the ministry to survey Indigenous communities about their understanding and experience of the land titling process, and how Indigenous communities ultimately use the land.

The questionnaire he’s helping the ministry devise would also question whether land was being illegally sold within Indigenous communal areas; a number of Mondulkiri province officials were accused of facilitating land sales in Indigenous areas.

The survey will involve 22 Indigenous communities, seven of which had received community land titles and 15 in the process of registering their land, Sophea said.

He said the survey would not be complete until mid-2021, or maybe later, due to Cambodia’s new surge in COVID-19 cases. Interior Ministry spokesperson Khieu Sopheak said the ministry was only probing the program but did not know what would happen as a result, and Land Management ministry spokesperson Seng Lot did not respond to questions, telling a reporter on the phone he’s “very, very busy.”

Pradeep Wagle, the U.N. human rights representative in Cambodia, said in a written statement that the government is following through with recommendations made by the organization’s human rights experts in a 2019 review. Among dozens of recommendations, U.N. representatives urged Cambodia to simplify the process for allocating land to Indigenous communities. Wagle reiterated the suggestion in his response, though he did not provide details on how the laws or process should change.

“The existing process is complex, lengthy, expensive and surrounded by several technical formalities,” he said. “The suggested reforms ensure cost effectiveness and propose reasonable and less cumbersome steps for Indigenous communities to obtain a collective land title.”

Before this review, Sophea said his organization had worked with the interior, rural development, and land ministries to make improvements on the titling system, such as shortening the registration process and simplifying the requirements for preliminary maps made by the communities.

Notably absent, Sophea says, was the Environment Ministry, which has the designation over all terrestrial protected spaces. The ministry has the power to reject an Indigenous land title application if it overlaps with a protected area, and has already exercised that right for nine communities, according to NGO Forum data.

Sophea says that throughout 2019 and 2020, the NGO Forum organized a series of meetings on issues relating to land governance and overlaps between Indigenous customary rights and protected areas, but, despite being invited to three meetings, Environment Ministry officials did not attend.

“The NGO Forum hopes the Environment Ministry would extend the cooperation for the dialogue because the Indigenous people play important role to biodiversity conservation,” he said. Indigenous communities globally have shown to provide some of the best, most efficient and low-cost environmental protection of land and water.

Lorang, the Indigenous leader, agreed, noting that attempts to complete land title applications are thwarted most often by local governments and the Environment Ministry, especially in cases where land claims overlap with protected areas.

From his work with Indigenous communities in Mondulkiri, Lorang said reforms can’t just stop at the law and implementation. His organization is working directly to organize 13 of Mondulkiri’s 42 communities to make a unified plea for recognition from both local and national governments.

He says he hopes these communities can work together to lobby for support from the interior and rural development ministries. “This work is very political and technical,” he said. “We need ministries to influence sub national government on it because the sub nationals don’t support [Indigenous people] and NGOs.”

Climate scientists: concept of net zero is a dangerous trap

Climate scientists: concept of net zero is a dangerous trap

In this article, originally published on The Conversation, three scientists argue that the concept of net zero which is heavily relying on carbon capture and storage technologies is a dangerous illusion.

By James Dyke, Senior Lecturer in Global Systems, University of Exeter, Robert Watson, Emeritus Professor in Environmental Sciences, University of East Anglia, and Wolfgang Knorr, Senior Research Scientist, Physical Geography and Ecosystem Science, Lund University


Sometimes realisation comes in a blinding flash. Blurred outlines snap into shape and suddenly it all makes sense. Underneath such revelations is typically a much slower-dawning process. Doubts at the back of the mind grow. The sense of confusion that things cannot be made to fit together increases until something clicks. Or perhaps snaps.

Collectively we three authors of this article must have spent more than 80 years thinking about climate change. Why has it taken us so long to speak out about the obvious dangers of the concept of net zero? In our defence, the premise of net zero is deceptively simple – and we admit that it deceived us.

The threats of climate change are the direct result of there being too much carbon dioxide in the atmosphere. So it follows that we must stop emitting more and even remove some of it. This idea is central to the world’s current plan to avoid catastrophe. In fact, there are many suggestions as to how to actually do this, from mass tree planting, to high tech direct air capture devices that suck out carbon dioxide from the air.

The current consensus is that if we deploy these and other so-called “carbon dioxide removal” techniques at the same time as reducing our burning of fossil fuels, we can more rapidly halt global warming. Hopefully around the middle of this century we will achieve “net zero”. This is the point at which any residual emissions of greenhouse gases are balanced by technologies removing them from the atmosphere.

This is a great idea, in principle. Unfortunately, in practice it helps perpetuate a belief in technological salvation and diminishes the sense of urgency surrounding the need to curb emissions now.

We have arrived at the painful realisation that the idea of net zero has licensed a recklessly cavalier “burn now, pay later” approach which has seen carbon emissions continue to soar. It has also hastened the destruction of the natural world by increasing deforestation today, and greatly increases the risk of further devastation in the future.

To understand how this has happened, how humanity has gambled its civilisation on no more than promises of future solutions, we must return to the late 1980s, when climate change broke out onto the international stage.

Steps towards net zero

On June 22 1988, James Hansen was the administrator of Nasa’s Goddard Institute for Space Studies, a prestigious appointment but someone largely unknown outside of academia.

By the afternoon of the 23rd he was well on the way to becoming the world’s most famous climate scientist. This was as a direct result of his testimony to the US congress, when he forensically presented the evidence that the Earth’s climate was warming and that humans were the primary cause: “The greenhouse effect has been detected, and it is changing our climate now.”

If we had acted on Hansen’s testimony at the time, we would have been able to decarbonise our societies at a rate of around 2% a year in order to give us about a two-in-three chance of limiting warming to no more than 1.5°C. It would have been a huge challenge, but the main task at that time would have been to simply stop the accelerating use of fossil fuels while fairly sharing out future emissions.

Alt text

 © Robbie AndrewCC BY

Four years later, there were glimmers of hope that this would be possible. During the 1992 Earth Summit in Rio, all nations agreed to stabilise concentrations of greenhouse gases to ensure that they did not produce dangerous interference with the climate. The 1997 Kyoto Summit attempted to start to put that goal into practice. But as the years passed, the initial task of keeping us safe became increasingly harder given the continual increase in fossil fuel use.

It was around that time that the first computer models linking greenhouse gas emissions to impacts on different sectors of the economy were developed. These hybrid climate-economic models are known as Integrated Assessment Models. They allowed modellers to link economic activity to the climate by, for example, exploring how changes in investments and technology could lead to changes in greenhouse gas emissions.

They seemed like a miracle: you could try out policies on a computer screen before implementing them, saving humanity costly experimentation. They rapidly emerged to become key guidance for climate policy. A primacy they maintain to this day.

Unfortunately, they also removed the need for deep critical thinking. Such models represent society as a web of idealised, emotionless buyers and sellers and thus ignore complex social and political realities, or even the impacts of climate change itself. Their implicit promise is that market-based approaches will always work. This meant that discussions about policies were limited to those most convenient to politicians: incremental changes to legislation and taxes.

Around the time they were first developed, efforts were being made to secure US action on the climate by allowing it to count carbon sinks of the country’s forests. The US argued that if it managed its forests well, it would be able to store a large amount of carbon in trees and soil which should be subtracted from its obligations to limit the burning of coal, oil and gas. In the end, the US largely got its way. Ironically, the concessions were all in vain, since the US senate never ratified the agreement.

Postulating a future with more trees could in effect offset the burning of coal, oil and gas now. As models could easily churn out numbers that saw atmospheric carbon dioxide go as low as one wanted, ever more sophisticated scenarios could be explored which reduced the perceived urgency to reduce fossil fuel use. By including carbon sinks in climate-economic models, a Pandora’s box had been opened.

It’s here we find the genesis of today’s net zero policies.

That said, most attention in the mid-1990s was focused on increasing energy efficiency and energy switching (such as the UK’s move from coal to gas) and the potential of nuclear energy to deliver large amounts of carbon-free electricity. The hope was that such innovations would quickly reverse increases in fossil fuel emissions.

But by around the turn of the new millennium it was clear that such hopes were unfounded. Given their core assumption of incremental change, it was becoming more and more difficult for economic-climate models to find viable pathways to avoid dangerous climate change. In response, the models began to include more and more examples of carbon capture and storage, a technology that could remove the carbon dioxide from coal-fired power stations and then store the captured carbon deep underground indefinitely.

This had been shown to be possible in principle: compressed carbon dioxide had been separated from fossil gas and then injected underground in a number of projects since the 1970s. These Enhanced Oil Recovery schemes were designed to force gases into oil wells in order to push oil towards drilling rigs and so allow more to be recovered – oil that would later be burnt, releasing even more carbon dioxide into the atmosphere.

Carbon capture and storage offered the twist that instead of using the carbon dioxide to extract more oil, the gas would instead be left underground and removed from the atmosphere. This promised breakthrough technology would allow climate friendly coal and so the continued use of this fossil fuel. But long before the world would witness any such schemes, the hypothetical process had been included in climate-economic models. In the end, the mere prospect of carbon capture and storage gave policy makers a way out of making the much needed cuts to greenhouse gas emissions.

The rise of net zero

When the international climate change community convened in Copenhagen in 2009 it was clear that carbon capture and storage was not going to be sufficient for two reasons.

First, it still did not exist. There were no carbon capture and storage facilities in operation on any coal fired power station and no prospect the technology was going to have any impact on rising emissions from increased coal use in the foreseeable future.

The biggest barrier to implementation was essentially cost. The motivation to burn vast amounts of coal is to generate relatively cheap electricity. Retrofitting carbon scrubbers on existing power stations, building the infrastructure to pipe captured carbon, and developing suitable geological storage sites required huge sums of money. Consequently the only application of carbon capture in actual operation then – and now – is to use the trapped gas in enhanced oil recovery schemes. Beyond a single demonstrator, there has never been any capture of carbon dioxide from a coal fired power station chimney with that captured carbon then being stored underground.

Just as important, by 2009 it was becoming increasingly clear that it would not be possible to make even the gradual reductions that policy makers demanded. That was the case even if carbon capture and storage was up and running. The amount of carbon dioxide that was being pumped into the air each year meant humanity was rapidly running out of time.

With hopes for a solution to the climate crisis fading again, another magic bullet was required. A technology was needed not only to slow down the increasing concentrations of carbon dioxide in the atmosphere, but actually reverse it. In response, the climate-economic modelling community – already able to include plant-based carbon sinks and geological carbon storage in their models – increasingly adopted the “solution” of combining the two.

So it was that Bioenergy Carbon Capture and Storage, or BECCS, rapidly emerged as the new saviour technology. By burning “replaceable” biomass such as wood, crops, and agricultural waste instead of coal in power stations, and then capturing the carbon dioxide from the power station chimney and storing it underground, BECCS could produce electricity at the same time as removing carbon dioxide from the atmosphere. That’s because as biomass such as trees grow, they suck in carbon dioxide from the atmosphere. By planting trees and other bioenergy crops and storing carbon dioxide released when they are burnt, more carbon could be removed from the atmosphere.

With this new solution in hand the international community regrouped from repeated failures to mount another attempt at reining in our dangerous interference with the climate. The scene was set for the crucial 2015 climate conference in Paris.

A Parisian false dawn

As its general secretary brought the 21st United Nations conference on climate change to an end, a great roar issued from the crowd. People leaped to their feet, strangers embraced, tears welled up in eyes bloodshot from lack of sleep.

The emotions on display on December 13, 2015 were not just for the cameras. After weeks of gruelling high-level negotiations in Paris a breakthrough had finally been achieved. Against all expectations, after decades of false starts and failures, the international community had finally agreed to do what it took to limit global warming to well below 2°C, preferably to 1.5°C, compared to pre-industrial levels.

The Paris Agreement was a stunning victory for those most at risk from climate change. Rich industrialised nations will be increasingly impacted as global temperatures rise. But it’s the low lying island states such as the Maldives and the Marshall Islands that are at imminent existential risk. As a later UN special report made clear, if the Paris Agreement was unable to limit global warming to 1.5°C, the number of lives lost to more intense storms, fires, heatwaves, famines and floods would significantly increase.

But dig a little deeper and you could find another emotion lurking within delegates on December 13. Doubt. We struggle to name any climate scientist who at that time thought the Paris Agreement was feasible. We have since been told by some scientists that the Paris Agreement was “of course important for climate justice but unworkable” and “a complete shock, no one thought limiting to 1.5°C was possible”. Rather than being able to limit warming to 1.5°C, a senior academic involved in the IPCC concluded we were heading beyond 3°C by the end of this century.

Instead of confront our doubts, we scientists decided to construct ever more elaborate fantasy worlds in which we would be safe. The price to pay for our cowardice: having to keep our mouths shut about the ever growing absurdity of the required planetary-scale carbon dioxide removal.

Taking centre stage was BECCS because at the time this was the only way climate-economic models could find scenarios that would be consistent with the Paris Agreement. Rather than stabilise, global emissions of carbon dioxide had increased some 60% since 1992.

Alas, BECCS, just like all the previous solutions, was too good to be true.

Across the scenarios produced by the Intergovernmental Panel on Climate Change (IPCC) with a 66% or better chance of limiting temperature increase to 1.5°C, BECCS would need to remove 12 billion tonnes of carbon dioxide each year. BECCS at this scale would require massive planting schemes for trees and bioenergy crops.

The Earth certainly needs more trees. Humanity has cut down some three trillion since we first started farming some 13,000 years ago. But rather than allow ecosystems to recover from human impacts and forests to regrow, BECCS generally refers to dedicated industrial-scale plantations regularly harvested for bioenergy rather than carbon stored away in forest trunks, roots and soils.

Currently, the two most efficient biofuels are sugarcane for bioethanol and palm oil for biodiesel – both grown in the tropics. Endless rows of such fast growing monoculture trees or other bioenergy crops harvested at frequent intervals devastate biodiversity.

It has been estimated that BECCS would demand between 0.4 and 1.2 billion hectares of land. That’s 25% to 80% of all the land currently under cultivation. How will that be achieved at the same time as feeding 8-10 billion people around the middle of the century or without destroying native vegetation and biodiversity?

Growing billions of trees would consume vast amounts of water – in some places where people are already thirsty. Increasing forest cover in higher latitudes can have an overall warming effect because replacing grassland or fields with forests means the land surface becomes darker. This darker land absorbs more energy from the Sun and so temperatures rise. Focusing on developing vast plantations in poorer tropical nations comes with real risks of people being driven off their lands.

And it is often forgotten that trees and the land in general already soak up and store away vast amounts of carbon through what is called the natural terrestrial carbon sink. Interfering with it could both disrupt the sink and lead to double accounting.

As these impacts are becoming better understood, the sense of optimism around BECCS has diminished.

Pipe dreams

Given the dawning realisation of how difficult Paris would be in the light of ever rising emissions and limited potential of BECCS, a new buzzword emerged in policy circles: the “overshoot scenario”. Temperatures would be allowed to go beyond 1.5°C in the near term, but then be brought down with a range of carbon dioxide removal by the end of the century. This means that net zero actually means carbon negative. Within a few decades, we will need to transform our civilisation from one that currently pumps out 40 billion tons of carbon dioxide into the atmosphere each year, to one that produces a net removal of tens of billions.

Mass tree planting, for bioenergy or as an attempt at offsetting, had been the latest attempt to stall cuts in fossil fuel use. But the ever-increasing need for carbon removal was calling for more. This is why the idea of direct air capture, now being touted by some as the most promising technology out there, has taken hold. It is generally more benign to ecosystems because it requires significantly less land to operate than BECCS, including the land needed to power them using wind or solar panels.

Unfortunately, it is widely believed that direct air capture, because of its exorbitant costs and energy demand, if it ever becomes feasible to be deployed at scale, will not be able to compete with BECCS with its voracious appetite for prime agricultural land.

It should now be getting clear where the journey is heading. As the mirage of each magical technical solution disappears, another equally unworkable alternative pops up to take its place. The next is already on the horizon – and it’s even more ghastly. Once we realise net zero will not happen in time or even at all, geoengineering – the deliberate and large scale intervention in the Earth’s climate system – will probably be invoked as the solution to limit temperature increases.

One of the most researched geoengineering ideas is solar radiation management – the injection of millions of tons of sulphuric acid into the stratosphere that will reflect some of the Sun’s energy away from the Earth. It is a wild idea, but some academics and politicians are deadly serious, despite significant risks. The US National Academies of Sciences, for example, has recommended allocating up to US$200 million over the next five years to explore how geoengineering could be deployed and regulated. Funding and research in this area is sure to significantly increase.

Difficult truths

In principle there is nothing wrong or dangerous about carbon dioxide removal proposals. In fact developing ways of reducing concentrations of carbon dioxide can feel tremendously exciting. You are using science and engineering to save humanity from disaster. What you are doing is important. There is also the realisation that carbon removal will be needed to mop up some of the emissions from sectors such as aviation and cement production. So there will be some small role for a number of different carbon dioxide removal approaches.

The problems come when it is assumed that these can be deployed at vast scale. This effectively serves as a blank cheque for the continued burning of fossil fuels and the acceleration of habitat destruction.

Carbon reduction technologies and geoengineering should be seen as a sort of ejector seat that could propel humanity away from rapid and catastrophic environmental change. Just like an ejector seat in a jet aircraft, it should only be used as the very last resort. However, policymakers and businesses appear to be entirely serious about deploying highly speculative technologies as a way to land our civilisation at a sustainable destination. In fact, these are no more than fairy tales.

The only way to keep humanity safe is the immediate and sustained radical cuts to greenhouse gas emissions in a socially just way.

Academics typically see themselves as servants to society. Indeed, many are employed as civil servants. Those working at the climate science and policy interface desperately wrestle with an increasingly difficult problem. Similarly, those that champion net zero as a way of breaking through barriers holding back effective action on the climate also work with the very best of intentions.

The tragedy is that their collective efforts were never able to mount an effective challenge to a climate policy process that would only allow a narrow range of scenarios to be explored.

Most academics feel distinctly uncomfortable stepping over the invisible line that separates their day job from wider social and political concerns. There are genuine fears that being seen as advocates for or against particular issues could threaten their perceived independence. Scientists are one of the most trusted professions. Trust is very hard to build and easy to destroy.

But there is another invisible line, the one that separates maintaining academic integrity and self-censorship. As scientists, we are taught to be sceptical, to subject hypotheses to rigorous tests and interrogation. But when it comes to perhaps the greatest challenge humanity faces, we often show a dangerous lack of critical analysis.

In private, scientists express significant scepticism about the Paris Agreement, BECCS, offsetting, geoengineering and net zero. Apart from some notable exceptions, in public we quietly go about our work, apply for funding, publish papers and teach. The path to disastrous climate change is paved with feasibility studies and impact assessments.

Rather than acknowledge the seriousness of our situation, we instead continue to participate in the fantasy of net zero. What will we do when reality bites? What will we say to our friends and loved ones about our failure to speak out now?

The time has come to voice our fears and be honest with wider society. Current net zero policies will not keep warming to within 1.5°C because they were never intended to. They were and still are driven by a need to protect business as usual, not the climate. If we want to keep people safe then large and sustained cuts to carbon emissions need to happen now. That is the very simple acid test that must be applied to all climate policies. The time for wishful thinking is over.

INTERVIEW: The Irish Women’s Lobby is standing up for women’s rights and free speech

INTERVIEW: The Irish Women’s Lobby is standing up for women’s rights and free speech

In this article which originally appeared on FeministCurrent, Megan Murphy is talking with two members of the Irish Women’s Lobby about their fight against the Gender Recognition Act and its consequences for Irish women.


By Megan Murphy

The Irish Women’s Lobby (IWD) launched on March 8, 2021. I interviewed three members of the group recently about their goals and the particular issues they are dealing with in Ireland.

Meghan Murphy: What is the purpose of the Irish Women’s Lobby? What are your main aims and fights? 

IWL: Well I guess the first thing we’d say is that, as Irish women, we’re in a very peculiar and disturbing time in Irish history. We are living in an environment and time where not only are our rights being eroded in Irish legislation, but the erosion of our rights is being championed as progress by people who should know better — among them some who are well paid to know better. There’s nothing unique about our situation, we see this being rolled out all across the Western world, but it is significantly more advanced in Ireland than in many other nations, and we have the “self-ID” [this is shorthand for this kind of legislation, allowing essentially anyone to self-identify as the opposite sex, easily] aspect of the Irish 2015 Gender Recognition Act to thank for that.

We set up the Irish Women’s Lobby (IWL) in response to this and other situations women are currently facing here. Ireland has become an increasingly hostile environment for any woman raising her voice in defense of her own sex-based rights, and this has been increasing year after year since 2015, but at this point we have reached a ludicrous level. Our predicament might have some comedic value if it weren’t so likely to cost some women their lives. This is because the situation here has advanced to the point where male sex offenders are now being incarcerated in female prisons.

The problem here is that Ireland passed the Gender Recognition Act in a form which allows legal “gender” changes without any requirement for medical intervention or evaluation. This was introduced with virtually no discussion and certainly no real investigation into possible negative repercussions. The enactment of this legislation has created a scenario where trans-identifying males can gain access to any spaces or services designated for females, with zero safeguarding. Alongside the legislation there has been relentless campaigning from “social justice” activists, propagating an environment where feminists are unable to voice their concerns without fear of retaliation.

Reflecting the power of the lobby, the takeover of the policy-making arena and NGOs in Ireland is extensive, and of course it is women who are targeted. The Irish Health Service removed all mention of “woman” and “women” from an ad campaign to prevent Cervical Cancer, apparently in an effort to be “inclusive.” Following protest spearheaded by Radicailín, a radical feminist group made up of Irish and migrant women, the ad was updated, but it still uses “woman” only once, and “people” five times (“women” doesn’t appear at all). Meanwhile, in Ireland, unlike with cervical cancer, prostate cancer remains a men-only disease, and has not magically become “gender-neutral” in an effort to be “inclusive.”

The public, for the most part, are largely unaware that the Gender Recognition Act is in place, nor do they understand the level of threat it carries for women and girls. The IWL is attempting to raise these and other issues, and create room for discussion across the public narrative. We are, of course, bullied and abused for it in a multitude of ways, as feminists are and always have been.

Our first and most urgent aim is to provide media and political representation for women in Ireland. This is because the National Women’s Council of Ireland is actively working against women’s rights. They — along with Amnesty International, Trans Equality Network Ireland, and other well-funded NGOs — signed a petition calling for the removal of “legitimate representation” from women like ourselves and others who “defend biology.” In a situation where we have the National Women’s Council of Ireland and Amnesty International demanding that any Irish woman (or man for that matter) who speaks out against the damaging and harmful effects of the 2015 Gender Recognition Act be denied media and political representation, we had no choice but to insist on our democratic right to that representation. When that letter was signed by those groups, and the National Women’s Council of Ireland in particular, we knew that as Irish women we had no choice but speak out in defiance of those who signed on to a call to silence Irish women in the public sphere. We feel the facts here speak for themselves; it should be plainly apparent that the signatories to that letter acted in a manner that was aggressive, disturbing, and blatantly totalitarian.

MM: How does the Irish women’s movement differ from the women’s movement in other parts of Europe and North America? 

IWL: The women’s movement here differs in all sorts of ways, one unfortunate manifestation being the number of women who declare themselves feminists while undermining or outright aggressing against women’s sex-based rights. You’d have to despair for a feminism that doesn’t recognize its own purpose. All of this is of course heavily underpinned by social class, as is everything in Ireland. You could say class is to Ireland what race is to the United States – of course they’re not the same thing, but there are some startling parallels. In Ireland, class is the great unmentionable — you’re not supposed to talk about that. The problem is deeply rooted in our history of British colonialism, and has persisted for centuries.

Every part of the West will have its own regional issues. For us, a shift towards the left was socially necessary in order to counterbalance a national narrative that had leaned too heavily towards religious and social conservatism for too long, but we are knee-deep in neoliberal nonsense now. Some parts of the Western World have issues with the political narrative going too far right. We have the opposite problem: we’ve gone too far left — but like so many other places, it’s a “left” that has abandoned a class analysis, and with it, the working classes, both female and male. Ireland’s woke brigade have got drunk on their own Kool-Aid, but we’ve all got to share the hangover.

MM: What is the situation with prostitution currently? 

IWL: The vast majority of women in Irish prostitution — about  95 per cent — are migrant women, predominantly from the poorer countries of Eastern Europe but also from Nigeria, Brazil, and parts of Asia. The percentages will fluctuate, but foreign women in the Irish sex trade always figure somewhere at 90+ per cent. That’s been the situation for years; it’s very sad. It’s also very sickening to see the Soros funded pro-prostitution lobbyists relentlessly campaign to decriminalize pimps in Ireland. Migrant women are generally paid a pittance once their pimp takes their cut, and the push to decriminalize their pimps comes from women who charge 300 and 400 euros an hour in escort prostitution and are salaried to press for the full decriminalization of the Irish sex trade on top of that. They’re in no way representative of the women who would suffer most if they got their way in decriminalizing the pimps of the Irish sex trade.

It is now illegal to purchase the body of a woman (or anyone) for sexual use in Ireland, but male habits of sexual entitlement die hard, and we would say there are not nearly enough convictions, though there have been some. There are numerous problems in this area, including that some organizations and individuals who speak out against prostitution use apolitical language, like “sex work” and “the sex buyers’ law” etc. This kind of framing argues against itself: you cannot say that prostitution is inherently violent while simultaneously framing it as employment, and you cannot say that what men purchase in prostitution is sexual access to women’s bodies while at the same time referring to them as “sex buyers.” The international abolitionist movement and the survivor’s movement in particular has very strong ties to Ireland. That movement has a language all of its own, much of it framed by survivors. It’s a pity more Irish campaigners didn’t take the time to learn it.

MM: Can you explain the issue around language a little further? What is preferable?

IWL: Terms like “sex work”, “sex buyers’ law,” and “the Equality Model” are never used here — not by anyone political, strategical, or experienced. Irish abolitionist activists say “prostitution” to refer to prostitution, “punters” to refer to johns, and “the Abolitionist Model” or “the Nordic Model” to refer to abolitionist legal frameworks. Survivors who spent a decade fighting for the Nordic Model now have to listen to the corporate reframing of “the Equality Model,” which may work well elsewhere in the world, but that’s not what Irish women fought for. This language was imposed on Irish sex-trade survivors by corporate feminists who never took the time to ask. You’d be interested to know what they’re thinking, except they’re not thinking. Feminist organizations that ignore survivor groups in their anti sex-trade campaign planning are not thinking at all.

MM: Is anything else of note happening with gender identity legislation and ideology in Ireland? 

IWL: In 2007, the Irish High Court found that Ireland was in breach of the European Convention on Human Rights as it did not have a process to legally recognize the “acquired gender” of transsexual persons. In 2011, a Government Gender Recognition Advisory Group after broad consultation recommended medical gatekeeping, and living full-time for a two-year period in the “changed gender” prior to receiving a Gender Recognition Certificate (GRC). The subsequent Gender Recognition Bill published in December 2014 required medical evaluation and certification.

However, following lobbying and subterfuge, the Gender Recognition Act (GRA) that was passed in 2015 had no such requirements, or any gatekeeping whatsoever. In fact, the GRA allows any person to download and fill in an A4 form, have it notarized, making them, for all intents and purposes, legally the “opposite” sex.

The lack of any gatekeeping whatsoever means that any man — be he a rapist, a pedophile, a voyeur, or any type of sexual pervert — can obtain a Gender Recognition Certificate (GRC) that allows him to access all areas dedicated for women. That includes: hospital wards, changing rooms, prisons, domestic violence refuges, clinics treating victims of sexual assault, changing facilities etc. There are literally no limits. What’s more, “sex” is not a specific “protected characteristic” under Irish Equality legislation — “gender” is, rendering any defence of women’s right to single-sex facilities even weaker.

Because of self-ID, any violent male sex offender can legally identify as a woman, and demand to be imprisoned with vulnerable women in Ireland. This has already happened. One man charged with ten counts of sex offences was taken directly from the courthouse to the women’s estate in Dublin’s Mountjoy Prison. Another violent young man — whose court report states that the expert from the Tavistock gender clinic did not believe he had gender dysphoria — was allowed to obtain a GRC while in state care as a violent offender, and has been housed in Limerick Women’s Prison. His own mother had to move cross country to a secret location to escape him, such was the seriousness of his homicidal intentions, which are wholly transfixed on women. The Irish public, however, were fed a story in the mainstream press about “Ireland’s Homicidal Girl.” Needless to say, the safety, health, and welfare of the imprisoned women — most of whom, if not all, are victims of sexual and violent abuse — are completely disregarded. Ireland’s terrible history of abusing incarcerated women is being perpetuated, but this time in the name of the “new religion” rather than the old.

MM: The IWL has an upcoming online event, on April 29, called “Speak Up For Free Speech.” Can you tell me about that event and why you felt it was important to organize something specifically addressing free speech? 

IWL: The issue of free speech has become very urgent, both here in Ireland and across the Global North as legislation is being drafted and enacted to expand “hate crimes” to include “hate speech.” Wherever this legislation is enacted, it curtails our right to free expression in harmful and dangerous ways. Women face the prospect of being accused of a hate crime for stating biological facts, or even “misgendering.” If this bill passes, the National Women’s Council of Ireland and Amnesty International won’t need to sign a petition demanding our right to political and media representation be removed, because those of us who “defend biology” will already be silenced by law.

Of the many pressing issues facing women and girls, the issue of free speech is absolutely crucial — if we are not allowed to say that women have the right to single-sex spaces, how the hell can we defend our right to those spaces?

We think the timing of this webinar is absolutely perfect — we are hosting Iseult White, who will be discussing free speech and cancel culture here in Ireland; Lisa Mackenzie, who will be talking about the Scottish experience, and of course we are really looking forward to hearing from you about what women across North America have been dealing with too.

Letter #16 Re-Evaluating Solar Photovoltaic Power: Considering the ecological impacts we aim to reduce

Letter #16 Re-Evaluating Solar Photovoltaic Power: Considering the ecological impacts we aim to reduce

In her “Letter to Greta Thunberg” series, Katie Singer explains the real ecological impacts of so many modern technologies on which the hope for a bright green (tech) future is based on.


A letter to Greta Thunberg
by Katie Singer

Even when reality is harsh, I prefer it. I’d rather engineers say that my water could be off for three hours than tell me that replacing the valve will take one hour. I prefer knowing whether or not tomatoes come from genetically modified seed. If dyeing denim wreaks ecological hazards, I’d rather not keep ignorant.

The illusion that we’re doing good when we’re actually causing harm is not constructive. With reality, discovering true solutions becomes possible.

As extreme weather events (caused, at least in part, by fossil fuels’ greenhouse gas [GHG] emissions) challenge electrical infrastructures, we need due diligent evaluations that help us adapt to increasingly unpredictable situations—and drastically reduce greenhouse gas emissions and ecological damage. I have a hard time imagining a future without electricity, refrigerators, stoves, washing machines, phones and vehicles. I also know that producing and disposing of manufactured goods ravages the Earth.

Internationally, governments are investing in solar photovoltaics (PVs) because they promise less ecological impacts than other fuel sources. First, I vote for reviewing aspects of solar systems that tend to be overlooked.

Coal-fired power plants commonly provide electricity to smelt silicon for solar panels. Photo credit: Petr Štefek

Hazards of Solar Photovoltaic Power
1. Manufacturing silicon wafers for solar panels depends on fossil fuels, nuclear and/or hydro power. Neither solar nor wind energy can power a smelter, because interrupted delivery of electricity can cause explosions at the factory. Solar PV panels’ silicon wafers are “one of the most highly refined artifacts ever created.”[1] Manufacturing silicon wafers starts with mining quartz; pure carbon (i.e. petroleum coke [an oil byproduct] or charcoal from burning trees without oxygen); and harvesting hard, dense wood, then transporting these substances, often internationally, to a smelter that is kept at 3000F (1648C) for years at a time. Typically, smelters are powered by electricity generated by a combination of coal, natural gas, nuclear and hydro power. The first step in refining the quartz produces metallurgical grade silicon. Manufacturing solar-grade silicon (with only one impurity per million) requires several other energy-intensive, greenhouse gas (GHG) and toxic waste-emitting steps. [2] [3] [4]

2. Manufacturing silicon wafers generates toxic emissions
In 2016, New York State’s Department of Environmental Conservation issued Globe Metallurgical Inc. a permit to release, per year: up to 250 tons of carbon monoxide, 10 tons of formaldehyde, 10 tons of hydrogen chloride, 10 tons of lead, 75,000 tons of oxides of nitrogen, 75,000 tons of particulates, 10 tons of polycyclic aromatic hydrocarbons, 40 tons of sulfur dioxide and up to 7 tons of sulfuric acid mist. To clarify, this is the permittable amount of toxins allowed annually for one metallurgical-grade silicon smelter in New York State. [5] Hazardous emissions generated by silicon manufacturing in China (the world’s leading manufacturer of solar PVs) likely has significantly less regulatory limits.

3. PV panels’ coating is toxic
PV panels are coated with fluorinated polymers, a kind of Teflon. Teflon films for PV modules contain polytetrafluoroethylene (PTFE) and fluorinated ethylene (FEP). When these chemicals get into drinking water, farming water, food packaging and other common materials, people become exposed. About 97% of Americans have per- and polyfluoroalkyl substances (PFAs) in their blood. These chemicals do not break down in the environment or in the human body, and they can accumulate over time. [6] [7] While the long-term health effects of exposure to PFAs are unknown, studies submitted to the EPA by DuPont (which manufactures them) from 2006 to 2013 show that they caused tumors and reproductive problems in lab animals. Perfluorinated chemicals also increase risk of testicular and kidney cancers, ulcerative colitis (Crohn’s disease), thyroid disease, pregnancy-induced hypertension (pre-eclampsia) and elevated cholesterol. How much PTFEs are used in solar panels? How much leaks during routine operation—and when hailstorms (for example) break a panels’ glass? How much PTFE leaks from panels discarded in landfills? How little PFA is needed to impact health?

4. Manufacturing solar panels generates toxic waste. In California, between 2007 and the first half of 2011, seventeen of the state’s 44 solar-cell manufacturing facilities produced 46.5 million pounds of sludge (semi-solid waste) and contaminated water. California’s hazardous waste facilities received about 97 percent of this waste; more than 1.4 million pounds were transported to facilities in nine other states, adding to solar cells’ carbon footprint. [8]

5. Solar PV panels can disrupt aquatic insects’ reproduction. At least 300 species of aquatic insects (i.e. mayflies, caddis flies, beetles and stoneflies) typically lay their eggs on the surface of water. Birds, frogs and fish rely on these aquatic insects for food. Aquatic insects can mistake solar panels’ shiny dark surfaces for water. When they mate on panels, the insects become vulnerable to predators. When they lay their eggs on the panels’ surface, their efforts to reproduce fail. Covering panels with stripes of white tape or similar markings significantly reduces insect attraction to panels. Such markings can reduce panels’ energy collection by about 1.8 percent. Researchers also recommend not installing solar panels near bodies of water or in the desert, where water is scarce. [9]

Solar PV users may be unaware of their system’s ecological impacts. Photo credit: Vivint Solar from Pexels

6. Unless solar PV users have battery backup (unless they’re off-grid), utilities are obliged to provide them with on-demand power at night and on cloudy days. Most of a utility’s expenses are dedicated not to fuel, but to maintaining infrastructure—substations, power lines, transformers, meters and professional engineers who monitor voltage control and who constantly balance supply of and demand for power. [10] Excess power reserves will increase the frequency of alternating current. When the current’s frequency speeds up, a motor’s timing can be thrown off. Manufacturing systems and household electronics can have shortened life or fail catastrophically. Inadequate reserves of power can result in outages.

The utility’s generator provides a kind of buffer to its power supply and its demands. Rooftop solar systems do not have a buffer.

In California, where grid-dependent rooftop solar has proliferated, utilities sometimes pay nearby states to take their excess power in order to prevent speeding up of their systems’ frequency. [11]

Rooftop solar (and wind turbine) systems have not reduced fossil-fuel-powered utilities. In France, from 2002-2019, while electricity consumption remained stable, a strong increase in solar and wind powered energy (over 100 GW) did not reduce the capacity of power plants fueled by coal, gas, nuclear and hydro. [12]

Comparing GHG emissions generated by different fuel sources shows that solar PV is better than gas and coal, but much worse than nuclear and wind power. A solar PV system’s use of batteries increases total emissions dramatically. Compared to nuclear or fossil fuel plants, PV has little “energy return on energy Invested.” [13]

7. Going off-grid requires batteries, which are toxic. Lead-acid batteries are the least expensive option; they also have a short life and lower depth of discharge (capacity) than other options. Lead is a potent neurotoxin that causes irreparable harm to children’s brains. Internationally, because of discarded lead-acid batteries, one in three children have dangerous lead levels in their blood. [14] Lithium-ion batteries have a longer lifespan and capacity compared to lead acid batteries. However, lithium processing takes water from farmers and poisons waterways. [15] Lithium-ion batteries are expensive and toxic when discarded. Saltwater batteries do not contain heavy metals and can be recycled easily. However, they are relatively untested and not currently manufactured.

8. Huge solar arrays require huge battery electric storage systems (BESS). A $150 million battery storage system can provide 100 MW for, at most, one hour and eighteen minutes. This cannot replace large-scale delivery of electricity. Then, since BESS lithium-ion batteries must be kept cool in summer and warm in winter, they need large heating, ventilation, air conditioning (HVAC) systems. (If the Li-ion battery overheats, the results are catastrophic.) Further, like other batteries, they lose their storage capacity over time and must be replaced—resulting in more extraction, energy and water use, and toxic waste. [16]

9. Solar PV systems cannot sufficiently power energy guzzlers like data centers, access networks, smelters, factories or electric vehicle [EV] charging stations. If French drivers shifted entirely to EVs, the country’s electricity demands would double. To produce this much electricity with low-carbon emissions, new nuclear plants would be the only option. [17] In 2007, Google boldly aimed to develop renewable energy that would generate electricity more cheaply than coal-fired plants can in order to “stave off catastrophic climate change.” Google shut down this initiative in 2011 when their engineers realized that “even if Google and others had led the way toward a wholesale adaptation of renewable energy, that switch would not have resulted in significant reductions of carbon dioxide emissions…. Worldwide, there is no level of investment in renewables that could prevent global warming.” [18]

10. Solar arrays impact farming. When we cover land with solar arrays and wind turbines, we lose plants that can feed us and sequester carbon. [19]

11. Solar PV systems’ inverters “chop” current and cause “dirty” power, which can impact residents’ health. [20]

12. At the end of their usable life, PV panels are hazardous waste. The toxic chemicals in solar panels include cadmium telluride, copper indium selenide, cadmium gallium (di)selenide, copper indium gallium (di)selenide, hexafluoroethane, lead, and polyvinyl fluoride. Silicon tetrachloride, a byproduct of producing crystalline silicon, is also highly toxic. In 2016, The International Renewable Energy Agency (IRENA) estimated that the world had 250,000 metric tons of solar panel waste that year; and by 2050, the amount could reach 78 million metric tons. The Electric Power Research Institute recommends not disposing of solar panels in regular landfills: if modules break, their toxic materials could leach into soil. [21] In short, solar panels do not biodegrade and are difficult to recycle.

To make solar cells more recyclable, Belgian researchers recommend replacing silver contacts with copper ones, reducing the silicon wafers’ (and panels’) thickness, and removing lead from the panels’ electrical connections. [22]

Aerial view of a solar farm. Photo credit: Dsink000

 

 

 

 

 

 

 

13. Solar farms warm the Earth’s atmosphere.
Only 15% of sunlight absorbed by solar panels becomes electricity; 85% returns to the environment as heat. Re-emitted heat from large-scale solar farms affects regional and global temperatures. Scientists’ modeling shows that covering 20% of the Sahara with solar farms (to power Europe) would raise local desert temperatures by 1.5°C (2.7°F). By covering 50% of the Sahara, the desert’s temperature would increase by 2.5°C (4.5°F). Global temperatures would increase as much as 0.39°C—with polar regions warming more than the tropics, increasing loss of Arctic Sea ice. [23] As governments create “green new deals,” how should they use this modeling?

Other areas need consideration here: dust and dirt that accumulate on panels decreases their efficiency; washing them uses water that might otherwise go to farming. Further, Saharan dust, transported by wind, provides vital nutrients to the Amazon’s plants and the Atlantic Ocean. Solar farms on the Sahara could have other global consequences. [24]

14. Solar PV users may believe that they generate “zero-emitting,” “clean” power without awareness of the GHGs, extractions, smelting, chemicals and cargo shipping involved in manufacturing such systems—or the impacts of their disposal. If our only hope is to live with much less human impact to ecosystems, then how could we decrease solar PVs’ impacts? Could we stop calling solar PV power systems “green” and “carbon-neutral?” If not, why not?


Katie Singer’s writing about nature and technology is available at www.OurWeb.tech/letters/. Her most recent book is An Electronic Silent Spring.

REFERENCES

1. Schwarzburger, Heiko, “The trouble with silicon,” PV Magazine, September 15, 2010.

2. Troszak, Thomas A., “Why do we burn coal and trees to make solar panels?” August, 2019.  https://www.researchgate.net/publication/335083312_Why_do_we_burn_coal_and_trees_to_make_solar_panels

3. Kato, Kazuhiko, et. al., “Energy Pay-back Time and Life-cycle CO2 Emission of Residential PV Power System with Silicon PV Module,” Progress in Photovoltaics: Research and Applications, John Wiley & Sons, 1998.

4. Gibbs, Jeff and Michael Moore, “Planet of the Humans,” 2019 documentary about the ecological impacts and money behind “renewable” power systems, including solar, wind and biomass. www.planetofthehumans.com

5. New York State Dept. of Environmental Conservation – Facility DEC ID: 9291100078 PERMIT Issued to: Global Metallurgical Inc.; http://www.dec.ny.gov/dardata/boss/afs/permits/929110007800009_r3.pdf  

6. https://www.epa.gov/pfas/basic-information-pfas; https://www.niehs.nih.gov/health/topics/agents/pfc/index.cfm
https://www.medpagetoday.com/publichealthpolicy/environmentalhealth/84009
Way, Dan, “Policymakers demand answers about GenX-like compounds in solar panels,” CJ Exclusives, July 16, 2018. https://www.carolinajournal.com/news-article/policymakers-largely-unaware-of-genx-like-compounds-in-solar-panels/
“Solar panels could be a source of GenX and other perfluorinated contaminants,” NSJ Staff News, Feb. 16, 2018.  https://nsjonline.com/article/2018/02/solar-panels-could-be-a-source-of-genx-and-other-perflourinated-contaminants/
Lerner, Sharon, “The Teflon Toxin,” The Intercept, Aug. 17, 2015. About PFOAs, hazardous chemicals used in Teflon coating and on solar panels and found in 97% of peoples’ bodies.
Lim, Xiao Zhi “The Fluorine Detectives,” Nature, Feb. 13, 2019. https://www.scientificamerican.com/article/the-fluorine-detectives/  

7. Rich, Nathaniel, “The Lawyer Who Became DuPont’s Worst Nightmare,” January 6, 2016. About attorney Robert Bilott’s twenty-year battle against DuPont for contaminating a West Virginia town with unregulated PFOAs. See also Todd Haynes film, “Dark Waters,” 2019.

8. https://www.wired.com/story/solar-panels-are-starting-to-die-leaving-behind-toxic-trash/
Hodgson, Sam, “Solar panel makers grapple with hazardous waste problem,” Associated Press, Feb. 11, 2013; https://business.financialpost.com/commodities/energy/solar-panel-makers-grapple-with-hazardous-waste-problem

9. Egri, Adam, Bruce A. Robertson, et al., “Reducing the Maladaptive Attractiveness of Solar Panels to Polarotactic Insects,” Conservation Biology, April, 2010.

10. “Exhibit E to Nevada Assembly Committee on Labor,” Submitted by Shawn M. Elicegui, May 20, 2025, on behalf of NV Energy.

11. https://www.latimes.com/business/la-fi-solar-batteries-renewable-energy-california-20190605-story.html “California has too much solar power. That might be good for ratepayers,” Sammy Roth, LA Times, June 5, 2019. https://www.wsj.com/articles/how-california-utilities-are-managing-excess-solar-power-1488628803, “How California Utilities Are Managing Excess Solar Power,” Cassandra Sweet, Wall Street Journal, March 4, 2017.
12 Jancovici: Audition Assemblée Nationale: Impact des EnR – 16 Mai 2019.  https://www.assemblee-nationale.fr/dyn/opendata/CRCANR5L15S2019PO762821N030.html. See also video with slides: https://www.youtube.com/watch?v=Hr9VlAM71O0&t=1560s; minutes 45:20-48:30.

13 https://jancovici.com/wp-content/uploads/2020/07/Jancovici_Mines_ParisTech_cours_7.pdf (slides 18 -19)

14  UNICEF and Pure Earth, “A third of the world’s children poisoned by lead,” 29 July 2020. https://www.unicef.org/press-releases/third-worlds-children-poisoned-lead-new-groundbreaking-analysis-says

15. Katwala, Amit, “The spiraling environmental cost of our lithium battery addiction,” 8.5.18; https://www.wired.co.uk/article/lithium-batteries-environment-impact. Choi, Hye-Bin, et al., “The impact of anthropogenic inputs on lithium content in river and tap water,” Nature Communications, 2019.

16. Martin, Calvin Luther, “BESS Bombs: The huge explosive toxic batteries the wind& solar companies are sneaking into your backyard, Parts 1 and 2,” Aug. 28, 2019.  https://rivercitymalone.com/win-solar-energy/bess-bombs-part-1/
https://rivercitymalone.com/win-solar-energy/bess-bombs-part-2/

17. https://jancovici.com/transition-energetique/transports/la-voiture-electrique-est-elle-la-solution-aux-problemes-de-pollution-automobile/

18. https://spectrum.ieee.org/energy/renewables/what-it-would-really-take-to-reverse-climate-change.

19. Carroll, Mike, N.C. Cooperative Extension, Craven County Center, updated 2020. “Considerations for Transferring Agricultural Land to Solar Panel Energy Production.”  https://craven.ces.ncsu.edu/considerations-for-transferring-agricultural-land-to-solar-panel-energy-production/

20. Segell, Michael, “Is Dirty Electricity Making You Sick?” Prevention Magazine, Jan. 2009.

21.https://fee.org/articles/solar-panels-produce-tons-of-toxic-waste-literally/ https://www.forbes.com/sites/michaelshellenberger/2018/05/23/if-solar-panels-are-so-clean-why-do-they-produce-so-much-toxic-waste/?sh=14e584e0121c

22. O’Sullivan, Barry, “Are Your Solar Panels Recyclable?” 9 Feb. 2015.

23. Lu, Zhengyao and Benjamin Smith, “Solar panels in Sahara could boost renewable energy but damage the global climate—here’s why,” TheConversation.com, Feb. 11, 2021. https://theconversation.com/solar-panels-in-sahara-could-boost-renewable-energy-but-damage-the-global-climate-heres-why-153992

24. Gray, Ellen, “NASA Satellite Reveals How Much Saharan Dust Feeds Amazon’s Plants,” Feb. 22, 2015. https://www.nasa.gov/content/goddard/nasa-satellite-reveals-how-much-saharan-dust-feeds-amazon-s-plants