Net Zero and Other Climate Delusions

Net Zero and Other Climate Delusions

Facing The Truth

by Elisabeth Robson

“In order to maintain our way of living, we must tell lies to each other, and especially to ourselves.” — Derrick Jensen


On November 6, 2020, I allowed myself one breath out, a breath of relief that a despicable administration and its despicable leader have been voted out of office. With my next breath in, I reminded myself that the administration that will replace it will be just as despicable, only in different ways. Its leaders may be more humane—perhaps they will no longer separate children from their parents at the border, and perhaps they will offer sincere sympathies to the families of those who have died of COVID-19—but they will not usher in a voluntary transition to a more sane and sustainable way of living. They may not lie about their tax returns or the size of their inauguration crowd, but they will certainly lie about many other things. More dangerously, they will lie about those things while believing they are righteous, and in so doing will convince many others to believe they are righteous, too.

One lie the Biden-Harris administration is telling that I am most immediately concerned with is the lies that the words “clean energy” and “net zero” mean something real. This lie is rooted in a fundamental denial of physical reality.

Clean Energy and Net Zero

The first and primary goal of the Biden-Harris climate plan is to

“Ensure the U.S. achieves a 100% clean energy economy and reaches net-zero emissions no later than 2050.”

Most people will, at this point, be familiar with the term “clean energy”. This usually means renewables, including wind, solar, hydropower, hydrogen, geothermal, and nuclear. These technologies are considered “clean” because the generated energy does not emit CO2 at generation time.

However, many will be less familiar with the term “net zero”. It’s understandable why so many in climate change circles, including Joe Biden and the Intergovernmental Panel on Climate Change (IPCC), would rely on the concept of “net zero” given the decline in CO2 emissions required to meet the IPCC’s stated goals of keeping global warming to “well below +2C” if we actually wanted to get our emissions to zero:

SOURCE: @Peters_Glen

The delusion of “clean energy” and “net zero” allows policy makers world wide to instead produce a graph that looks more like this:

SOURCE: Science, Vol 354, Issue 6309 14 October, 2016

This second graph is a lot more reassuring than the first. It means that we can continue to emit CO2 as long as we count on something—technology? forests? soil?—to pull extra CO2 out of the atmosphere (called carbon dioxide removal, or CDR) so we can say our CO2 emissions are “net zero” instead of zero. As long as the amount of CO2 we continue to emit is less than or equal to the CO2 we are pulling out of the atmosphere at the same time, we’re good.

We imagine that instead of facing the cliff-like drop-off in CO2 emissions in graph 1, we can follow graph 2, by gradually replacing the electricity grid with renewables producing “clean energy”, replace all 1.2 billion cars in the world with EVs, somehow figure out how to make concrete without massive amounts of fossil fuels, invent a substitute for steel that doesn’t require massive amounts of fossil fuels, replace industrial agriculture with regenerative agriculture world wide while still feeding 8 billion people, and do all this at a slower pace than within the decade or two required to get to zero emissions to avoid climate catastrophe. And, if the CDR works well enough, perhaps we imagine that we can continue to burn small amounts of fossil fuels for the foreseeable future, putting CO2 into the atmosphere and pulling it out in equal measure.

Clean energy and net zero go hand in hand, and not just in the Biden-Harris climate plan. Indeed, net zero is required for a clean energy plan to work. To see why, think about what’s required for clean energy.

Wind and Solar

To build, install, and maintain wind and solar requires not just a whole lot of mining and refining of the materials (metals and minerals) to manufacture the component parts of wind turbines and solar panels; it also requires installing the turbines and the panels in giant farms, most often on public lands where plants and animals live until they are scraped away and killed for these farms. Installing the giant turbines and panels is a fairly energy intensive process. It also requires maintaining these farms for their lifespan, which is about 25-30 years, and then dismantling and disposing of the waste at the end of that lifespan (most often in landfills) and replacing them with new wind turbines and solar panels.

It also requires building massive energy storage plants, either from batteries, which require their own energy intensive resources to make, or in energy storage schemes like pumped hydro, which requires building dams (see below). It also requires building additional grid lines to the solar and wind farms and their associated energy storage, which requires vast amounts of copper, steel, and concrete. None of this is easy to do, and all of it currently requires a whole lot of minerals and metals, which must be mined out of the ground, and energy, which is usually in the form of fossil fuels. Hmmm. That means these clean energy solutions are still emitting a lot of CO2.

Dams

To build dams requires immense amounts of concrete, and concrete is still one of the world’s most energy-intensive substances to make. It requires large, heavy machinery, running on fossil fuels, and high heat, provided by fossil fuels. And the reservoirs behind the dams often become methane producers, and methane is a greenhouse gas with 20 times the atmosphere heating qualities of CO2. The water energy must be turned into electricity, which must be transported for use or storage, requiring grid lines. Hmmm. That means that this clean energy solution is still emitting greenhouse gases, both CO2 and methane. Oh, and dams kill rivers, but that doesn’t seem to matter to clean energy advocates.

Hydrogen

Hydrogen fuel is clean when burned (meaning it produces only water at burn time), but currently requires a lot of energy to make. It is usually made from natural gas (a fossil fuel), but sometimes biomass (i.e. plants and trees). Mining natural gas emits quite a bit of methane, and cutting trees and harvesting plants emits CO2. The energy required to convert natural gas or biomass to hydrogen fuel could come from renewable sources but as we’ve seen those renewable sources are not clean. Hmmm. That means this clean energy solution is still emitting greenhouse gases into the atmosphere.

Geothermal

Geothermal might be the least bad of these bad solutions, but geothermal still requires that we build infrastructure (from steel) and power plants (to convert steam heat into electricity) and grid infrastructure to get the electricity from the source to where the electricity is used. Hmmm. All of those steps require metals, minerals, concrete, and other resources, so it would seem this clean energy solution is still emitting greenhouse gases into the atmosphere, too.

Nuclear

Everyone already knows the main downside to nuclear energy: we’ve seen these downsides first hand at Fukushima and Chernobyl and Three Mile Island. Aside from the energy required to mine uranium, build nuclear power plants, and deal with the nuclear waste (all of which requires fossil fuels), the devastating long term impacts of nuclear waste on the natural environment mean that it is perhaps the epitome of delusion to consider nuclear energy clean in any way.

So, even if we were somehow to run our “clean energy economy” on electricity from renewables alone, we’d still be far from zero CO2 emissions. Which is why we need “net zero”. We need a way to offset the CO2 and other greenhouse gas emissions that will happen in the energy sector even if we were to somehow replace fossil fuels with renewables world wide. This accounting also does not include the emissions from other sectors producing greenhouse gas emissions, such as industrial agriculture, transportation, and industry (even if industry is run on renewables for its energy, large amounts of greenhouse gases are released during manufacturing from chemical reactions, as an example).

Negative Emissions Technologies

So what is the future something that we will rely on to pull CO2 from the air so we can get to net zero emissions? It’s a suite of technologies known as negative emissions technologies.

In a 2018 report on negative emissions technologies, the United Nations Framework on Climate Change Convention (UNFCCC, with 197 countries participating) includes the following technologies: reforestation and afforestation, land management, enhanced weathering, ocean fertilization, bioenergy with carbon capture and storage (BECCS), direct air capture and carbon storage (DACCS), and carbon capture and storage (CCS).

Nature-based NETs

Reforestation and afforestation means planting a whole lot of trees. It means reforesting the areas we’ve deforested, and it means planting trees in areas that were not previously forested. The thinking is that trees pull CO2 from the air as they grow. Of course, before industrial civilization, there were a whole lot more trees, and those trees were part of the normal carbon cycle of the Earth, pulling CO2 out of the air in balance with the amount of CO2 emitted by normal processes that are part of life and death on this planet. So to get more CO2 pulled from the atmosphere to offset the industrial emissions from fossil fuels and other man-made sources of greenhouse gases, we’d have to plant a whole lot more trees.

This at a time when deforestation continues apace for mining, development, and industrial agriculture, and at a time when population continues to grow and land is regularly cleared of forest in order to produce the vast quantities of food to feed that growing population. Unfortunately, many tree planting schemes concocted for carbon offsets tend to be mono-crops of trees, rather than forests, and so don’t contribute to increasing viable habitat for wildlife at the same time. In addition, if trees are planted in the wrong place, this can often do more harm than good. It is hard to argue against planting more trees (if done well, and in the right places), but given we continue to deforest more than reforest, it seems unlikely this solution is viable.

Increasing carbon storage in soil through land management:

including regenerative agriculture and biochar, could store up to 0.7 gigatons of carbon (GtC) a year from the atmosphere, according to the UNFCC, and perhaps more if the depth of carbon storage is increased significantly with deeper soils. Keep in mind, that the total GtC released into the atmosphere from fossil fuels is about 10 GtC a year, and that carbon capture in soil would require completely overhauling global industrial agriculture at a time when industrial agriculture is rapidly expanding to feed the world’s growing population.

Enhanced weathering

Enhanced weathering is a technique to increase the rate of CO2 absorption in slow natural mechanisms that remove CO2 from the air, such as rock weathering, by applying chemicals to rocks, or by spreading finely ground rock over large areas of land. This is a purely speculative NET since no studies have been done at scale on the process.

Ocean fertilization

Ocean fertilization is the process of adding fertilizer, typically iron, to the ocean to increase the uptake of CO2 by plankton algae. Only small tests have been done with ocean fertilization, including one rogue fisherman who dumped 100 tons of iron dust in the waters off Canada. As the UNFCCC states in its report, ocean fertilization is “associated with very high levels of uncertainty and ecological risks for relatively small sequestration potential.”

My conclusion is that manipulating nature to reduce atmospheric CO2 has limited potential at best, and the risk of damaging the natural ecology of the Earth at worst.

Technology NETs

That leaves technology. The technologies included in the UNFCCC report are carbon capture and storage (CCS), bioenergy with CCS, and direct air CCS. CCS is really just a catch all name for BECCS and DACCS, as well as the ecosystem manipulation techniques described above.

BECCS requires replacing the fossil fuels burned in power plants world wide with biomass fuels, and adding technology that can capture the CO2 emitted when burning the biomass. Estimates of the amount of land required to grow the biomass to replace electricity at current levels of demand are about twice the size of India. Needless to say this would be problematic not just for food production, but also the reforestation and afforestation plans mentioned above. Another major problem with BECCS is that capturing CO2 in power plants is still highly speculative, has been demonstrated in only a few power plants, and the captured CO2 is most often used for “enhanced oil recovery”—i.e. getting more oil out of the ground—rather than stored. As of 2012 there were 62,500 power plants operating around the world, and 18 of them can now capture carbon. I’ll leave you to do the math.

If we add CO2 capture to all existing, non-biomass burning power plants, this will reduce the CO2 emitted from fossil fuels at burn time, but will do nothing to stop the destructive mining to get the fossil fuels from the ground. Existing coal power plants that have been converted to biomass typically burn wood pellets, some of which come from forests cut down to provide that wood, which seems counterproductive given the first NET discussed above, requiring that we plant more trees, not cut more of them down. In addition, it takes more wood to produce the same energy as you’d get from burning coal, so more CO2 is emitted, and because of the long lag time in tree regrowth and associated carbon sequestration, it quickly becomes clear that burning biomass will add more CO2 to the atmosphere during the critical near-term time period we need to be rapidly decarbonizing.

This is a well-known loophole in CO2 accounting schemes, and yet biomass burning has been enthusiastically embraced by power plants as an easy way to reuse current technology without having to account for the CO2 emitted.

DACCS is another speculative technology that uses giant fans to bring air into reactors made with plastic and potassium hydroxide to bind with CO2 and remove it from the air.

The CO2 is then purified and processed with “chemicals” (I’m not sure which chemicals, it seems to be proprietary information)—a process that requires energy, of course—and the resulting pure CO2 can then be stored to keep it out of the atmosphere. However, to pay for the technology and energy required to capture CO2, rather than being stored, the captured CO2 is typically used for enhanced oil recovery, which would seem to make the entire process moot. Indeed, one of the most well known of the DACCS companies operating today, Carbon Engineering, partnered with Chevron in 2019 in order to use the captured CO2 to pump more oil and gas.

If the captured CO2 from both BECCS and DACCS is to be stored, which is necessary to prevent it from heating the atmosphere, the CO2 must be stored forever. So far the most promising technique for storing CO2 long-term is to mix it with water and inject it into basalt (volcanic) rock, where it reacts with the rock and remineralizes. This technique has been demonstrated in only a small number of experiments. If one imagines power plants and direct capture infrastructure capturing CO2 all around the world, this also begs the question of how to get the captured CO2 to locations where it can be stored into rock, remembering that the world currently emits about 40 GtCO2 a year, which is a huge amount of CO2. Would we use pipelines? And if so, how do we build the pipelines without a whole lot of steel and fossil fuels? Other techniques for storing CO2 are to put it in old salt mines or to replace oil extracted from the ground, but both of these storage techniques have limitations in a world with regular earthquakes, seepy rock, and human error.

In sum, none of the negative emissions technologies discussed in the UNFCCC report sound particularly hopeful, and even the UNFCCC admits in its own report that

“these technologies offer only limited realistic potential to remove carbon from the atmosphere.”

Policy Delusions

Despite this, the IPCC states in a post dated July 31, 2020, that

“global emissions need to be reduced to net-zero within the next few decades to avoid a dangerous increase in global temperatures”

and that

“the good news is we already have affordable, reliable technologies that can put the peak in global emissions behind us and start the drive down to net zero.”

They continue,

“Deployed quickly and on a major scale, the clean energy technologies we have at our disposal right now can bring about the kind of decline in energy-related emissions that would put the world on track for our longer-term climate goals.”

Governments around the world, including the United States, look to the IPCC for guidance on making policy related to climate change and yet this guidance is clearly delusional.

The list of lies one must tell oneself in order to believe this rhetoric is long:

  • renewable energy and associated technologies (e.g. electric vehicles) is “clean”;
  • deploying renewable energy world wide in time to avoid climate catastrophe is possible or even desirable;
  • mining and refining the metals and minerals required to build that renewable energy is an acceptable further destruction to the natural world at a time when scientists are telling us habitat loss and biodiversity loss and extinction are crises just as important as climate change;
  • that it’s okay for us to target “net zero” emissions rather than zero emissions because we have faith we’ll have the technology we need to pull CO2 from the air,
  • that we can deploy these technologies globally in time to prevent catastrophic climate change;
  • and perhaps worst of all, that any of this can be called “environmental justice” for those most impacted—the land, rivers, lakes, plants, and human and non-human animals whose homes and lives are lost to mining, industry, and technology.

Nowhere does the Biden-Harris plan for the future make mention of de-growth, reducing industry or the military, or reducing consumption. Nowhere. In fact we see the opposite: the catch phrase for the Biden-Harris administration is “build back better”. Build back to what? The unsustainable lifestyle to which we have become accustomed? A life of jumping on planes to the nearest tourist destination, where we buy crap we don’t need and throw away six months later? A life of building more houses, more roads, and bigger and more productive corporations with the municipal and industrial waste that goes with that? A life with a military that is the worst polluter in the United States and requires a constant supply of fossil fuels, metals, and minerals mined from the ground? Biden claims he wants to “build prosperity”. Does he understand that true prosperity is created by healthy ecosystems, because without healthy, flourishing, fecund ecosystems, there is no life on Earth? We live in a world where eight people have more wealth that most of the rest of the world combined. How is that prosperity helping the natural world? How is that prosperity being used to stop the destruction? The answer is obvious: it isn’t.

These are just a few of the lies we must tell to each other, and especially ourselves, if we wish to go along quietly with the policies outlined in the Biden-Harris plan for the next four years.

However, if you cannot lie to yourself or your loved ones, speak up. Tell the truth. Face ecological reality. This is no time for delusion, unless we are ready to ignore the suffering around us and give up on this beautiful planet we call home.


 

Why Today’s Bright Green Environmentalists Won’t Save the Planet

Why Today’s Bright Green Environmentalists Won’t Save the Planet

By Lierre Keith, Derrick Jensen, and Max Wilbert

“The beauty of the living world I was trying to save has always been uppermost in my mind,” Rachel Carson wrote.“That, and anger at the senseless, brutish things that were being done.”

Silent Spring, which inspired the modern environmental movement, was more than a critique of pesticides, it was a cri de couer against industrialized society’s destruction of the natural world.

Yet five decades of environmental activism haven’t stopped the destruction, or even slowed it. In those same decades, global animal populations have dropped by 70 percent. Right now, we are losing about one football field of forest every single second. Looking forward provides no solace: the oceans are projected to be empty of fish by 2048.

A salient reason for this failure is that so much environmentalism no longer focuses on saving wild beings and wild places, but instead on how to power their destruction. The beings and biomes who were once our concern have disappeared from the conversation. In their place we are now told to advocate for projects like the Green New Deal. While endangered ecosystems get a mention, the heart of the plan is “meeting 100 percent of the power demand in the United States through clean, renewable, and zero-emission energy sources” in the service of industrial manufacturing.

This new movement is called bright green environmentalism.

Its advocates believe technology and design can render industrial civilization sustainable, and that “green technologies” are good for the planet. Some bright greens are well-known and beloved figures like Al Gore, Naomi Klein, and Bill McKibben as well as organizations like the Sierra Club, Greenpeace, and Audubon. These committed activists have brought the emergency of climate change into consciousness, a huge win as glaciers melt and tundra burns. But bright greens are solving for the wrong variable. Their solutions to global warming take our way of life as a given, and the planet’s health as the dependent variable. That’s backwards: the planet’s health must be more important than our way of life because without a healthy planet you don’t have any way of life whatsoever.

The bright green narrative has to ignore the creatures and communities being consumed. Take the Scottish wildcat, numbering a grim 35, all at risk from a proposed wind installation. Or the birds dying by the thousands at solar facilities in California, where concentrated sunlight melts every creature flying over.

Or the entire biome of the southern wetland forest, being logged four times faster than South American rainforests. Dozens of huge pulp mills export 100 percent of this “biomass” to Europe to feed the demand for biofuels, which bright greens promote as sustainable and carbon-neutral. The forest has a biological diversity unmatched in North America, lush with life existing nowhere else and barely hanging on. This includes the Southeastern American Kestrel. They need longleaf pine savannahs, and longleaf pine have been reduced to 3% of their range. The kestrels depend for their homes on red-cockaded woodpeckers, who exist as a whisper at 1% of historic numbers. Last in this elegiac sample is the gopher tortoise. Four hundred mammals, birds, reptiles, amphibians, and insects cannot survive without the protective cover of the burrows dug by tortoises, tortoises now critically endangered. All these creatures are our kin: our fragile, wondrous, desperate kin, and environmentalists would have them reduced to pellets, shipped to Europe, and burned, while calling their slaughter “green.”

Facts about renewable energy are worse than inconvenient.

First, industrial civilization requires industrial levels of energy. Second is that fossil fuel — especially oil — is functionally irreplaceable. Scaling renewable energy technologies like solar, wind, hydro, and biomass, would constitute ecocide. Twelve percent of the continental United States would have to be covered in windfarms to meet electricity demand alone. To provide for the U.S.A.’s total energy consumption, fully 72% of the continent would have to be devoted to wind farms. Meanwhile, solar and wind development threaten to destroy as much land as projected urban sprawl, oil and gas, coal, and mining combined by 2050.

Finally, solar, wind, and battery technologies are, in their own right, assaults against the living world. From beginning to end, they require industrial-scale devastation: open-pit mining, deforestation, soil toxification that’s permanent on a geologic timescale, extirpation of vulnerable species, and use of fossil fuels. In reality, “green” technologies are some of the most destructive industrial processes ever invented. They won’t save the earth. They’ll only hasten its demise.

There are solutions, once we confront the actual problem.

Simply put, we have to stop destroying the planet and let the world come back. A recent study in Nature found we could cut the carbon added to the atmosphere since the Industrial Revolution in half by reverting 30% of the world’s farmland to its natural state. This would also preserve 70% of endangered animals and plants. This is the lowest of low hanging fruit when it comes to combating climate change and healing our planet. Everywhere there are examples of how the wounded are healed, the missing appear, and the exiled return. Forests repair, grasses take root, and soil sequesters carbon. It’s not too late.

The green new deal has reforestation as one of its goals, but it’s not the main goal, as it should be. If environmentalism is going to help save the planet — and if it’s going to respond to global warming commensurate with the threat — it needs to return to its roots, and remember the love that founders like Rachel Carson had for the land. We need to pledge our loyalty to this planet, our only home.

There’s no time for despair.

Wildcats and kestrels need us now. We have to take back our movement and defend our beloved. How can we do less? And with all of life on our side, how can we lose?


Derrick Jensen, Lierre Keith, and Max Wilbert are the authors of the forthcoming book, Bright Green Lies: How the Environmental Movement Lost Its Way and What We Can Do About It. The book will be available March 16th, but you can pre-order to your local bookstore or library via IndieBound now.

Green Revolution: A Misnomer

Green Revolution: A Misnomer

By Salonika

The Green Revolution is a misnomer: it sounds like a radical environmental movement when it’s the exact opposite of that. It is a movement led by corporations (including the Ford Foundation and the Rockefeller Foundation) to further reinforce the class-based heierarchy, while spreading an ecocidal practice across the world.

The Green Revolution has promoted the use of synthetic fertilizers and pesticides; hybridized seeds and high yielding crop varieties; expansion of irrigation infrastructure, and modernization of management techniques. It started in late 1950s and has been credited as the movement that saved the world from mass starvation. (The mass starvation seemed imminent due to the human population overshoot. The population was 3 billion at the time and since then has increased by more than 5 billion – an almost threefold increase!) Norman Borlaug, the father of Green Revolution, was awarded the Nobel Peace Prize in 1970 for saving a billion people from starvation.

Currently a second wave of Green Revolution is on the way. Influential people like Bill Gates are pushing the use of Genetically Modified Crops (GMOs) in countries of Africa as a new solution to the upcoming starvation.

This is the dominant narrative regarding the Green Revolution. There are some important points missing from this perfect little story.

Lets delve into the history of the agricorporations first.

The agricultural corporations have an intertwined history history with the wars. During World War II, the agricultural corporations (then chemical corporations) produced explosives and poisons. Monsanto operation the Dayton Project and the Mound Laboratories, and was involved in the development of the first nuclear weapons. During the Vietnam War, Monsanto also poisoned Vietnam, Cambodia and Laos with Agent Orange. The effects on human health and ecology can be felt to this day.

The war legacy of these corporations extends beyond this. According to the Nuremberg War Crimes Tribunals, Bayer had purchased 150 healthy women from the Auswitch concentration camp for experiments with sleep-inducing drugs. All of these women died during the experiments.

It is hard to believe that the companies that had no qualms in actively profiteering from wars, conducting war crimes, or purchasing humans, would simultaneously be sensitive to the sufferings of humanity. These corporations have proven time and again that they are willing to poison and exploit the oppressed (the poor, the women, those from the Global South) in pursuit of profit. It is ironical that proponents of GMOs use images of starving children in Africa to build a case in favor of these corporations.

Lets take a case of the state of Punjab in India.

The Green Revolution was introduced in Punjab in 1965. It has been credited for pulling India out of starvation.

In reality, there was no starvation in India in 1965.* A nationwide drought had increased the food prices, creating a need to import food grains. However, the US government and the World Band imposed a condition on the import of food grains and forced synthetic fertilizers and pesticides, and genetically redesigned crops to the farmers of Punjab. These synthetic fertilizers and pesticides were produced using the same chemicals that had been used to produce poisons and explosives during the Second World War. Native crops all over rejected these chemicals. So, the agriculture corporations genetically altered crops so that they would accept (and be dependent on) the synthetic chemicals. These crops later became known as the high yielding varieties and the hybridized seeds.

The Green Revolution has had serious implications in Punjab. The native biodiversity has been destroyed. Once, Punjab used to produce 41 varieties of wheat and 37 varieties of rice. Since the Green Revolution, all of this has been replaced by monocultures of imported crops.

These crops require further use of chemicals. It has toxified the entire ecology. A 2014 study found pesticide residue in 25% of breast milk sample collected from Punjab. In a culture where breast milk stands for purity and love of a mother for her child, a quarter of mothers cannot express this love toward their infants without simultaneously poisoning them.

The number cancer cases are so high in Punjab that a special train carries people suffering from pesticide-related cancer to Rajasthan (another state in India). This train is called the “cancer train.”

Technology transfer or wealth transfer?

The Green Revolution has been credited for technology transfer from the corporations to the farmers. In fact, it has resulted in a massive wealth transfer from farmers to corporations. The farmers in India are dying from an inability to pay the massive loans they have accrued. Since the 1990s, farmers suicide has been a national catastrophe in India. It is estimated that more than 10 farmers commit suicide every day. Ironically, or perhaps symbolically, most kill themselves on their fields by drinking pesticides.

I was once asked why the movement is called the Green Revolution. I said, “Because poison-your-land movement would have sounded less appealing.” It would definitely have been more accurate though!

The Impacts Of Thacker Pass Mine

The Impacts Of Thacker Pass Mine

In October, DGR conducted an on-the-ground fact finding mission to the sites of two proposed lithium mines in Nevada. In this article, we look at the facts regarding the plans Lithium Nevada company has for mining and processing lithium (mainly destined for making electric car batteries) in northern Nevada, at Thacker Pass.

The company, now with shares owned by a Chinese mining company, claim their open-pit strip-mine will be a “green mine.” Much of this material comes from Thacker Pass. Special thanks to Aimee Wild for collating this material.


Why Lithium?

Lithium is the lightest metal on the periodic table of the elements. It is cost effective. It is an excellent conductor. Lithium batteries power cell phones, laptops and now cars. The batteries are rechargeable and last longer than other batteries. Lithium is also used in heat-resistant glass, ceramics, aircraft metals, lubrication grease, air treatment systems and some pharmaceuticals.

Interest in the mining of lithium as an important commodity is soaring. Lithium is located in the earth’s crust, oceans, mineral springs and igneous rocks. To be able to extract it economically an area, concentrated lithium is needed, hence the interest in the Nevada site.  Thousands and thousands of tons of lithium are extracted, processed, transported and utilized every year.

Thacker Pass Mine

Thacker Pass Mine is owned by Lithium Americas. They have a mining project in South America (The Cauchari-Olaroz Project) which is currently under construction, and of course in Nevada, the proposed Thacker Pass mine. Ganfeng (a chinese based mining company) is one of the largest shareholders of Lithium America. This increases the potential for mining and  processing to be shipped overseas.

Local communities have struggled to get to the bottom of the plans for the mines. The brochures are complicated and convoluted. What is clear is that the local people have been chosen as a guinea pig. Most Lithium mines in South America involve pumping saltwater brine on barren salt flats where the lithium slowly floats to the top, is skimmed off, and is then purified for use in batteries.

​In Australia they use spodumene ore, which is higher quality than the product Lithium Nevada plans to use. There are concerns linked to  how the poorer quality lithium will be processed and the transport of chemicals into the processing areas. There are concerns regarding the transportation of refinery waste by rail cars, and shipping.  The plans include transporting waste sulfur, by truck to the mine site, where it will be burned and converted to enormous quantities of Sulfuric Acid on a daily basis. Processing (burning) elemental sulfur, creates sulfur dioxide, sulfur trioxide and ultimately sulfuric acid—all of which are toxic and harmful to life.

Radioactive Waste?

There are concerns that the processing of lithium could ‘accidentally’ expose naturally-occurring uranium. Of course there have been promised by the company to ensure that any radioactive waste will be contained by a “liner.” This seems wholly inadequate when considering there is a water source nearby, and  processing plants can have accidental fires or explosion. We know from global disasters (Fukoshima and Chernobyl) that the impact environmental disasters involving radioactive waste can devastate human and non-human communities. Transporting chemicals to or from processing plants increase the risk of accidents, and the smell of sulphur in nearby neighborhoods is likely to be overwhelming at times.

Clarity Needed On The Impact Of Thacker Pass Mine

Opposition to these plans are likely to strengthen when the public understand the plans and the potential impact, and when the information is not shrouded in convoluted documents. In short, the mines almost certainly will be destructive to water fowl, to any life in the rivers and lakes nearby, and impact on the water table.

The air quality is likely to reduce, and the storage and transportation of toxic chemicals increases non-intentional leakage/accidents. If understood correctly the plans to dispose of some waste include a tailing pond, which could contain a) toxic solids, b) harmful discharges c) could impact air quality, and d) could leach into ground water. The mining and processing of lithium is destructive to people, non-human life, the land, the water and the air.

Is It Carbon Neutral?

Burning sulfur does not create carbon, so in that respect the facts are correct. However, as with all green capitalist extraction plans this is a small percentage of the whole picture. The whole picture (or the fact based plans) are obscured with overly complex plans and emperors-new-clothes type scenarios. The process of burning sulfur creates harmful (toxic) chemicals and removes oxygen from the atmosphere.

A conservative estimate is that the processing plant will require over 10,000 gallons of diesel per day to run. In additional to this is the fuel needed to transport the sulfur from the refinery (yes; it comes from an oil refinery) to the mine site. You also have the fuel needed to transport the workers and the electricity needed to keep the plant functioning.

There are concerns that the lithium from this project could be shipped to China for processing in the future. Lithium Americas has been loaned substantial amounts of money from Ganfeng and Bangchak. The Chinese Mining company already own shares in Lithium Nevada and could intentionally own more rights if the loan is not paid back.

So, carbon neutral—no. Friendly to the environment—no. There is not much difference between mountaintop removal coal mining and mountaintop removal lithium mining. Both are exceptionally destructive.


You can read more about lithium mines here: www.portectthackerpass.org. Join our newsletter for more info on lithium mining and greenwashing.

[Green Flame] Industrial Solar is Destroying the Mojave Desert

[Green Flame] Industrial Solar is Destroying the Mojave Desert

REMINDER: This Sunday, November 22nd, join us for a live streaming event—Drawing the Line: Stopping the Murder of the Planet—featuring Derrick Jensen, Lierre Keith, Chris Hedges, and grassroots activists from around the world.

The event will begin at 1pm Pacific (2100 UTC) and will be live streamed at https://givebutter.com/deepgreen.


For this episode, we speak with Laura Cunningham of Basin and Range Watch about dozens of large solar energy projects threatening the Mojave and Great Basin deserts in Nevada and eastern California. We explore why utility-scale solar built on habitat is not a solution.

From this episode:

Now that I have seen ten years of solar build out. I was opposing the giant Ivanpah solar power towers in Eastern California deserts. That was a beautiful sloping desert next to the Mojave national preserve, full of Mojave yuccas, rare plants, wild flower blooms. We’d find horn lizards, black throated sparrows. cactus rinds, beautiful little slidewater snakes, harmless, just wanting to live in this area. Tortoises, a lot of tortoises. And it all got flattened, graded, run over by heavy machinery. Now it’s just a disturbed weed field with a giant fence around it. I looked about it. The whole of project – I think it was about 400 MW of energy, but it had a natural gas backup. Then we saw others, and others, still others. Tens of thousands of acres of deserts going under the blades of solar panels. I have not noticed a decline in carbon emissions. Of course, this is just one part of the world: the Mojave desert.

But it does make me think more recently: how much solar will it take to cover the desert before we see that downturn in carbon emissions? I think never. It’s this never ending scenario of needing more and more land, but we are not going to reduce our standard of living. I’ve heard different numbers regarding the pandemic: 17% decline in carbon emissions, maybe it was 12. A sort of a gigantic lowering of carbon emission, what we’d been wanting to have. But it took us really lowering our standard of living. Being much more efficient. Not burning a lot of fossil fuels. That’s actually, maybe, what we have to do in a non-pandemic situation: alter our whole way of living on the globe. And it’s a daunting task. Here we are going to build 60,000 acres of photovoltaic projects. Some of them will have Lithium-ion battery bank storage on protected Joshua tree habitats. That, I predict, will not lower carbon emissions one iota.

Our music for this episode is Melodi från Vest-Agder by Tim Eastwood of Dic Penderyn.