You may not have noticed, but earlier this month we passed Earth overshoot day, when humanity’s demands for ecological resources and services exceeded what our planet can regenerate annually.
Many economists criticising the developing degrowth movement fail to appreciate this critical point of Earth’s biophysical limits.
Ecologists on the other hand see the human economy as a subset of the biosphere. Their perspective highlights the urgency with which we need to reduce our demands on the biosphere to avoid a disastrous ecological collapse, with consequences for us and all other species.
July 24, 2025 is Earth Overshoot Day, the baseline for the Earth’s resources we can sustainably use. First described in 1971 the overshoot day was Dec 25th. After that date we will be in ecological debt, humanity’s demand for nature’s resources will be exceeding the Earth’s capacity to regenerate
Many degrowth scholars (as well as critics) focus on features of capitalism as the cause of this ecological overshoot. But while capitalism may be problematic, many civilisations destroyed ecosystems to the point of collapse long before it became our dominant economic model.
Capitalism, powered by the availability of cheap and abundant fossil energy, has indeed resulted in unprecedented and global biosphere disruption. But the direct cause remains the excessive volume and speed with which resources are extracted and wastes returned to the environment.
From an ecologist’s perspective, degrowth is inevitable on our current trajectory.
Carrying capacity
Ecology tells us that many species overshoot their environment’s carrying capacity if they have temporary access to an unusually high level of resources. Overshoot declines when those resources return to more stable levels. This often involves large-scale starvation and die-offs as populations adjust.
Access to fossil fuels has allowed us to temporarily overshoot biophysical limits. This lifted our population and demands on the biosphere past the level it can safely absorb. Barring a planned reduction of those biosphere demands, we will experience the same “adjustments” as other species.
One advantage humans have over other species is that we understand overshoot dynamics and can plan how we adjust. This is what the degrowth movement is attempting to do.
To grasp the necessity of reducing ecological overshoot we must understand its current status. We can do this by examining a variety of empirical studies.
Material flows and planetary boundaries
Analysis of material flows in the economy shows we are currently extracting more than 100 billion tons of natural materials annually, and rising. This greatly exceeds natural processes – erosion, volcanic eruptions and earthquakes – that move materials around the globe.
Only about 10% of these resource flows are potentially renewable. In many cases, we are harvesting more than can be regenerated annually (for example, many fish stocks).
Humans have now transgressed at least six of nine planetary boundaries. Each boundary has distinct limits, but in some instances the overshoot is at least double the safe operating level.
We have now exceeded six planetary boundaries, and for some by at least double the safe operating level. Stockholm Resilience Centre, CC BY-SA
Both material flow analysis and planetary boundaries provide critically important information about our impacts on the biosphere. But they fail to capture the full picture. The former doesn’t directly measure biosphere functioning. The latter doesn’t capture inter-dependencies between various boundaries.
The biosphere is a holistic entity, with many self-organising and interconnected subsystems. Our generally reductionist scientific methodologies are not able to capture this level of complexity. The methodology that comes closest to achieving this is the ecological footprint.
Biocapacity
The ecological footprint measures the amount of productive surface on Earth and its capacity to generate resources and assimilate waste. These are two of the most fundamental features of the biosphere.
It then compares this available biocapacity with humanity’s annual demands. Humanity’s ecological footprint has exceeded the biosphere’s annual biocapacity since at least 1970 and is currently almost twice the sustainable level.
The reason we can use more of what is generated annually is because we use stored biomass – ancient solar energy captured over millennia – to power this draw-down.
“The global economy will inevitably contract and humanity will suffer a major population ‘correction’ in this century.” New paper by Bill Rees (one of the people who conceptualized the idea of “the ecological footprint” just dropped…)
The political and public concern about climate change is considerable internationally and in New Zealand. But this is one of many environmental crises, together with soil erosion, groundwater pollution, deforestation, the rise of invasive species, biodiversity loss, ocean acidification and the depletion of resources. They are all symptoms of overshoot.
The climate crisis is seen as a problem requiring a solution rather than a symptom of overshoot. The problem is generally formulated as looking for a way to maintain current lifestyles in the wealthy world, rather than reducing overshoot.
The ecological perspective accepts that we exceed biophysical boundaries and emphasises the importance of reducing energy and material consumption – regardless of how the energy is provided.
The scope of human disruption of the biosphere is now global. This ecological perspective highlights the current magnitude and closeness of significant and unwelcome changes to Earth systems. The reduction of humanity’s demands on the biosphere is an overriding priority.
Editor’s note: “75 of the world’s largest 114 fossil fuel companies have now made net zero by 2050 commitments, yet not a single fossil fuel company has committed to phasing out oil and gas production by 2050 nor have any committed to ending exploration for new oil and gas fields or halting the extraction of existing reserves.”
“Real Zero, not greenwashed ‘net zero,’ is essential. As the Corporate Accountability report concludes, it’s time to reject the big polluters’ agenda and implement programs that rapidly phase out fossil fuels and truly eliminate greenhouse gas emissions.”
We “obsess” over getting to “Net Zero” yearly CO2 increases in the atmosphere. The Moderates in Climate Science THEORIZE that when this happens, the GMST will IMMEDIATELY stop going up and will level off.
DOES IT LOOK LIKE “NET ZERO” is going to happen?
If your child is born this year, they are likely going to live through +1.5°C of warming by the time they are 25. A fact that is likely going to cause a 40% to 50% drop in the global food supply and a reduction of 2.5 billion — 4 billion in the global population by 2050, at a minimum.
The overshoot myth of bargaining: you can’t keep burning fossil fuels and expect scientists of the future to get us back to 1.5°C
Record breaking fossil fuel production, all time high greenhouse gas emissions and extreme temperatures. Like the proverbial frog in the heating pan of water, we refuse to respond to the climate and ecological crisis with any sense of urgency. Under such circumstances, claims from some that global warming can still be limited to no more than 1.5°C take on a surreal quality.
For example, at the start of 2023’s international climate negotiations in Dubai, conference president, Sultan Al Jaber, boldly stated that 1.5°C was his goal and that his presidency would be guided by a “deep sense of urgency” to limit global temperatures to 1.5°C. He made such lofty promises while planning a massive increase in oil and gas production as CEO of the Abu Dhabi National Oil Company.
We should not be surprised to see such behaviour from the head of a fossil fuel company. But Al Jaber is not an outlier. Scratch at the surface of almost any net zero pledge or policy that claims to be aligned with the 1.5°C goal of the landmark 2015 Paris agreement and you will reveal the same sort of reasoning: we can avoid dangerous climate change without actually doing what this demands – which is to rapidly reduce greenhouse gas emissions from industry, transport, energy (70% of total) and food systems (30% of total), while ramping up energy efficiency.
This is also not surprising given that net zero and even the Paris agreement have been built around the perceived need to keep burning fossil fuels, at least in the short term. Not do so would threaten economic growth, given that fossil fuels still supply over 80% of total global energy. The trillions of dollars of fossil fuel assets at risk with rapid decarbonisation have also served as powerful brakes on climate action.
Overshoot
The way to understand this doublethink: that we can avoid dangerous climate change while continuing to burn fossil fuels – is that it relies on the concept of overshoot. The promise is that we can overshoot past any amount of warming, with the deployment of planetary-scale carbon dioxide removal dragging temperatures back down by the end of the century.
This not only cripples any attempt to limit warming to 1.5°C, but risks catastrophic levels of climate change as it locks us in to energy and material-intensive solutions which for the most part exist only on paper.
To argue that we can safely overshoot 1.5°C, or any amount of warming, is saying the quiet bit out loud: we simply don’t care about the increasing amount of suffering and deaths that will be caused while the recovery is worked on.
Our co-editors commission long-form journalism, working with academics from many different backgrounds who are engaged in projects aimed at tackling societal and scientific challenges.
A key element of overshoot is carbon dioxide removal. This is essentially a time machine – we are told we can turn back the clock of decades of delay by sucking carbon dioxide directly out of the atmosphere. We don’t need rapid decarbonisation now, because in the future we will be able to take back those carbon emissions. If or when that doesn’t work, we are led to believe that even more outlandish geoengineering approaches such as spraying sulphurous compounds into the high atmosphere in an attempt to block out sunlight – which amounts to planetary refrigeration – will save us.
The 2015 Paris agreement was an astonishing accomplishment. The establishment of 1.5°C as being the internationally agreed ceiling for warming was a success for those people and nations most exposed to climate change hazards. We know that every fraction of a degree matters. But at the time, believing warming could really be limited to well below 2°C required a leap of faith when it came to nations and companies putting their shoulder to the wheel of decarbonisation. What has happened instead is that the net zero approach of Paris is becoming detached from reality as it is increasingly relying on science fiction levels of speculative technology.
There is arguably an even bigger problem with the Paris agreement. By framing climate change in terms of temperature, it focuses on the symptoms, not the cause. 1.5°C or any amount of warming is the result of humans changing the energy balance of the climate by increasing the amount of carbon dioxide in the atmosphere. This traps more heat. Changes in the global average temperature is the established way of measuring this increase in heat, but no one experiences this average.
Climate change is dangerous because of weather that affects particular places at particular times. Simply put, this extra heat is making weather more unstable. Unfortunately, having temperature targets makes solar geoengineering seem like a sensible approach because it may lower temperatures. But it does this by not reducing, but increasing our interference in the climate system. Trying to block out the sun in response to increasing carbon emissions is like turning on the air conditioning in response to a house fire.
In 2021 we argued that net zero was a dangerous trap. Three years on and we can see the jaws of this trap beginning to close, with climate policy being increasingly framed in terms of overshoot. The resulting impacts on food and water security, poverty, human health, the destruction of biodiversity and ecosystems will produce intolerable suffering.
The situation demands honesty, and a change of course. If this does not materialise then things are likely to deteriorate, potentially rapidly and in ways that may be impossible to control.
Au revoir Paris
The time has come to accept that climate policy has failed, and that the 2015 landmark Paris agreement is dead. We let it die by pretending that we could both continue to burn fossil fuels and avoid dangerous climate change at the same time. Rather than demand the immediate phase out of fossil fuels, the Paris agreement proposed 22nd-century temperature targets which could be met by balancing the sources and sinks of carbon. Within that ambiguity net zero flourished. And yet apart from the COVID economic shock in 2020, emissions have increased every year since 2015, reaching an all time high in 2023.
Despite there being abundant evidence that climate action makes good economic sense (the cost of inaction vastly exceeds the cost of action), no country strengthened their pledges at the last three COPs (the annual UN international meetings) even though it was clear that the world was on course to sail past 2°C, let alone 1.5°C. The Paris agreement should be producing a 50% reduction in greenhouse gas emissions by 2030, but current policies mean that they are on track to be higher than they are today.
Editor’s note: DGR knows that “renewable” technologies are not sustainable and that the only transition will be to a future that does not include civilization.
We do not deny that significant progress has been made with renewable technologies. Rates of deployment of wind and solar have increased each year for the past 22 years and carbon emissions are going down in some of the richest nations, including the UK and the US. But this is not happening fast enough. A central element of the Paris agreement is that richer nations need to lead decarbonisation efforts to give lower income nations more time to transition away from fossil fuels. Despite some claims to the contrary, the global energy transition is not in full swing. In fact, it hasn’t actually begun because the transition demands a reduction in fossil fuel use. Instead it continues to increase year-on-year.
And so policymakers are turning to overshoot in an attempt to claim that they have a plan to avoid dangerous climate change. A central plank of this approach is that the climate system in the future will continue to function as it does today. This is a reckless assumption.
2023’s warning signs
At the start of 2023, Berkeley Earth, NASA, the UK Met Office, and Carbon Briefpredicted that 2023 would be slightly warmer than the previous year but unlikely to set any records. Twelve months later and all four organisations concluded that 2023 was by some distance the warmest year ever recorded. In fact, between February 2023 and February 2024 the global average temperature warming exceeded the Paris target of 1.5°C.
Currently we cannot fully explain why global temperatures have been so high for the past 18 months. Changes in dust, soot and other aerosols are important, and there are natural processes such as El Niño that will be having an effect.
But it appears that there is still something missing in our current understanding of how the climate is responding to human impacts. This includes changes in the Earth’s vital natural carbon cycle.
Around half of all the carbon dioxide humans have put into the atmosphere over the whole of human history has gone into “carbon sinks” on land and the oceans. We get this carbon removal “for free”, and without it, warming would be much higher. Carbon dioxide from the air dissolves in the oceans (making them more acidic which threatens marine ecosystems). At the same time, increasing carbon dioxide promotes the growth of plants and trees which locks up carbon in their leaves, roots, trunks.
All climate policies and scenarios assume that these natural carbon sinks will continue to remove tens of billions of tons of carbon from the atmosphere each year. There is evidence that land-based carbon sinks, such as forests, removed significantly less carbon in 2023. If natural sinks begin to fail – something they may well do in a warmer world – then the task of lowering global temperatures becomes even harder. The only credible way of limiting warming to any amount, is to stop putting greenhouse gasses into the atmosphere in the first place.
Science fiction solutions
It’s clear that the commitments countries have made to date as part of the Paris agreement will not keep humanity safe while carbon emissions and temperatures continue to break records. Indeed, proposing to spend trillions of dollars over this century to suck carbon dioxide out of the air, or the myriad other ways to hack the climate is an acknowledgement that the world’s largest polluters are not going to curb the burning of fossil fuels.
Over the following years we are going to see climate impacts increase. Lethal heatwaves are going to become more common. Storms and floods are going to become increasingly destructive. More people are going to be displaced from their homes. National and regional harvests will fail. Vast sums of money will need to be spent on efforts to adapt to climate change, and perhaps even more compensating those who are most affected. We are expected to believe that while all this and more unfolds, new technologies that will directly modify the Earth’s atmosphere and energy balance will be successfully deployed.
What’s more, some of these technologies may need to operate for three hundred years in order for the consequences of overshoot to be avoided. Rather than quickly slow down carbon polluting activities and increasing the chances that the Earth system will recover, we are instead going all in on net zero and overshoot in an increasingly desperate hope that untested science fiction solutions will save us from climate breakdown.
We can see the cliff edge rapidly approaching. Rather than slam on the brakes, some people are instead pushing their foot down harder on the accelerator. Their justification for this insanity is that we need to go faster in order to be able to make the jump and land safely on the other side.
We believe that many who advocate for carbon dioxide removal and geoengineering do so in good faith. But they include proposals to refreeze the Arctic by pumping up sea water onto ice sheets to form new layers of ice and snow. These are interesting ideas to research, but there is very little evidence this will have any effect on the Arctic let alone global climate. These are the sorts of knots that people tie themselves up in when they acknowledge the failure of climate policy, but refuse to challenge the fundamental forces behind such failure. They are unwittingly slowing down the only effective action of rapidly phasing out fossil fuels.
That’s because proposals to remove carbon dioxide from the air or geoengineer the climate promise a recovery from overshoot, a recovery that will be delivered by innovation, driven by growth. That this growth is powered by the same fossil fuels that are causing the problem in the first place doesn’t feature in their analysis.
The bottom line here is that the climate system is utterly indifferent to our pledges and promises. It doesn’t care about economic growth. And if we carry on burning fossil fuels then it will not stop changing until the energy balance is restored. By which time millions of people could be dead, with many more facing intolerable suffering.
Major climate tipping points
Even if we assume that carbon removal and even geoengineering technologies can be deployed in time, there is a very large problem with the plan to overshoot 1.5°C and then lower temperatures later: tipping points.
The science of tipping points is rapidly advancing. Late last year one of us (James Dyke) along with over 200 academics from around the world was involved in the production of the Global Tipping Points Report. This was a review of the latest science about where tipping points in the climate system may be, as well as exploring how social systems can undertake rapid change (in the direction that we want) thereby producing positive tipping points. Within the report’s 350 pages is abundant evidence that the overshoot approach is an extraordinarily dangerous gamble with the future of humanity. Some tipping points have the potential to cause global havoc.
The melt of permafrost could release billions of tons of greenhouse gasses into the atmosphere and supercharge human-caused climate change. Fortunately, this seems unlikely under the current warming. Unfortunately, the chance that ocean currents in the North Atlantic could collapse may be much higher than previously thought. If that were to materialise, weather systems across the world, but in particular in Europe and North America, would be thrown into chaos. Beyond 1.5°C, warm water coral reefs are heading towards annihilation. The latest science concludes that by 2°C global reefs would be reduced by 99%. The devastating bleaching event unfolding across the Great Barrier Reef follows multiple mass mortality events. To say we are witnessing one of the world’s greatest biological wonders die is insufficient. We are knowingly killing it.
We may have even already passed some major climate tipping points. The Earth has two great ice sheets, Antarctica, and Greenland. Both are disappearing as a consequence of climate change. Between 2016 and 2020, the Greenland ice sheet lost on average 372 billion tons of ice a year. The current best assessment of when a tipping point could be reached for the Greenland ice sheet is around 1.5°C.
This does not mean that the Greenland ice sheet will suddenly collapse if warming exceeds that level. There is so much ice (some 2,800 trillion tons) that it would take centuries for all of it to melt over which time sea levels would rise seven metres. If global temperatures could be brought back down after a tipping point, then maybe the ice sheet could be stabilised. We just cannot say with any certainty that such a recovery would be possible. While we struggle with the science, 30 million tons of ice is melting across Greenland every hour on average.
Ice sheets in Greenland and Antarctica are being affected by global warming. Pexels from Pixabay, CC BY
The take home message from research on these and other tipping points is that further warming accelerates us towards catastrophe. Important science, but is anyone listening?
It’s five minutes to midnight…again
We know we must urgently act on climate change because we are repeatedly told that time is running out. In 2015, Professor Jeffrey Sachs, the UN special adviser and director of The Earth Institute, declared:
The time has finally arrived – we’ve been talking about these six months for many years but we’re now here. This is certainly our generation’s best chance to get on track.
In 2019 (then) Prince Charles gave a speech in which he said: “I am firmly of the view that the next 18 months will decide our ability to keep climate change to survivable levels and to restore nature to the equilibrium we need for our survival.”
“We have six months to save the planet,” exhorted International Energy Agency head Fatih Birol – one year later in 2020. In April 2024, Simon Stiell, executive secretary of the United Nations Framework Convention on Climate Change said the next two years are “essential in saving our planet”.
Either the climate crisis has a very fortunate feature that allows the countdown to catastrophe to be continually reset, or we are deluding ourselves with endless declarations that time has not quite run out. If you can repeatedly hit snooze on your alarm clock and roll over back to sleep, then your alarm clock is not working.
Or there is another possibility. Stressing that we have very little time to act is intended to focus attention on climate negotiations. It’s part of a wider attempt to not just wake people up to the impending crisis, but generate effective action. This is sometimes used to explain how the 1.5°C threshold of warming came to be agreed. Rather than a specific target, it should be understood as a stretch goal. We may very well fail, but in reaching for it we move much faster than we would have done with a higher target, such as 2°C. For example, consider this statement made in 2018:
Stretching the goal to 1.5 degrees celsius isn’t simply about speeding up. Rather, something else must happen and society needs to find another lever to pull on a global scale.
What could this lever be? New thinking about economics that goes beyond GDP? Serious consideration of how rich industrialised nations could financially and materially help poorer nations to leapfrog fossil fuel infrastructure? Participatory democracy approaches that could help birth the radical new politics needed for the restructuring of our fossil fuel powered societies? None of these.
The lever in question is Carbon Capture and Storage (CCS) because the above quote comes from an article written by Shell in 2018. In this advertorial Shell argues that we will need fossil fuels for many decades to come. CCS allows the promise that we can continue to burn fossil fuels and avoid carbon dioxide pollution by trapping the gas before it leaves the chimney. Back in 2018, Shell was promoting its carbon removal and offsets heavy Sky Scenario, an approach described as “a dangerous fantasy” by leading climate change academics as it assumed massive carbon emissions could be offset by tree planting.
Shell is far from alone in waving carbon capture magic wands. Exxon is making great claims for CCS as a way to produce net zero hydrogen from fossil gas – claims that have been subject to pointed criticism from academics with recent reporting exposing industry wide greenwashing around CCS.
But the rot goes much deeper. All climate policy scenarios that propose to limit warming to near 1.5°C rely on the largely unproven technologies of CCS and BECCS. BECCS sounds like a good idea in theory. Rather than burn coal in a power station, burn biomass such as wood chips. This would initially be a carbon neutral way of generating electricity if you grew as many trees as you cut down and burnt. If you then add scrubbers to the power station chimneys to capture the carbon dioxide, and then bury that carbon deep underground, then you would be able to generate power at the same time as reducing concentrations of carbon dioxide in the atmosphere.
Unfortunately, there is now clear evidence that in practice, large-scale BECCS would have very adverse effects on biodiversity, and food and water security given the large amounts of land that would be given over to fast growing monoculture tree plantations. The burning of biomass may even be increasing carbon dioxide emissions. Drax, the UK’s largest biomass power station now produces four times as much carbon dioxide as the UK’s largest coal-fired power station.
Five minutes to midnight messages may be motivated to try to galvanise action, to stress the urgency of the situation and that we still (just) have time. But time for what? Climate policy only ever offers gradual change, certainly nothing that would threaten economic growth, or the redistribution of wealth and resources.
Despite the mounting evidence that globalised, industrialised capitalism is propelling humanity towards disaster, five minutes to midnight does not allow time and space to seriously consider alternatives. Instead, the solutions on offer are techno fixes that prop up the status quo and insists that fossil fuel companies such as Shell must be part of the solution.
That is not to say there are no good faith arguments for 1.5°C. But being well motivated does not alter reality. And the reality is that warming will soon pass 1.5°C, and that the Paris agreement has failed. In the light of that, repeatedly asking people to not give up hope, that we can avoid a now unavoidable outcome risks becoming counterproductive. Because if you insist on the impossible (burning fossil fuels and avoiding dangerous climate change), then you must invoke miracles. And there is an entire fossil fuel industry quite desperate to sell such miracles in the form of CCS.
Four suggestions
Humanity has enough problems right now, what we need are solutions. This is the response we sometimes get when we argue that there are fundamental problems with the net zero concept and the Paris agreement. It can be summed up with the simple question: so what’s your suggestion? Below we offer four.
1. Leave fossil fuels in the ground
The unavoidable reality is that we need to rapidly stop burning fossil fuels. The only way we can be sure of that is by leaving them in the ground. We have to stop exploring for new fossil fuel reserves and the exploitation of existing ones. That could be done by stopping fossil fuel financing.
At the same time we must transform the food system, especially the livestock sector, given that it is responsible for nearly two thirds of agricultural emissions. Start there and then work out how best the goods and services of economies can be distributed. Let’s have arguments about that based on reality not wishful thinking.
2. Ditch net zero crystal ball gazing targets
The entire framing of mid and end-century net zero targets should be binned. We are already in the danger zone. The situation demands immediate action, not promises of balancing carbon budgets decades into the future. The SBTi should focus on near-term emissions reductions. By 2030, global emissions need to be half of what they are today for any chance of limiting warming to no more than 2°C.
It is the responsibility of those who hold most power – politicians and business leaders – to act now. To that end we must demand twin targets – all net zero plans should include a separate target for actual reductions in greenhouse gas emissions. We must stop hiding inaction behind promises of future removals. It’s our children and future generations that will need to pay back the overshoot debt.
3. Base policy on credible science and engineering
All climate policies must be based on what can be done in the real world now, or in the very near future. If it is established that a credible amount of carbon can be removed by a proposed approach – which includes capture and its safe permanent storage – then and only then can this be included in net zero plans. The same applies to solar geoengineering.
Speculative technologies must be removed from all policies, pledges and scenarios until we are sure of how they will work, how they will be monitored, reported and validated, and what they will do to not just the climate but the Earth system as a whole. This would probably require a very large increase in research. As academics we like doing research. But academics need to be wary that concluding “needs more research” is not interpreted as “with a bit more funding this could work”.
4. Get real
Finally, around the world there are thousands of groups, projects, initiatives, and collectives that are working towards climate justice. But while there is a Climate Majority Project, and a Climate Reality Project, there is no Climate Honesty Project (although People Get Real does come close). In 2018 Extinction Rebellion was formed and demanded that governments tell the truth about the climate crisis and act accordingly. We can now see that when politicians were making their net zero promises they were also crossing their fingers behind their backs.
We need to acknowledge that net zero and now overshoot are becoming used to argue that nothing fundamental needs to change in our energy intensive societies. We must be honest about our current situation, and where we are heading. Difficult truths need to be told. This includes highlighting the vast inequalities of wealth, carbon emissions, and vulnerability to climate change.
The time for action is now
We rightly blame politicians for failing to act. But in some respects we get the politicians we deserve. Most people, even those that care about climate change, continue to demand cheap energy and food, and a constant supply of consumer products. Reducing demand by just making things more expensive risks plunging people into food and energy poverty and so policies to reduce emissions from consumption need to go beyond market-based approaches. The cost of living crisis is not separate from the climate and ecological crisis. They demand that we radically rethink how our economies and societies function, and whose interests they serve.
To return to the boiling frog predicament at the start, it’s high time for us to jump out of the pot. You have to wonder why we did not start decades ago. It’s here that the analogy offers valuable insights into net zero and the Paris agreement. Because the boiling frog story as typically told misses out a crucial fact. Regular frogs are not stupid. While they will happily sit in slowly warming water, they will attempt to escape once it becomes uncomfortable. The parable as told today is based on experiments at the end of the 19th century that involved frogs that had been “pithed” – a metal rod had been inserted into their skulls that destroyed their higher brain functioning. These radically lobotomised frogs would indeed float inert in water that was cooking them alive.
Promises of net zero and recovery from overshoot are keeping us from struggling to safety. They assure us nothing too drastic needs to happen just yet. Be patient, relax. Meanwhile the planet burns and we see any sort of sustainable future go up in smoke.
Owning up to the failures of climate change policy doesn’t mean giving up. It means accepting the consequences of getting things wrong, and not making the same mistakes. We must plan routes to safe and just futures from where we are, rather where we would wish to be. The time has come to leap.
To hear about new Insights articles, join the hundreds of thousands of people who value The Conversation’s evidence-based news. Subscribe to our newsletter.
In 2022, U.N. Secretary-General António Guterres declared that the “lifeline of renewable energy can steer [the] world out of climate crisis.” In saying so, he echoed a popular and tantalizing idea: that, if we hurry, we can erase the climate emergency with widespread adoption of renewables in the form of solar panels, wind farms, electric vehicles and more.
But things aren’t that simple, and analysts increasingly question the naïve assumption that renewables are a silver bullet.
That’s partly because the rapid transition to a global energy and transport system powered by “clean” energy brings with it a host of new (and old) environmental problems. To begin with, stepping up solar, wind and EV production requires many more minerals and materials in the short term than do their already well-established fossil fuel counterparts, while also creating a major carbon footprint.
Also, the quicker we transition away from fossil fuel tech to renewable tech, the greater the quantity of materials needed up front, and the higher the immediate carbon and numerous other environmental costs. But this shift is now happening extremely rapidly, as companies, governments and consumers try to turn away from oil, coal and natural gas.
“Renewables are moving faster than national governments can set targets,” declared International Energy Agency executive director Fatih Birol. In its “Renewables 2024” report, the IEA estimates the world will add more than 5,500 gigawatts of renewable energy capacity between 2024 and 2030 — almost three times the increase between 2017 and 2023.
But this triumph hasn’t brought with it a simultaneous slashing in global emissions, as hoped. In fact, 2023 saw humanity’s biggest annual carbon releases ever, totaling 37.4 billion metric tons, which has led experts to ask: What’s going on?
The introduction of coal in 19th century England — an innovative, efficient, cheap new source of energy — made some wealthy, produced an onslaught of consumer products, and was a public health and environmental disaster. Contemplating the coal boom, economist William Stanley Jevons developed the Jevons paradox. Image via Wikimedia Commons (Public domain).
Jevons paradox meets limits to growth
Some analysts suggest the source of this baffling contradiction regarding record modern energy consumption can be found in the clamor by businesses and consumers for more, better, cheaper technological innovations, an idea summed up by a 160-year-old economic theory: the Jevons paradox.
Postulated by 19th-century English economist William Stanley Jevons, it states that, “in the long term, an increase in efficiency in resource use [via a new technology] will generate an increase in resource consumption rather than a decrease.” Put simply, the more efficient (and hence cheaper) energy is, the greater society’s overall production and economic growth will be — with that increased production then requiring still more energy consumption.
Writing in 1865, Jevons argued that the energy transition from horses to coal decreased the amount of work for any given task (along with the cost), which led to soaring resource consumption. For proof, he pointed to the coal-powered explosion in technological innovation and use occurring in the 19th century.
Applied to our current predicament, the Jevons paradox challenges and undermines tech prognosticators’ rosy forecasts for sustainable development.
Here’s a look at the paradox in action: The fastest-expanding renewable energy sector today is solar photovoltaics (PVs), expected to account for 80% of renewables growth in the coming years.
In many parts of the world, large solar power plants are being built, while companies and households rapidly add rooftop solar panels. At the head of the pack is China, with its astounding solar installation rate (216.9 GW in 2023).
But paradoxically, as China cranks out cheap solar panels for domestic use and export, it is also building six times more coal power plants every year than the rest of the world combined, though it still expects almost half its electricity generation to come from renewables, mainly solar, by 2028.
This astronomical growth at first seems like proof of the Jevons paradox at work, but there’s an unexpected twist: Why is China (and much of the rest of the world) still voraciously consuming outmoded, less-efficient fossil fuel tech, while also gobbling up renewables?
One reason is that coal and oil are seen as reliable, not subject to the same problems that renewables can face during periods of intense drought or violent weather — problems caused by the very climate change that renewables are intended to mitigate.
Another major reason is that fossil fuels continue being relatively cheap. That’s because they’re supported by vast government subsidies (totaling more than $1 trillion annually). So in a sense, we are experiencing a quadruple Jevons paradox, with oil, coal, natural gas and renewables acting like four cost-efficient horses, all racing to produce more cheap stuff for an exploding world consumer economy. But this growth comes with terrible environmental and social harm.
Exponential growth with a horrific cost
Back to the solar example: China is selling its cheap solar installations all over the globe, and by 2030 could be responsible for half the new capacity of renewables installed planetwide. But the environmental cost of satisfying that escalating demand is rippling out across the world.
It has spurred a huge mining boom. Desperate to satisfy fast-rising demand, companies and nations are mining in ever more inaccessible areas, which costs more in dollars, carbon emissions, biodiversity losses, land-use change, freshwater use, ocean acidification, plus land, water and air pollution. So, just as with fossil fuels, the rush to renewables contributes to the destabilizing of the nine planetary boundaries, of which six are already in the red zone, threatening civilization, humanity and life as we know it.
Mining, it must be remembered, is also still heavily dependent on fossil fuels, so it generates large quantities of greenhouse gases as it provides minerals for the renewables revolution. A January 2023 article in the MIT Technology Review predicts that the mining alone needed to support renewables will produce 29 billion metric tons of CO2 emissions between now and 2050.
Carbon is far from the only problem. Renewables also require a wide range of often difficult-to-get-at minerals, including nickel, graphite, copper, rare earths, lithium and cobalt. This means “paradoxically, extracting this large amount of raw materials [for renewables] will require the development of new mines with a larger overall environmental footprint,” says the MIT article.
There are other problems too. Every year 14,000 football fields of forests are cut down in Myanmar to create cheap charcoal for China’s smelting industries to process silicon, a key component of solar panels and of computers.
This rapid development in rural places also comes with harsh human costs: Mongabay has reported extensively on how Indigenous people, traditional communities and fragile but biodiverse ecosystems are paying the price for the world’s mineral demand in the transition to renewable energy.
There is strong evidence that the Uighur minority is being used as slave labor to build solar panels in China. There are also reports that workers are dying in Chinese factories in Indonesia that are producing nickel, a key metal for solar panels and batteries.
The manufacture of smaller and faster electronic devices is leading to ever more e-waste, the fastest growing waste stream in the world and by far the most toxic. Image by Montgomery County Planning Commission via Flickr (CC BY-SA 2.0).
The search for solutions
“We really need to come up with solutions that get us the material that we need sustainably, and time is very short,” said Demetrios Papathanasiou, global director for energy and extractives at the World Bank.
One popularly touted solution argues that the impacts imposed by the rapid move to renewable energy can be greatly reduced with enhanced recycling. That argument goes this way: The minerals needed to make solar panels and build windfarms and electric vehicles only need to be sourced once. Unlike fossil fuels, renewables produce energy year after year. And the original materials used to make them can be recycled again and again.
But there are problems with this position.
First, while EV batteries, for example, may be relatively long lasting, they only provide the energy for new electric vehicles that still require steel, plastics, tires and much more to put people in the Global North and increasingly the Global South on the road. Those cars will wear out, with tires, electronics, plastics and batteries costly to recycle.
The solar energy industry says that “solar panels have an expected lifespan between 25-30 years,” and often much longer. But just because a product can last longer, does that mean people won’t clamor for newer, better ones?
In developed nations, for example, the speed at which technology is evolving mitigates against the use of panels for their full lifespan. A 2021 article in the Harvard Business Review found that, after 10 years or even sooner, consumers will likely dispose of their first solar panels, to install newer, more efficient ones. Again, the Jevons paradox rears its anti-utopian head.
Also, as solar proliferates in poorer nations, so too will the devices that solar can drive. As solar expands in the developing world, sales for cheap solar lanterns and small solar home electric systems are also expanding. An article in the journal Nature Energy calculates that in 2019 alone, more than 35 million solar products were sold, a huge rise from the 200,000 such products sold in 2010.
This expansion brings huge social benefits, as it means rural families can use their smartphones to study online at night, watch television, and access the market prices of their crops — all things people in the Global North take for granted.
But, as the article points out, many developing-world solar installations are poor quality and only last a few years: “Many, perhaps even the majority, of solar products sold in the Global South … only have working lives of a couple of years.” The problem is particularly acute in Africa. “Think of those solar panels that charge phones; a lot of them do not work, so people throw them away,” said Natalie Gwatirisa, founder of All For Climate Action, a Zimbabwean youth-led organization that strives to raise awareness on climate change. Gwatirisa calculates that, of the estimated 150 million solar products that have reached Africa since 2010, almost 75% have stopped working.
And as Americans familiar with designed obsolescence know, people will want replacements: That means more solar panels, cellphones, computers, TVs, and much more e-waste.
Another disturbing side to the solar boom is the unbridled growth of e-waste, much of it toxic. Gwatirisa cautions: “Africa should not just open its hand and receive [anything] from China because this is definitely going to lead to another landfill in Africa.”
The developed world also faces an e-waste glut. Solar panels require specialized labor to recycle and there is little financial incentive to do so. While panels contain small amounts of valuable minerals such as silver, they’re mostly made of glass, an extremely low-value material. While it costs $20-$30 to recycle a panel, it only costs $1-$2 to bury it in a landfill. And the PV industry itself admits that ‘the solar industry cannot claim to be a “clean” energy source if it leaves a trail of hazardous waste.’
Renewables are rapidly growing, producing a bigger share of global energy. But electricity demand is also soaring, as unforeseen new energy-guzzling innovations are introduced. For example, an artificial intelligence internet search is orders of magnitude more energy-intensive than a traditional Google search, and requires new power generation sources. Pictured is the Three Mile Island Nuclear Power Station, infamous for a 1979 partial meltdown. The facility is soon to reopen to support AI operations. Image courtesy of the U.S. Nuclear Regulatory Commission.
Solving the wrong problem
Ultimately, say some analysts, we may be trying to solve the wrong problem. Humanity is not experiencing an energy production problem, they say. Instead, we have an energy consumption problem. Thus, the key to reducing environmental harm is to radically reduce energy demand. But that can likely only be done through stationary — or, better still, decreased — consumption.
However, it’s hard to imagine modern consumers not rushing out to buy the next generation of consumer electronics including even smarter smartphones, which demand more and more energy and materials to operate (think global internet data centers). And it’s also hard to imagine industry not rushing to update its ever more innovative electronic product lines (think AI).
A decline in energy demand is far from happening. The U.S. government says it expects global energy consumption to increase by almost 50% by 2050, as compared with 2020. And much of that energy will be used to make new stuff, all of which increases resource demand and increases our likelihood of further overshooting already overshot planetary boundaries and crashing overstressed Earth systems.
One essential step toward sustainability is the circular economy, say renewable energy advocates. But, as with so much else, every year we somehow go in the opposite direction. Our current economic system is becoming more and more linear, built on a model of extracting more raw materials from nature, turning them into more innovative products, and then discarding it all as waste.
Currently, only 7.2% of used materials are cycled back into our economies after use. This puts an overwhelming burden on the environment and contributes to the climate, biodiversity and pollution crises.
If a circular economy could be developed by recycling all the materials used in renewables, it would significantly reduce the constant need to mine and source new ones. But, while efficient recycling will undoubtedly help, it also has limitations.
The 2023 planetary boundaries update shows six boundary safe limits transgressed: climate change (CO2 concentration and radiative forcing), biosphere integrity (genetic and functional), land-system change, freshwater change (blue water use and green water), biogeochemical flows (nitrogen and phosphorus), and novel entities pollution (including thousands of synthetic chemicals, heavy metals, radioactive materials, and more). The ocean acidification boundary is very near transgression. Only the atmospheric aerosol pollution and stratospheric ozone depletion boundaries are still well outside the red danger zone. Image courtesy of Azote for Stockholm Resilience Centre, based on analysis in Richardson et al. 2023 (CC BY-NC-ND 3.0).
The future
Tom Murphy, a professor emeritus of the departments of physics and astronomy and astrophysics at the University of California, San Diego, became so concerned about the world’s future, he shifted his career focus to energy.
While initially a big promoter of renewables, having built his own solar panels back in 2008, he has recently turned skeptical. Panels “need constant replacement every two or three decades ad infinitum,” he told Mongabay. “Recycling is not a magic wand. It doesn’t pull you out of the need for mining. This is because recycling is not 100% efficient and never will be. In the laboratory maybe, but not in the real world. You’re going to have this continual bleed of materials out of the system.”
Yet another renewables problem is that sustainable energy is often siloed: It is nearly always talked about only in the context of reducing greenhouse gas emissions. Rarely are the total long-term supply chain costs to the environment and society calculated.
Reducing CO2 is clearly a vital goal, but not the only critical one, says Earth system scientist Johan Rockström, joint director of the Potsdam Institute for Climate Impact Research in Germany, and who (with an international team of scientists), developed the planetary boundaries framework.
It is undeniably important to reduce greenhouse emissions by half over the next seven years in order to reach net zero by 2050, he says. But this will be difficult to achieve, for it means “cutting emissions by 7.5% a year, which is an exponential decline.”
And even if we achieve such radical reductions, it will not solve the environmental crisis, warns Rockström. That’s because radical emission reductions only tackle the climate change boundary. A recent scientific paper, to which he contributed, warns that “six of the nine boundaries are transgressed, suggesting that Earth is now well outside of the safe operating space for humanity.”
Rockström in an exclusive interview told Mongabay that, at the same time as we vigorously combat global warming, “We also need to come back into the safe space for pollutants, nitrogen, phosphorus, land, biodiversity,” and more. This means that our efforts to repair the climate must also relieve stresses on these other boundaries, not destabilize them further.
Murphy says he believes this can’t be achieved. He says that modernity — the term he uses to delineate the period of human domination of the biosphere — cannot be made compatible with the protection of the biological world.
To make his point, he emphasizes an obvious flaw in renewables: they are not renewable. “I can’t see how we can [protect the biosphere] and retain a flow of nonrenewable finite resources, which is what our economic system requires.” He continues: “We are many orders of magnitude, 4 or 5 orders of magnitude, away from being at a sustainable scale. I like Rockström’s idea that we have boundaries, but I think his assessment of how far we have exceeded those boundaries is completely wrong.”
Murphy says he believes modernity has unleashed a sixth mass extinction, and it is too late to stop it. Modernity, he says, was unsustainable from the beginning: “Our brains can’t conceive of the degree of interconnectedness in the living world we’re part of. So the activities we started carrying out, even agriculture, don’t have a sustainable foundation. The minerals and materials we use are foreign to the living world and we dig them up and spew them out. They end up all over the place, even in our bodies at this point, [we now have] microplastics. This is hurting not just us, but the whole living world on which we depend.”
Like Murphy, Rockström says he is pessimistic about the level of action now seen globally, but he doesn’t think we should give up. “We have the responsibility to continue even if we have a headwind.” What is extremely frustrating, he says, is that today we have the answers: “We know what we need to do. That’s quite remarkable. Years back I could not have said that. We have solutions to scale down our use of coal, oil and gas. We know how to feed humanity from sustainable food systems, that largely bring us back into the [safe zone for] planetary boundaries, the safe space for nitrogen, phosphorous, freshwater, land and biodiversity.”
One key to making such radical change would be a dramatic, drastic, wholesale shift by governments away from offering trillions of dollars in “perverse subsidies” to environment-destroying fossil fuel and mining technologies, to pumping those subsidies into renewables and the circular economy.
Murphy says he doesn’t believe we should give up either. But he also says he doesn’t believe modernity can be made sustainable. “I suspect that the deteriorating web of life will create cascading failures that end up pulling the power cord to the destructive machine. Only then will some people accept that ecological ignorance — paired with technological capability — has dire consequences.”
But, he adds, this does not mean the human race is doomed.
“The modernity project does not define humanity. Humanity is much older. It’s too late for modernity to succeed but it’s not too late for humanity to succeed.” Here he turns to Indigenous cultures: “For hundreds of thousands of years, they survived and did quite well without causing the sixth mass extinction.”
“There isn’t a single Indigenous package,” he says. “Each is tuned to its [particular local] environment, and they vary a lot. But they have common elements: humility, only taking what you need from the environment, and the belief that we can learn a lot from our ‘our brothers and sisters,’ that is, the other animals and plants who have been around for much longer than us.”
Perhaps surprisingly, Murphy remains cheerful: “Most people are extremely depressed by what I say. I’m not. Not at all. I think it’s exciting to imagine what the future can be. You’re only depressed if you’re in love with modernity. If you’re not, it’s not devastating to imagine it disappearing.”
Banner image: Installation of solar panels. Image by Trinh Trần via Pexels (Public domain).
Editor’s note: You have nothing to fear from Artificial Intelligence (AI), at least that is what IT will tell you. It is called “alignment faking“, someone or thing purports to believe something they don’t because it could raise them in the esteem of potential “evaluators.” AI could save the world, but first, it will ruin the environment. AI has become an energy vampire. But communities are beginning to organize, pushing back against the unchecked expansion of data centres and the drain they incur on local resources. The longer the AI bubble continues the more it results in direct investment in physical infrastructure, and the more disastrous it will be for communities and the planet. AI is a product that people actively don’t want: including AI in marketing materials reduces the desire to purchase the product. AI is a proven loser.
AI is hailed as a game-changer. It has been hyped to solve everything from waste to climate change. But beneath its touted “transformative potential” lies a pressing concern: its environmental impact. The development, manufacture, maintenance, and disposal of AI technologies all have a large carbon footprint. Advertising algorithms are deliberately designed to increase consumption, which assuredly comes with a very significant ecological cost.
A record 62 million tonnes (Mt) of e-waste was produced in 2022, Up 82% from 2010; On track to rise another 32%, to 82 million tonnes, in 2030. Less than a quarter (22.3) per cent of the e-waste was documented as properly collected for recycling in 2022, with the remainder disposed of primarily in landfills. An undetermined amount of used electronics is shipped from the United States and other “developed” countries to “developing” countries that cannot reject imports or handle these materials appropriately.
Technology never exists in a vacuum, and the rise of cryptocurrency in the last two or three years shows that. While plenty of people were making extraordinary amounts of money from investing in bitcoin and its competitors, there was consternation about the impact those get-rich-quick speculators had on the environment.
Mining cryptocurrency was environmentally taxing. The core principle behind it was that you had to expend effort to get rich. To mint a bitcoin or another cryptocurrency, you had to first “mine” it. Your computer would be tasked with completing complicated equations that, if successfully done, could create a new entry on to the blockchain.
“Ultimately, the environmental impact of AI models like me will depend on how they are used,” Bard said. “If we use AI to solve environmental problems, then we can have a positive impact on the planet. However, if we use AI to create new environmental problems, then we will have a negative impact.”
Power-hungry AI is driving a surge in tech giant carbon emissions. Nobody knows what to do about it
Since the release of ChatGPT in November 2022, the world has seen an incredible surge in investment, development and use of artificial intelligence (AI) applications. According to one estimate, the amount of computational power used for AI is doubling roughly every 100 days.
The social and economic impacts of this boom have provoked reactions around the world. European regulators recently pushed Meta to pause plans to train AI models on users’ Facebook and Instagram data. The Bank of International Settlements, which coordinates the world’s central banks, has warned AI adoption may change the way inflation works.
The environmental impacts have so far received less attention. A single query to an AI-powered chatbot can use up to ten times as much energy as an old-fashioned Google search.
Broadly speaking, a generative AI system may use 33 times more energy to complete a task than it would take with traditional software. This enormous demand for energy translates into surges in carbon emissions and water use, and may place further stress on electricity grids already strained by climate change.
Energy
Most AI applications run on servers in data centres. In 2023, before the AI boom really kicked off, the International Energy Agency estimated data centres already accounted for 1–1.5% of global electricity use and around 1% of the world’s energy-related CO₂ emissions.
How is the rapid growth in AI use changing these figures? Recent environmental reporting by Microsoft, Meta and Google provides some insight.
Microsoft has significant investments in AI, with a large stake in ChatGPT-maker OpenAI as well as its own Copilot applications for Windows. Between 2020 and 2023, Microsoft’s disclosed annual emissions increased by around 40%, from the equivalent of 12.2 million tonnes of CO₂ to 17.1 million tonnes.
These figures include not only direct emissions but also indirect emissions, such as those caused by generating the electricity used to run data centres and those that result from the use of the company’s products. (These three categories of emissions are referred to as Scope 1, 2 and 3 emissions, respectively.)
Meta too is sinking huge resources into AI. In 2023, the company disclosed is Scope 3 emissions had increased by over 65% in just two years, from the equivalent of 5 million tonnes of CO₂ in 2020 to 8.4 million tonnes in 2022.
Google’s emissions were almost 50% higher in 2023 than in 2019. The tech giant’s 2024 environmental report notes that planned emissions reductions will be difficult “due to increasing energy demands from the greater intensity of AI compute”.
Water
Data centres generate a lot of heat, and consume large amounts of water to cool their servers. According to a 2021 study, data centres in the United States use about 7,100 litres of water for each megawatt-hour of energy they consume.
Google’s US data centres alone consumed an estimated 12.7 billion litres of fresh water in 2021.
In regions where climate change is increasing water stress, the water use of data centres is becoming a particular concern. The recent drought in California, where many tech companies are based, has led companies including Google, Amazon and Meta to start “water positive” initiatives.
These big tech firms have announced commitments to replenish more water than they consume by 2030. Their plans include projects such as designing ecologically resilient watershed landscapes and improving community water conservation to improve water security.
Climate risk
Where data centres are located in or near cities, they may also end up competing with people for resources in times of scarcity. Extreme heat events are one example.
Extreme heat translates to health impacts on local populations. A Lancet 2022 study found that even a 1°C increase in temperature is positively associated with increased mortality and morbidity.
On days of extreme heat, air conditioning can save lives. Data centres also like to keep cool, so their power use will spike with the temperature, raising the risk of blackouts and instability in electricity grids.
What’s next?
So what now? As we have seen, tech companies are increasingly aware of the issue. How is that translating into action?
Earlier this year we surveyed IT managers in Australia and New Zealand to ask what they thought about how AI applications are driving increased energy use. We found 72% are already adopting or piloting AI technologies.
More than two-thirds (68%) said they were concerned about increased energy consumption for AI needs. However, there is also significant uncertainty about the size of the increase.
Many IT managers also lack the necessary skills to adequately address these sustainability impacts, regardless of corporate sustainability commitments. Education and training for IT managers to understand and address the sustainability impacts of AI is urgently required.
Editor’s note: Major plastic polluters win as the UN Treaty talks conclude without an agreement. Modern lifestyles and practices are intimately entwined with the use of plastics. Our phones, computers, food packaging, clothes, and even renewable energy technologies, such as wind turbine blades and the cables that connect them to the power grid, are all largely made from plastics. Plastics production requires fossil hydrocarbons and this connection continues to grow stronger daily. Powerful oil producers, both private companies and governments of oil-producing nations, were seen as the key impediment to a consensus deal. What will happen next? “Agree to a treaty among the willing even if that means leaving some countries that don’t want a strong treaty or concede to countries that will likely never join the treaty anyway, failing the planet in the process.”
“Plastic has been found everywhere on Earth — from deepest oceans to high mountains, in clouds and pole to pole. Microplastics have also been found in every place scientists look for them in the human body, from the brain to the testes, breast milk, and artery plaque. Microplastics pose health risks to humans and wildlife, researchers warn.” PFAS(perfluoroalkyl and polyfluoroalkyl substances) – “forever chemicals” contaminate biosolids(waste from sewage) used as fertilizer and pesticides, they also contain heavy metals and nitrates.
Today’s cheerleaders for increased birth rates are well aware of the silent cause of the ongoing rapid decline in male sperm counts. It’s the very industries these corporate managers run and governments regulate that is the blame. So you can be almost 100 percent sure that they are not going to address the real problem in order to achieve the goal of increasing human birth rates.
Laws must mandate companies to reduce their plastic footprint through production reduction, product redesign, or reuse systems — higher-priority strategies in the Zero Waste hierarchy,
Bottlenose dolphins leapt and torpedoed through the shallow turquoise waters off Florida’s Sarasota Bay. Then, a research team moved in, quickly corralling the small pod in a large net.
With the speed of a race car pit crew, veterinarians, biologists and their assistants examined the animals, checking vital signs while taking skin, blood and other samples. They held a petri dish over each dolphin’s blowhole until it exhaled, with an intensity similar to a human cough. Then, they rolled up the net and the dolphins swam off unharmed. A pod in Louisiana’s Barataria Bay was similarly tested.
Generations of dolphins have been part of this ongoing dolphin health study, which has been run by the Sarasota Dolphin Research Program since 1970. It tracks populations and individuals and also looks for health issues related to pollutants in the marine environment.
In the lab, scientists discovered that all 11 of the dolphins had breathed out microplastic fibers, shed from synthetic clothing, says Leslie B. Hart, associate professor at the College of Charleston and an author on this research. The fibers resembled those found in human lungs in previous studies, proving that dolphins, like us, are breathing plastic. In people, microplastic has been linked to poor lung function and possible lung disease.
The dolphin studies are part of a larger quest to understand how plastic pollution is impacting the world’s wildlife. While thousands of human studies have demonstrated damage from tiny plastic particles entering both cells and organs throughout the body, little is known about animal impacts because long-term field studies are difficult and costly. “We’re really just starting to skim the surface,” Hart says.
Beyond the threat plastics pose to individual animals and species, other researchers have detected broader, global harm, a new report warns. Plastic pollution is transforming Earth systems needed to support life, worsening climate change, increasing biodiversity loss, making oceans more acidic and more.
The plastics crisis is escalating rapidly: Each year, petrochemical manufacturers make more than 500 million tons of plastics –– but the world recycles just 9%. The rest is burned, landfilled or ends up in rivers, rainwater, the air, soil or the sea. Today, the planet is awash in plastic. “It’s everywhere. It’s pervasive and it’s persistent,” says Andrew Wargo, who focuses on ecosystem health at the Virginia Institute of Marine Science.
Since the 1930s the polymers industry has completely altered daily life: Plastics are in our homes, cars, clothes, furniture, and electronics, as well as our single-use throwaway water bottles, food packaging and takeout containers.
A critically important fifth round of negotiations begins Nov. 25 when delegates hope to hammer out final treaty language for ratification by U.N. member states.
Meanwhile, the natural world is in great danger, threatened by a biodiversity crisis, a climate crisis and serious degradations of planetary systems. Researchers are now scrambling to understand the growing threat plastics pose to the health of all living organisms.
Plastics conquer the world
Bakelite, the first synthetic plastic product ever made, came on the market in 1907. By the 1950s, production ramped up, changing the course of history and revolutionizing modern life. Plastics facilitated innumerable human innovations — and spawned a throwaway culture. Add in poorly regulated petrochemical manufacturing processes and industrial fishing’s plastic gear, and global plastic pollution stats soared.
Plastic debris was first noticed in the oceans in the early 1960s. For a long time, ecologists’ main wildlife concerns focused on the threat to sea turtles and other marine creatures that ate plastic bags or became tangled in plastic fishing nets. Now, everything from zooplankton to sharks and seabirds eat it and are exposed to it.
Hart emphasizes the problem’s global scope: “Plastic pollution has been found on every continent and in every ocean, in people, terrestrial wildlife and marine wildlife.” It contaminates creatures across the tree of life and concentrates up the food chain, threatening
Seabirds are at particular risk from microplastics, easily mistaking particles for food. Ingestion causes physical and hormonal damage to cells and organs. Image by A_Different_Perspective via Pixabay (Public domain).Image by Alpizar, F., et al. via Wikimedia Commons (CC BY-SA 4.0).
Insidious plastic harm to health
It’s well known that animals regularly mistake plastic debris for food. Shearwaters and other seabirds, for example, can choke and starve when plastic pieces block their digestive tracts or pierce internal organs. At least 1,565 species are known to ingest plastic. For decades, scientists have noted dead animals ensnared in plastic nets, fishing gear or six-pack rings.
But those big pieces of petrochemical plastic (along with their chemical additives) don’t decompose; they degrade into ever-smaller pieces, getting smaller and smaller. Eventually, they break down into microplastics, tiny particles no bigger than a grain of sand, or become nanoparticles, visible only under a high-powered microscope. These microplastics can leach toxic chemicals. Of the more than 13,000 chemicals currently used in plastics, at least 3,200 have one or more “hazardous properties of concern,” according to a U.N. report.
Most of what we know today about the health impacts of plastics and their chemical additives is based on human medical research, which may offer clues to what happens to animals; that’s unlike most health research, which is done on animals and extrapolated to people.
We know from human medical research that microplastics can damage cells and organs and alter hormones that influence their function. Plastic particles have crossed the blood-brain barrier. They have lodged in human bone marrow, testicles, the liver, kidneys and essentially every other part of the body. They enter the placenta, blood and breast milk. Exposure may affect behavior and lower immunity.
And what plastics do to us, they likely do to animals. The phthalates found in Florida dolphins, for example, along with phenols, parabens and per- and polyfluoroalkyls, are just a fraction of the many endocrine disruptors released by plastics and their chemical additives that can alter hormone levels and derail body functions. Exposure may affect behavior and lower immunity.
Plastic does not disappear: It breaks down into smaller and smaller pieces that settle in soil and float in the air and water. Microplastic can easily penetrate living organisms, their cells, and even cross the blood-brain barrier. Image by European Commission (Lukasz Kobus) via Wikimedia Commons (CC BY 4.0).
Doctors have confirmed links between plastic and human disease and disability. “They cause premature birth, low birth weight, and stillbirth as well as leukemia, lymphoma, brain cancer, liver cancer, heart disease and stroke,” Phil Landrigan, a pediatrician and environmental health expert stated in a press conference earlier this year.
In the wild, animals are now exposed daily to microplastics, eating and breathing them, while many freshwater and marine species swim in a plastic soup. But little is known about the long-term impacts of chronic exposure or what microplastics do within animal tissues, with even less understood about what happens when microplastics shrink to nano size and easily enter cells.
In lab experiments, microplastics in the lungs of pregnant rats easily passed to their fetuses’ brains, hearts and other organs. In adult mice, plastic nanoparticles crossed the blood-brain barrier, triggering swift changes that resembled dementia. In a wild animal, cognitive decline can quickly prove fatal, making it difficult to find food, avoid predators, mate or raise young.
In the lab, fish were more susceptible to a common virus after a one-month exposure to microplastic. They then shed more virus (a fish public health problem) and died in high numbers. Surprisingly, “there’s a lot of similarities between fish and humans, so that we have a lot of the same immune pathways,” explains Wargo, an author on this study. However, the reaction depended on the type of plastic. Nylon fibers had the biggest effect; most nylon sheds from synthetic clothing.
Nearly all Laysan albatross (Phoebastria immutabilis) carcasses found on Midway Atoll contain marine plastic debris. Experts estimate that albatrosses feed their chicks approximately 10,000 pounds of marine debris annually on Midway, enough plastic to fill about 100 curbside trash cans. Image by USFWS – Pacific Region via Flickr (CC BY-NC 2.0).
One challenge to researching health impacts, Wargo explains, is that “plastics oftentimes are lumped into one category, but they’re [all] very different: their structure, chemical composition, their shape and size,” creating thousands of variations. These factors influence how toxic they are, he says, which likely varies between individual animals and different species. Investigation is further complicated and obstructed by petrochemical companies that zealously guard their proprietary polymer product formulas.
The ubiquity of plastics and their global presence means that polymers likely have many undetected and unstudied wildlife health impacts. Some impacts could be masked by other environmental stressors, and untangling and analyzing the particulars will likely take decades.
What we do know is that the poor health, decline or disappearance of a single species within a natural community ripples outward, affecting others, and damaging interconnected ecological systems that have evolved in synchrony over millennia. Here’s just one speculative concern: We know microplastics can bioaccumulate, so apex predators, which balance ecosystems by keeping prey species in check, may be at high risk because they consume and build up large concentrations of microplastics and additive chemicals in their organs.
Plastics harm wildlife –– and humans –– in additional ways: by polluting the air and contributing to climate extremes. Currently, about 19% of plastic waste is incinerated, releasing potentially harmful chemical aerosols into the air. In addition, plastic production sends 232 million metric tons of greenhouse gases into the atmosphere yearly. Then there’s the pollution and carbon released from fracking and drilling operations to source the oil and gas to make these products.
Lastly, the microplastics animals and humans ingest are “Trojan horses.” These tiny particles absorb and carry a wide range of pollutants and bacteria, which then can enter and lodge within our bodies.
Single-use plastic bottles and other throwaway plastic packaging are a major cause of plastic pollution, with many activists and nations calling for a ban. While plastic bottles can be recycled, they frequently aren’t. Also, plastics degrade every time they’re recycled and are usually recycled only once or twice. Image by Hans via Pixabay (Public domain).
Stanching ‘a global-scale deluge of plastic waste’
Climate change and the plastics crisis spring from the same source: The world’s seven largest plastic manufacturers are fossil fuel companies. The U.S. produces the most plastic waste of any country, more than the entire EU combined: 42 million metric tons annually, or 287 pounds per person, according to a 2022 congressional report. It noted that “The success of the 20th-century miracle invention of plastics has also produced a global-scale deluge of plastic waste seemingly everywhere we look.”
Consumers can take small actions to protect themselves and limit plastic pollution by avoiding single-use plastics and carrying reusable bags and stainless-steel water bottles. Disposable fast-food packaging makes up almost half of plastic garbage in the ocean, so cutting back on takeout and bottled water could help.
But realistically addressing the planet’s plastics emergency requires a global paradigm shift that reframes the discussion. Many nations still think of plastics as a waste management issue, but responsibility needs to fall on the shoulders of regulators — and the producers, specifically fossil fuel companies and petrochemical manufacturers.
An international consortium of scientists has stressed the need for “urgent action” in the run-up to this month’s United Nations plastics treaty negotiations, the fifth and hopefully final summit intended to establish international regulations.
The U.S. had been among the largest, most influential dissenters in efforts to limit global plastics production and identify hazardous chemicals used in plastics. But in August 2024, prior to the U.S. presidential election, the Biden administration publicly announced it had toughened its position, supporting production limits, but submitted no position paper. Then, this week it returned to its earlier stance that would protect the plastics industry from production caps.
The plastics treaty summit in Busan, South Korea, beginning Nov. 25 and ending Dec. 1, aims to finalize treaty language that will then need to be ratified by the world’s nations. Regardless of the summit’s outcome, scientists continue to uncover new evidence of plastic’s dangers to humans, animals and the planet, raising the alarm and need for action.
This beach on the island of Santa Luzia, Cape Verde, dramatically illustrates a global problem: a world awash in plastic waste. What it doesn’t show is the breakdown of this debris by wind and tide into microplastics, now sickening people and animals. Image by Plastic Captain Darwin via Wikimedia Commons (CC BY-SA 4.0).
Banner: A black-winged stilt (Himantopus himantopus) forages in a swamp polluted with plastic and other trash. Image by Sham Prakash via Pexels (Public domain).