34,000 Year Old Termite Mounds

34,000 Year Old Termite Mounds

Editor’s note: The team used an excavator to cut a trench through the center of the termite mounds, then carefully took soil samples every 10 cm down and 50 centimeters across. Another example of the hubris of human supremacy.


By Ruth Kamnitzer / Mongabay

Inhabited termite mounds along the Buffels River in Namaqualand, South Africa, are an astounding 34,000 years old, according to a new study.

Termites are a diverse group of insects that play a vital ecological role by breaking down organic matter. They live in complex social groups, and some species create large underground nests. These can include extensive tunnels and chambers where the termites live and store plant material. Some termite mounds can be very old; in 2018, researchers discovered termite mounds in Brazil that were 4,000 years old.

But a recent Science of The Total Environment study has discovered that termite mounds inhabited by southern harvester termites (Microhodotermes viator) in Namaqualand are far, far older. Using radiocarbon dating, the researchers found that the mounds have been used by termites for 34,000 years, since before the last Ice Age. During this period, humans were busy making cave art while a few Neanderthals were still hanging on in southern Europe. The world was still full of megafauna like woolly mammoths, saber-toothed cats and giant sloths.

The study also gives an unparalleled view of the past climate cycles in the region, and points to a previously unexplored role of termites in storing carbon, says Michele Francis, a senior lecturer at Stellenbosch University and the study’s lead author.

“Our gut told us [the mounds] were special, and when we dug through and saw these old nests and termites, we thought ‘wow,’” Francis says. “It’s like watching a video of the past.”

Namaqualand is a semiarid region in western South Africa, known for abundant spring wildflowers. The land along the Buffels River is dotted with low mounds called heuweltjies, which are about 40 meters (130 feet) in diameter, where the southern harvester termites live in underground nests. A hard calcite layer on top of the mounds protects the termites from aardvarks (Orycteropus afer) and other insectivores.

To sample the mounds, the researchers first used an excavator to dig a trench 60 m (197 ft) wide by 3 m (10 ft) deep through the center. Then, in what Francis describes as hot, dusty work, they took samples across the entire cross section, using small metal spatulas to scrape soil into plastic bags. Sometimes the termites would come out and frantically try to repair their nests, using balls of soil to plug the holes the researchers had made.

Francis says she already suspected the mounds were quite old — but was still surprised when radiocarbon dating analysis revealed that the carbonate was up to 34,000 years old. Organic material, which degrades much faster, was also remarkably well preserved, and was up to 19,000 years old. The younger organic material was found lower down, demonstrating how the termites bury carbon deep in the mound.

The analysis provided an unparalleled view into the past, and indicates that these termites may play a previously unappreciated role in storing carbon, Francis says.

To sample the mounds, the researchers first used an excavator to dig a trench 60 m (197 ft) wide by 3 m (10 ft) deep through the center. Then, in what Francis describes as hot, dusty work, they took samples across the entire cross section, using small metal spatulas to scrape soil into plastic bags. Sometimes the termites would come out and frantically try to repair their nests, using balls of soil to plug the holes the researchers had made.

Francis says she already suspected the mounds were quite old — but was still surprised when radiocarbon dating analysis revealed that the carbonate was up to 34,000 years old. Organic material, which degrades much faster, was also remarkably well preserved, and was up to 19,000 years old. The younger organic material was found lower down, demonstrating how the termites bury carbon deep in the mound.

The analysis provided an unparalleled view into the past, and indicates that these termites may play a previously unappreciated role in storing carbon, Francis says.

This can happen in two ways. First, the termites gather small sticks or other carbon-rich plant material at the surface and carry them more than a meter (3 ft) underground, where they’re less likely to release carbon into the atmosphere as they decompose. Second, tunnels created by the termites allow rainwater to move through the mound. This rainwater can carry minerals and dissolved inorganic carbon deeper through the soil profile and into the groundwater.

It’s already established that termites contribute to the global carbon cycle, because many termite species use methane-producing microbes to digest their food. But so far their role in carbon storage and sequestration hasn’t really been explored, Francis says.

Francis, along with researchers from the U.S. and elsewhere, now plans to look at exactly how the carbon in the heuweltjies is being stored. She says she suspects that microbes are converting the organic carbon into a mineral form, which would explain why the mounds are so carbon dense. She says she hopes the new research will help put a value on the carbon storage potential of these, and other similar, mounds. As the heuweltjies cover a fifth of Namaqualand, the benefits of conserving the mounds, as opposed to using the land for agriculture, could be substantial.

“We can only do that if we know how much carbon is in there and how fast it’s being accumulated,” Francis says. “So what we’re trying to do is get people to study what was previously boring, so that we can really understand what’s happening under our feet.”

Ruth Kamnitzer is a BC-based freelance writer, focusing on biodiversity, climate, food security and creative non-fiction. She has an MSc in Biodiversity Conservation from the University of London and a certificate in Multimedia Journalism from the University of Toronto, and has worked in environmental education and ecological field research in Oman, Mongolia, Botswana and Canada. Her work has appeared in Sierra, Maisonneuve, the Globe and Mail, Chatelaine and other publications.

Photo by Ingeborg Korme on Unsplash

Three Summits Aim to Repair a Growing Rift with Nature

Three Summits Aim to Repair a Growing Rift with Nature

Editor’s note: Climate change can not be addressed without stopping the extinction and plastics crisis. Every day, an estimated 137 species of plants, animals and insects go extinct due to deforestation alone. Microplastics have been detected in more than 1,300 animal species, including fish, mammals, birds, and insects. A global plastic treaty will only work if it caps production. Bangladesh is about to implement its existing law regarding plastic usage by strictly banning single-use plastic and, gradually, all possible plastic uses.

Scientific models can never account for all of the interconnected relationships within planetary systems’ boundaries. That is one reason why catastrophe predictions are always being pushed ahead.

There is simply no way the current economic system can persist indefinitely on a finite planet. Unfortunately, COP16’s primary goal is critical to striking a sustainable balance between human civilization and the natural world. That is an impossibility.  We must tackle the underlying causes of biodiversity loss, including fossil fuel extraction, mining, industrial agriculture, intensive livestock farming, large-scale infrastructure projects, and monoculture tree plantations, basically civilization.

It is time to end civilization. Everything that claims existence must lose it; this is the eternal law. Power never gives up power willingly; it can only be broken with struggle. Nature is struggling to survive; we should help it.


 

Wildlife, climate and plastic: how three summits aim to repair a growing rift with nature

Jack Marley, The Conversation

By the end of 2024, nearly 200 nations will have met at three conferences to address three problems: biodiversity loss, climate change and plastic pollution.

Colombia will host talks next week to assess global progress in protecting 30% of all land and water by 2030. Hot on its heels is COP29 in Azerbaijan. Here, countries will revisit the pledge they made last year in Dubai to “transition away” from the fossil fuels driving climate breakdown. And in December, South Korea could see the first global agreement to tackle plastic waste.

Don’t let these separate events fool you, though.

“Climate change, biodiversity loss and resource depletion are not isolated problems,” says biologist Liette Vasseur (Brock University), political scientist Anders Hayden (Dalhousie University) and ecologist Mike Jones (Swedish University of Agricultural Sciences).

“They are part of an interconnected web of crises that demand urgent and comprehensive action.”

Let’s start with the climate.

Earth’s fraying parasol “How hot is it going to get? This is one of the most important and difficult remaining questions about our changing climate,” say two scientists who study climate change, Seth Wynes and H. Damon Matthews at the University of Waterloo and Concordia University respectively.

The answer depends on how sensitive the climate is to greenhouse gases like CO₂ and how much humanity ultimately emits, the pair say. When Wynes and Matthews asked 211 authors of past reports by the Intergovernmental Panel on Climate Change, their average best guess was 2.7°C by 2100.

“We’ve already seen devastating consequences like more flooding, hotter heatwaves and larger wildfires, and we’re only at 1.3°C above pre-industrial levels — less than halfway to 2.7°C,” they say.

There is a third variable that is harder to predict but no less important: the capacity of forests, wetlands and the ocean to continue to offset warming by absorbing the carbon and heat our furnaces and factories have released.

This blue and green carbon pump stalled in 2023, the hottest year on record, amid heatwaves, droughts and fires. The possibility of nature’s carbon storage suddenly collapsing is not priced into the computer models that simulate and project the future climate.

A forest clearing with wildfire smoke in the distance.

Parched forests can emit more carbon than they soak up. Matthew James Ferguson/Shutterstock

However, the ecosystems that buffer human-made warming are clearly struggling. A new report from the World Wildlife Fund (WWF) showed that the average size of monitored populations of vertebrate wildlife (animals with spinal columns – mammals, birds, fish, reptiles and amphibians) has shrunk by 73% since 1970.

Wildlife could become so scarce that ecosystems like the Amazon rainforest degenerate, according to the report.

“More than 90% of tropical trees and shrubs depend on animals to disperse their seeds, for example,” says biodiversity scientist Alexander Lees (Manchester Metropolitan University).

“These ‘biodiversity services’ are crucial.”

The result could be less biodiverse and, importantly for the climate, less carbon-rich habitats.

Plastic in a polar bear’s gut

Threats to wildlife are numerous. One that is growing fast and still poorly understood is plastic.

Bottles, bags, toothbrushes: a rising tide of plastic detritus is choking and snaring wild animals. These larger items eventually degrade into microplastics, tiny fragments that now suffuse the air, soil and water.

“In short, microplastics are widespread, accumulating in the remotest parts of our planet. There is evidence of their toxic effects at every level of biological organisation, from tiny insects at the bottom of the food chain to apex predators,” says Karen Raubenheimer, a senior lecturer in plastic pollution at the University of Wollongong.

Plastic is generally made from fossil fuels, the main agent of climate change. Activists and experts have seized on a similar demand to address both problems: turn off the taps.

In fact, the diagnosis of Costas Velis, an expert in ocean litter at the University of Leeds, sounds similar to what climate scientists say about unrestricted fossil fuel burning:

“Every year without production caps makes the necessary cut to plastic production in future steeper – and our need to use other measures to address the problem greater.”

A production cap hasn’t made it into the negotiating text for a plastic treaty (yet). And while governments pledged to transition away from coal, oil and gas last year, a new report on the world’s energy use shows fossil fuel use declining more slowly than in earlier forecasts – and much more slowly than would be necessary to halt warming at internationally agreed limits. The effort to protect a third of earth’s surface has barely begun.

Each of these summits is concerned with ameliorating the effects of modern societies on nature. Some experts argue for a more radical interpretation.

“Even if 30% of Earth was protected, how effectively would it halt biodiversity loss?” ask political ecologists Bram Büscher (Wageningen University) and Rosaleen Duffy (University of Sheffield).

“The proliferation of protected areas has happened at the same time as the extinction crisis has intensified. Perhaps, without these efforts, things could have been even worse for nature,” they say.

“But an equally valid argument would be that area-based conservation has blinded many to the causes of Earth’s diminishing biodiversity: an expanding economic system that squeezes ecosystems by turning ever more habitat into urban sprawl or farmland, polluting the air and water with ever more toxins and heating the atmosphere with ever more greenhouse gas.”The Conversation

Jack Marley, Environment + Energy Editor, The Conversation

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Green Deceit: Forest Management, EVs, and Manufactured Consent

Green Deceit: Forest Management, EVs, and Manufactured Consent

Editor’s Note: Taking the context of Maryland’s forests, the following piece analyses how the mainstream environmental movement and pro-industry management actors have used deliberately misinterpreting to outright creation of information to justify commercial activities at the expense of forests. Industrial deforestation is harmful for the forests and the planet. The fact that this obvious piece of information should even be stated to educated adults affirms the successful (and deceitful) framing of biomass as an environmentally friendly way out of climate crisis. The same goes for deep sea mining.


By Austin

Most would agree that we live in an age of multiple compounding catastrophes, planetary in scale. There is controversy, however, regarding their interrelationships as well as their causes. That controversy is largely manufactured. In the following pages I will describe the state of “forestry” in the state of Maryland, USA, and connect that to regional, national, and international stirrings of which we should all be aware. I will continue to examine connections between international conservation organizations, the co-optation of the environmental movement, the youth climate movement, and the financialization of nature. Full disclosure. I am writing this to human beings on behalf of all the non-human beings and those yet unborn who are recognized as objects to be converted to capital or otherwise used by the dominant culture. I am not a capitalist. I am a human being. I occupy unceded land of unrecognized peoples which is characterized by poisoned air, water and soil, devastated forest ecosystems, decapitated mountains, and collapsing biodiversity. I am of this earth. It is to the land, water and all of life that I direct my affection and gratitude as well as my loyalty.

Last winter, amid deep concerns about the present mass extinction and an unshakeable feeling of helplessness, I began to search for answers and ecological allies. I compiled a running list of local, regional, national, and international organizations that seemed to have at least some interest in the environment. The list quickly swelled to hundreds of entries. I attempted to assess the organizations based upon their mission, values, goals, publications and other such things. I hoped that the best of the best of these groups could be brought together around ecological restoration and the long-term benefits of clean air, water, healthy soil supporting vigorous growth of food and medicine, and rebounding biodiversity throughout our Appalachian homeland. Progress was and continues to be slow. Along the way, I encountered an open stakeholder consultation (survey) regarding a risk assessment of Maryland’s forests. As an ethnobotanist with special interests in forest ecology and stewardship, Indigenous societies and their traditional ecological knowledge, symbiotic relationships, and intergenerational sustainability, I realize that my unique perspectives could be helpful to the team conducting the assessment. I proceeded to submit thought provoking responses to each question. Because the consultation period was exceedingly brief and outreach to stakeholders was weak at best, and because the wording of the questions felt out of alignment with the purported purpose of the survey, I sensed that something was awry. So I saved my answers and resolved to stay abreast of developments.

Summer came around, I became busy, and the risk assessment survey faded from my mind until a friend recently emailed me a draft of the document along with notice of a second stakeholder consultation and the question: should we respond? This friend happens to own land registered in the Maryland Tree Farm Program. The selective outreach to forest landowners with large acreage was an indication as to who is and who is not considered a “stakeholder” by the committee.

After reviewing the Consultation Draft: A Sustainability Risk Assessment of Maryland’s Forests I felt sick. Low to Negligible was the risk assignment for every single criteria. I re-read the document – section by section – noting the ambiguity, legalese and industry jargon, lack of definitions, contradictory statements, false claims, poorly referenced and questionable sources, and more. Have you heard of greenwashing? Every tactic was represented in the 82 page document. Naturally, then, I tracked down and reviewed many of the referenced materials and I then investigated the contributors and funders of the report.

To understand the Sustainability Risk Assessment of Maryland’s Forests, one must also review the <a href=”https://ago-item-storage.s3.us-east-1.amazonaws.com/90fbcb6e1acd4f019ad608f77ac2f19c/Final_Forestry_EAS_FullReport_10-2021.pdfMaryland Forestry Economic Adjustment Strategy, part one and two of Maryland Department of Natural Resources Forest Action Plan, and Seneca Creek Associates, LLC’s Assessment of Lawful Sourcing and Sustainability: US Hardwood Exports, and of course American Forests Foundation’s Final Report to the Dutch Biomass Certification Foundation (DBC) for Implementation of the AFF’s 2018 DBC Stimulation Program in Alabama, Arkansas, Florida, and Louisiana. Additionally, it is helpful to note that the project development lead and essential supporters each operate independent consultancies that: offer “technical and strategic support in navigating complex forest sustainability and climate issues,” “provide(s) services in natural resource economics and international trade,” and “produced a comprehensive data research study for the Dutch Biomass Certification Foundation on the North American forest sector,” according to their websites.

Noting, furthemore, that on the Advisory Committee sits a member of the Maryland Forests Association (MFA). On their website they state: “We are proud to represent forest product businesses, forest landowners, loggers and anyone with an interest in Maryland’s forests…” They also state: “Currently, Maryland’s Renewable Energy Portfolio Standard uses a limiting definition of qualifying biomass that makes it difficult for wood to compete against other forms of renewable energy,” oh yes, and this extraordinarily deceptive bit from a recent publication, There’s More to our Forests than Trees:

When the tree dies, it decays and releases carbon dioxide and methane back into the atmosphere. However, we can postpone this process and extend the duration of carbon storage. If we harvest the tree and build a house or even make a chair with the wood, the carbon remains stored in these products for far longer than the life of the tree itself! This has tremendous implications for addressing the growing levels of carbon dioxide, which lead to increased warming of the earth’s atmosphere. It means harvesting trees for long-term uses helps mitigate climate change. We can even take advantage of the fact that trees sequester carbon at different rates throughout their lifespan to maximize the carbon storage potential. Trees are more active in sequestering carbon when they are younger. As forests age, growth slows down and so does their ability to store carbon. At some point, a stand of trees reaches an equilibrium where the growth and carbon-storing ability equals the trees that die and release carbon each year. Thus, a younger, more vigorous stand of trees stores carbon at a much higher rate than an older one.

Just in case you were convinced by that last bit, my studies in botany and forest ecology support the following finding:

“In 2014, a study published in Nature by an international team of researchers led by Nathan Stephenson, a forest ecologist with the United States Geographical Survey, found that a typical tree’s growth continues to accelerate (emphasis mine) throughout its lifetime, which in the coastal temperate rainforest can be 800 years or more.

Stephenson and his team compiled growth measurements of 673,046 trees belonging to 403 tree species from tropical, subtropical and temperate regions across six continents. They found that the growth rate for most species “increased continuously” as they aged.

“This finding contradicts the usual assumption that tree growth eventually declines as trees get older and bigger,” Stephenson says. “It also means that big, old trees are better at absorbing carbon from the atmosphere than has been commonly assumed.” (Tall and old or dense and young: Which kind of forest is better for the climate?).

Al Goertzl, president of Seneca Creek (a shadowy corporation with a benign name that has no website and pumps out reports justifying the exploitation of forests) who is featured in MFA’s Faces of Forestry, wouldn’t know the difference, he identifies as a forest economist. In another publication marketing North American Forests he is credited with the statements: “There exists a low risk that U.S. hardwoods are produced from controversial sources as defined in the Chain of Custody standard of the Program for the Endorsement of Forest Certification (PEFC).” and “The U.S. hardwood-producing region can be considered low risk for illegal and non-sustainable hardwood sourcing as a result of public and private regulatory and non-regulatory programs.” The report then closes with this shocker: “SUSTAINABILITY MEANS USING NORTH AMERICAN HARDWOODS.”

Why are forest-pimps conducting the risk assessment upon which future decisions critical to the long-term survival of our native ecosystem will be based? What is really going on here?

A noteworthy find from Forest2Market helps to clarify things:

“Europe’s largest single source of renewable energy is sustainable biomass, which is a cornerstone of the EU’s low-carbon energy transition […] For the last decade, forest resources in the US South have helped to meet these goals—as they will in the future. This heavily forested region exported over <7 million metric tons of sustainable wood pellets in 2021­ – primarily to the EU and UK – and is on pace to exceed that number in 2022 (emphasis mine) due to the ongoing war in Ukraine, which has pinched trade flows of industrial wood pellets from Russia, Belarus and Ukraine.”

Sustainability means using North American hardwoods.

If it has not yet become clear, the stakeholder consultation for the forest sustainability risk assessment document which inspired this piece was but a small, local, component of an elaborate sham enabling the world to burn and otherwise consume the forests of entire continents – in comfort and with the guilt-neutralizing reassurance that: carbon is captured, rivers are purified, forests are healthy and expanding, biodiversity is thriving and protected, and “the rights of Indigenous and Traditional Peoples are upheld” as a result of our consumption. (FSC-NRA-USA, p71) That is the first phase of the plan – manufacturing / feigning consent. Next the regulatory hurdles must be eliminated or circumvented. Cue the Landscape Management Plan (LMP).

“Taken together, the actions taken by AFF [American Forest Foundation] over the implementation period have effectively set the stage for the implementation of a future DBC project to promote and expand SDE+1 qualifying certification systems for family landowners in the Southeast US and North America, generally.”

“As outlined in our proposal, research by AFF and others has demonstrated that the chief barrier for most landowners to participating in forest certification is the requirement to have a forest management plan. To address this significant challenge, AFF has developed an innovative tool, the Landscape Management Plan (LMP). An LMP is a document produced through a multi-stakeholder process that identifies, based on an analysis of geospatial data and existing regional conservation plans, forest conservation priorities at a landscape scale and management actions that can be applied at a parcel scale. This approach also utilizes publicly available datasets on a range of forest resources, including forest types, soils, threatened and endangered species, cultural resources and others, as well as social data regarding landowner motivations and practices. As a document, it meets all of the requirements for ATFS certification and is fully supported by PEFC and could be used in support of other programs such as other certification systems, alongside ATFS. Once an LMP has been developed for a region, and once foresters are trained in its use, the LMP allows landowners to use the landscape plan and derive a customized set of conservation practices to implement on their properties. This eliminates the need for a forester to write a complete individualized plan, saving the forester time and the landowner money. The forester is able to devote the time he or she would have spent writing the plan interacting with the landowner and making specific management recommendations, and / or visiting additional landowners.

With DBC support, AFF sought to leverage two existing LMPs in Alabama and Florida and successfully expanded certification in those states. In addition, AFF combined DBC funds with pre-existing commitments to contract with forestry consultants to design new LMPs in Arkansas and Louisiana. DBC grant funds were used to cover LMP activities between July 1, 2018 and December 31, 2018 for these states, namely stakeholder engagement, two stakeholder workshops (one in each state Arkansas and Louisiana) and staffing.” (American Forest Foundation, 2, 7).

It is clear that global interests / morally bankrupt humans have been busy ignoring the advice of scientists, altering definitions, removing barriers to standardization / certification, and manufacturing consent; thus enabling the widespread burning of wood / biomass (read: earth’s remaining forests) to be recognized as renewable, clean, green-energy. Imagine: mining forests as the solution to deforestation, biodiversity loss, pollution, climate change, and economic stagnation. Meanwhile, mountains are scalped, rivers are poisoned, forests are gutted, biological diversity is annihilated, and the future of all life on earth is sold under the guise of sustainability.

Sustainability means USING North American hardwoods!

The perpetual mining of forests is merely one “natural climate solution” promising diminishing returns for Life on earth. While the rush is on to secure the necessary public consent (but not of the free, prior, and informed variety) to convert the forests of the world into clean energy (sawdust pellets) and novel materials, halfway around the planet and 5 kilometers below the surface of the Pacific another “nature based solution” that will utterly devastate marine ecosystems and further endanger life on earth – deep sea mining (DSM) – is employing the same strategy. Like the numerous other institutions that are formally entrusted with the protection of forests, water, air, biodiversity, and human rights, deep sea mining is overseen by an institution which has contradictory directives – to protect and to exploit. The International Seabed Authority (ISA) has already issued 17 exploration contracts and will begin issuing 30-year exploitation contracts across the 1.7 million square mile Clarion-Clipperton zone by 2024 – despite widespread calls for a ban / moratorium and fears of apocalyptic planetary repercussions. After decades of environmental protection measures enacted by thousands of agencies and institutions throwing countless billions at the “problems,” every indicator of planetary health that I am aware of has declined. It follows, then, that these institutions are incapable of exercising caution, acting ethically, protecting ecosystems, biodiversity or indigenous peoples, holding thieves, murderers and polluters accountable, or even respecting their own regulatory processes. Haeckel sums up industry regulation nicely in a recent nature article regarding the nascent DSM industry:

“…Amid this dearth of data, the ISA is pushing to finish its regulations next year. Its council met this month in Kingston, Jamaica, to work through a draft of the mining code, which covers all aspects — environmental, administrative and financial — of how the industry will operate. The ISA says that it is listening to scientists and incorporating their advice as it develops the regulations. “This is the most preparation that we’ve ever done for any industrial activity,” says Michael Lodge, the ISA’s secretary-general, who sees the mining code as giving general guidance, with room to develop more progressive standards over time.

And many scientists agree. “This is much better than we have acted in the past on oil and gas production, deforestation or disposal of nuclear waste,” says Matthias Haeckel, a biogeochemist at the GEOMAR Helmholtz Centre for Ocean Research Kiel in Germany.” (Seabed Mining Is Coming — Bringing Mineral Riches and Fears of Epic Extinctions).

Of course, this “New Deal for Nature” requires “decarbonization” while producing billions of new electric cars, solar panels, wind mills, and hydroelectric dams. The metals for all the new batteries and techno-solutions have to come from somewhere, right? According to Global Sea Mineral Resources:

“Sustainable development, the growth of urban infrastructure and clean energy transition are combining to put enormous pressure on metal supplies.

Over the next 30 years the global population is set to expand by two billion people. That’s double the current populations of North, Central and South America combined. By 2050, 66 percent of us will live in cities. To support this swelling urban population, a city the size of Dubai will need to be built every month until the end of the century. This is a staggering statistic. At the same time, there is the urgent need to decarbonise the planet’s energy and transport systems. To achieve this, the world needs millions more wind turbines, solar panels and electric vehicle batteries.

Urban infrastructure and clean energy technologies are extremely metal intensive and extracting metal from our planet comes at a cost. Often rainforests have to be cleared, mountains flattened, communities displaced and huge amounts of waste – much of it toxic – generated.

That is why we are looking at the deep sea as a potential alternative source of metals.”

(DSM-Facts, 2022).

Did you notice how there is scarcely room to imagine other possibilities (such as reducing our material and energy consumption, reorganizing our societies within the context of our ecosystems, voluntarily decreasing our reproductive rate, and sharing resources) within that narrative?

Do you still wonder why the processes of approving seabed mining in international waters and certifying an entire continent’s forests industry to be sustainable seem so similar? They are elements of the same scheme: a strategy to accumulate record profits through the valuation and exploitation of nature – aided and abetted by the non-profit industrial complex.

“The non-profit industrial complex (or the NPIC) is a system of relationships between: the State (or local and federal governments), the owning classes, foundations, and non-profit/NGO social service & social justice organizations that results in the surveillance, control, derailment, and everyday management of political movements.

The state uses non-profits to: monitor and control social justice movements; divert public monies into private hands through foundations; manage and control dissent in order to make the world safe for capitalism; redirect activist energies into career-based modes of organizing instead of mass-based organizing capable of actually transforming society; allow corporations to mask their exploitative and colonial work practices through “philanthropic” work; and encourage social movements to model themselves after capitalist structures rather than to challenge them.” (Beyond the Non-Profit Industrial Complex | INCITE!).

The emergence of the NPIC has profoundly influenced the trajectory of global capitalism largely by inventing new conservation and the youth climate movement –

The “movement” that evades all systemic drivers of climate change and ecological devastation (militarism, capitalism, imperialism, colonialism, patriarchy, etc.). […] The very same NGOs which set the Natural Capital agenda and protocols (via the Natural Capital Coalition, which has absorbed TEEB2) – with the Nature Conservancy and We Mean Business at the helm, are also the architects of the term “natural climate solutions”. (THE MANUFACTURING OF GRETA THUNBERG – FOR CONSENT: NATURAL CLIMATE MANIPULATIONS [VOLUME II, ACT VI]).

In the words of artist Hiroyuki Hamada:

“What’s infuriating about manipulations by the Non Profit Industrial Complex is that they harvest the goodwill of the people, especially young people. They target those who were not given the skills and knowledge to truly think for themselves by institutions which are designed to serve the ruling class. Capitalism operates systematically and structurally like a cage to raise domesticated animals. Those organizations and their projects which operate under false slogans of humanity in order to prop up the hierarchy of money and violence are fast becoming some of the most crucial elements of the invisible cage of corporatism, colonialism and militarism.” (THE MANUFACTURING OF GRETA THUNBERG – FOR CONSENT: THE GREEN NEW DEAL IS THE TROJAN HORSE FOR THE FINANCIALIZATION OF NATURE [ACT V]).
We must understand that the false solutions proposed by these institutions will suck the remaining life out of this planet before you can say fourth industrial revolution.

“That is, the privatization, commodification, and objectification of nature, global in scale. That is, emerging markets and land acquisitions. That is, “payments for ecosystem services”. That is the financialization of nature, the corporate coup d’état of the commons that has finally come to wait on our doorstep.” (THE MANUFACTURING OF GRETA THUNBERG – FOR CONSENT: NATURAL CLIMATE MANIPULATIONS [VOLUME II, ACT VI].

An important point must never get lost amongst the swirling jargon, human-supremacy and unbridled greed: If we do not drastically reduce our material and energy consumption – rapidly – then We (that is, all living beings on the planet including humans) have no future.

In summary, decades of social engineering have set the stage for the blitzkrieg underway against our life-giving and sustaining mother planet in the name of sustainability industrial civilization. The success of the present assault requires the systematic division, distraction, discouragement, detention, and demonization (reinforced by powerful disinformation) and ultimately the destruction of all those who would resist. Remember also: capital, religion, race, gender, class, ideology, occupation, private property, and so forth, these are weapons of oppression wielded against us by the dominant patriarchal, colonizing, ecocidal, empire. That is not who We are. Our causes, our struggles, and our futures are one. Unless we refuse to play by their rules and coordinate our efforts, We will soon lose all that can be lost.

Learn more about deep sea mining (here); sign the Blue Planet Society petition (here) and the Pacific Blue Line statement (here). Tell the forest products industry that they do not have our consent and that you and hundreds of scientists see through their lies (here); divest from all extractive industry, and invest in its resistance instead (here). Inform yourself, talk to your loved-ones and community members and ask yourselves: what can we do to stop the destruction?

All flourishing is mutual. The inverse is also true.
“…future environmental conditions will be far more dangerous than currently believed. The scale of the threats to the biosphere and all its lifeforms—including humanity—is in fact so great that it is difficult to grasp for even well-informed experts […] this dire situation places an extraordinary responsibility on scientists to speak out candidly and accurately when engaging with government, business, and the public.” – Top Scientists: We Face “A Ghastly Future”

—Austin is an ecocentric Appalachian ethnobotanist, gardener, forager, and seed saver. He acknowledges kinship with and responsibility to protect all life, land, water, and future generations—

1 (SDE++): Sustainable Energy Transition Subsidy

2 The Economics of Ecosystems and Biodiversity

Banner photo by Rachel Wente-Chaney on Creative Commons

Red Lights Flashing for Wildlife

Red Lights Flashing for Wildlife

Editor’s Note: While climate change is taken as THE pressing ecological concern of current era, biodiversity loss is the often less known but probably more destructive ecological disaster. UNEP estimates we lose 200 species in a day. That is 200 species that are never going to walk the Earth again. With these, we lose 200 creatures that play a unique and significant part in the natural communities, and immeasurable contributions of each to the health of the nature.

This study finds 69% average drop in animal populations since 1970. Over those five decades most of the decline can be traced to habitat destruction. The human desire for ever more growth played out over the years, city by city, road by road, acre by acre, across the globe. It is to want a new cell phone and never give a second thought as to where it comes from. Corporations want to make money so they hire the poor who want only to feed their families and they cut down another swath of rainforest to dig a mine and with it a dozen species we haven’t even named yet die. Think about what goes into a house to live in and the wood that must come from somewhere, and the coal and the oil to power it, and to power the cars that take people from there to the store to buy more things. And on and on, that is the American Dream.


by Malavika Vyawahare / Mongabay

  • Wildlife populations tracked by scientists shrank by nearly 70%, on average, between 1970 and 2018, a recent assessment has found.
  • The “Living Planet Report 2022” doesn’t monitor species loss but how much the size of 31,000 distinct populations have changed over time.
  • The steepest declines occurred in Latin America and the Caribbean, where wildlife abundance declined by 94%, with freshwater fish, reptiles and amphibians being the worst affected.
  • High-level talks under the U.N. Convention on Biological Diversity (CBD) will be held in Canada this December, with representatives from 196 members gathering to decide how to halt biodiversity loss by 2030.

In 2014, as temperatures topped 40° Celsius, or 104° Fahrenheit, in eastern Australia, half of the region’s black flying fox (Pteropus alecto) population perished, with thousands of the bats succumbing to the heat in one day.

This die-off is only one example of the catastrophic loss of wildlife unfolding globally. On average, wildlife populations tracked by scientists shrank by nearly 70% between 1970 and 2018, a recent assessment b WWF and the Zoological Society of London (ZSL) found.

“When wildlife populations decline to this degree, it means dramatic changes are impacting their habitats and the food and water they rely on,” WWF chief scientist, Rebecca Shaw, said in a statement. “We should care deeply about the unraveling of natural systems because these same resources sustain human life.”

WWF’s “Living Planet Report 2022,” launched this October, analyzed populations of mammals, birds, amphibians, reptiles and fish. “It is not a census of all wildlife but reports how wildlife populations have changed in size,” the authors wrote.

A black flying fox.
In 2014, as temperatures topped 40°C, or 104°F, in eastern Australia, half of the region’s black flying fox (Pteropus alecto) population perished, with thousands of the bats succumbing to the heat in one day. Image by Andrew Mercer via Flickr (CC BY-NC-SA 2.0).

A million species of plants and animals face extinction today, according to a landmark 2019 report from the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), an international scientific body. The new analysis uncovers another aspect of this biodiversity crisis: The decline of wild populations doesn’t just translate into species loss but can also heighten extinction risk, particularly for endemic species found only in one location.

Instead of looking at individual species, the Living Planet Index (LPI) on which the report is based tracks 31,000 distinct populations of around 5,000 species. If humans were considered, for example, it would like tracking the demographics of countries. Population declines in one country could indicate a localized threat like a famine, but it was happening across continents, that would be cause for alarm.

The steepest species declines occurred in Latin America and the Caribbean, where wildlife abundance dropped by 94% on average. In this region, freshwater fish, reptiles and amphibians were the worst affected.

Freshwater organisms are at very high risk from human activities worldwide. Most of these threats are linked to habitat loss, but overexploitation also endangers many animals. In Brazil’s Mamirauá Sustainable Development Reserve, populations of Amazon pink river dolphin or boto (Inia geoffrensis) fell by 65% between 1994 and 2016. Targeted fishing of these friendly animals for their use as bait contributed to the decline.

Climatic changes render terrestrial habitats inhospitable too. In Australia, in the 2019-2020 fire season, around 10 million hectares (25 million acres) of forestland was destroyed, killing more than 1 billion animals and displacing 3 billion others. For southeastern Australia, scientists showed that human-induced climate change made the fires 30% more likely.

These losses are happening not just in land-based habitats but also out at sea. Coral reefs and vibrant underwater forests are some of the most threatened ecosystems in the world. But they’re being battered by a changing climate that makes oceans warmer and more acidic. The planet has already warmed by 1.2°C (2.2°F) since pre-industrial times, and a 2°C (3.6°F) average temperature rise will decimate almost all tropical corals.

However, the bat deaths in Australia, Brazil’s disappearing pink river dolphins, and the vulnerability of corals are extreme examples that can skew the index, which averages the change in population sizes. In fact, about half of wildlife populations studied remained stable and, in some cases, even grew. Mountain gorillas (Gorilla beringei beringei) in the Virunga Mountains spanning Rwanda, the Democratic Republic of Congo and Uganda number around 604 today, up from 480 in 2010.

Despite these bright spots, the overall outlook remains gloomy. Even after discounting the extremes, the downward trend persists. “After we removed 10 percent of the complete data set, we still see declines of about 65 percent,” Robin Freeman, an author of the report and senior researcher at ZSL, said in a statement.

Often, habitat loss, overexploitation and climate change compound the risk. Even in cases where a changing climate proves favorable, the multitude of threats can prove insurmountable. Take bumblebees, for example. Some species, like Bombus terrestris or the buff-tailed bumblebee, could actually thrive as average temperatures rise. But an assessment of 66 bumblebee species documented declining numbers because of pesticide and herbicide use.

The report emphasizes the need to tackle these challenges together. Protecting habitats like forests and mangroves can, for example, maintain species richness and check greenhouse gas emissions. The kinds of plants and their abundance directly impact carbon storage because plants pull in carbon from the atmosphere and store it as biomass.

A bumblebee on flowers.
An assessment of 66 bumblebee species documented declining numbers because of pesticide and herbicide use. Image by mikaelsoderberg via Flickr (CC BY 2.0).

One of the deficiencies of the LPI is that it doesn’t include data on plants or invertebrates (including insects like bumblebees).

The report was released in the run-up to environmental summits that will see countries gather to thrash out a plan to rein in climate change in November and later in the year to reverse biodiversity loss. Government leaders are set to meet for the next level of climate talks, called COP27, in Egypt from Nov. 6-13. At the last meeting of parties, known as COP26 in Glasgow, U.K., last year, nations committed to halt biodiversity loss and stem habitat destruction, partly in recognition that this would lower humanity’s carbon footprint.

In December, the 15th meeting of the Conference of the Parties to the U.N. Convention on Biological Diversity (CBD) will be held in Montreal. Representatives from 195 states and the European Union will meet to decide the road map to 2030 for safeguarding biodiversity.

Citations:

Herbertsson, L., Khalaf, R., Johnson, K., Bygebjerg, R., Blomqvist, S., & Persson, A. S. (2021). Long-term data shows increasing dominance of Bombus terrestris with climate warming. Basic and Applied Ecology, 53, 116-123. doi:10.1016/j.baae.2021.03.008

Herbertsson, L., Khalaf, R., Johnson, K., Bygebjerg, R., Blomqvist, S., & Persson, A. S. (2021). Long-term data shows increasing dominance of Bombus terrestris with climate warming. Basic and Applied Ecology, 53, 116-123. doi:10.1016/j.baae.2021.03.008

Outhwaite, C. L., McCann, P., & Newbold, T. (2022). Agriculture and climate change are reshaping insect biodiversity worldwide. Nature,605(7908), 97-102. doi:10.1038/s41586-022-04644-x  

Sobral, M., Silvius, K. M., Overman, H., Oliveira, L. F. B., Raab, T. K., & Fragoso, J. M. V. 2017. Mammal diversity influences the carbon cycle through trophic interactions in the Amazon. Nature Ecology & Evolution,1, 1670–1676. doi:10.1038/s41559-017-0334-0

Featured image by Hans-Jurgen Mager via Unsplash

Combating Extinction Will Help Stop Global Warming

Combating Extinction Will Help Stop Global Warming

Editor’s note: The dominant global culture (“industrial civilization”) is built on resource extraction and forced conversion of habitat to exclusive human use, and this has serious consequences.

Both global warming and the ongoing mass extermination of life on the planet (which has been deemed “the sixth mass extinction”), as well as other ecological crises (aquifer depletion, toxification of the total environment, ecosystem collapse, oceanic dead zones, etc.) are symptoms of humanity’s broken relationship to the planet. In plain terms: this way of life is killing the planet.

Today’s article reminds us that these crises are deeply interlinked, and so are solutions. While we are a revolutionary organization, every small step in the right direction also matters. And as a biocentric organization, we are in favor of actions to protect the natural world rather than putting our faith in technological Bright Green Lies.


By Tara Lohan / The Revelator

Mass extinction lurks beneath the surface of the sea. That was the dire message from a study published in April in the journal Science, which found that continuing to emit greenhouse gases unchecked could trigger a mass die-off of ocean animals that rivals the worst extinction events in Earth’s history.

The findings serve as just the latest reminder that climate change and biodiversity loss are interconnected crises — even if they’re rarely addressed in tandem by policymakers.

Toward that point, the Science study came with a dose of hopeful news: Action to curb greenhouse gas emissions and keep warming below 2 degrees Celsius could cut that extinction risk by 70%.

Additional research published in Global Change Biology offers another encouraging finding. The study, by an international team of scientists, found that not only can we do better at addressing biodiversity issues — we can do it while also targeting climate change.

“Many instances of conservation actions intended to slow, halt or reverse biodiversity loss can simultaneously slow anthropogenic climate change,” the researchers wrote in the study.

Their work looked at 21 proposed action targets for biodiversity that will be the focus of this fall’s international convening of the Convention on Biological Diversity in Kunming, China — a meeting delayed two years by the COVID-19 pandemic. The researchers found that two-thirds of those biodiversity targets also support climate change mitigation, even though they weren’t explicitly designed for that goal. The best opportunities to work on these crises together were actions to avoid deforestation and restore degraded ecosystems. Of particular focus, the study found, should be coastal ecosystems such as mangroves, seagrass and salt marshes, which can store large amounts of carbon and support a diversity of animals.

Mangrove GalapagosA pelican enjoys a perch in a mangrove stand in the Galapagos. Photo: Hans Johnson (CC BY 2.0)

Also important is restoring forests and woodlands, but doing so with native species is critical. Planting monocultures of nonnative trees won’t boost biodiversity, the researchers point out, despite such endeavors being incentivized as a climate change solution.

Another target is reducing runoff into rivers, lakes and coastal waters from excess nutrients — including nitrogen and phosphorus — that cause algal blooms and oxygen-depleted waters. This eutrophication, combined with warming, may increase greenhouse gas emissions in freshwater bodies, in addition to harming fish and other animals.

Expanding and connecting the network of protected areas is another mutualistic target. Globally, we’ve protected about 15% of land and 7% of marine habitats. But we need to bump those numbers up considerably. As the researchers behind the Global Change Biology study put it, “There is a substantial overlap of 92% between areas that require reversing biodiversity loss and the areas needing protection for enhancing carbon storage and drawdown.”

Working on these issues in tandem can help boost the benefits.

We’re also spending large sums of money in all the wrong places. The study lists the reduction or elimination of subsidies that are harmful to biodiversity and the climate as “one of the most important and urgent reforms.”

We spend 10 times more on subsidies for environmentally harmful practices than on biodiversity conservation, the researchers note. Brazil, for example, spends 88 times more on subsidizing activities linked to deforestation than on those that may help stop it.

Other target areas to boost biodiversity and climate work include recovering and conserving wild species; greening urban areas; eliminating overfishing; reducing food and agricultural waste; and shifting diets to include more plant-based foods and less meat and dairy.

And, the researchers say, we need to “mainstream” the issues together — embedding both climate and biodiversity targets and metrics into policy, business and consumer practices.

Understanding these issues should start early, too. A study of school curricula in 46 countries found that fewer than half addressed climate change, and a paltry one-fifth referenced biodiversity. Both these subjects should be covered more and integrated together, the researchers say.

It’s not possible, after all, to tackle one crisis without addressing the other.

To fight climate change, we need fully functioning ecosystems with healthy populations of native plants and animals.

“And climate change is damaging this capacity,” said Hans-Otto Pörtner, a study coauthor and climate researcher at the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research. “Only when we succeed in drastically reducing emissions from fossil fuels can nature help us to stabilize the climate.”