Lithium: Mining Mountains of Water

Lithium: Mining Mountains of Water

In this article Rebecca Wildbear talks about how civilization is wasting our planet’s scarce water sources for mining in its desperate effort to continue this devastating way of life.


By Rebecca Wildbear

Nearly a third of the world lacks safe drinking water, though I have rarely been without. In a red rock canyon in Utah, backpacking on a week-long wilderness training in my mid-twenties, it was challenging to find water. Eight of us often scouted for hours. Some days all we could find to drink was muddy water. We collected rain water and were grateful when we found a spring.

Now water is scarce, and the demand for it is growing. Globally, water use has risen at more than twice the rate of population growth and is still increasing. Ninety percent of water used by humans is used by industry and agriculture, and when groundwater is overused, lakes, streams and rivers dry up, destroying ecosystems and species, harming human health, and impacting food security. Life on Earth will not survive without water.

In the Navajo Nation in Arizona, Utah, and New Mexico, a third of houses lack running water, and in some towns, it is ninety percent. Peabody Energy Corporation, the largest coal producer and a Fortune 500 company, pulled so much water from the Navajo aquifer before closing its mining operation that many wells and springs have run dry. Residents now have to drive 17 miles to wait in line for an hour at a communal well, just to get their drinking water.

Worldwide, the majority of drinkable water comes from underground reservoirs called aquifers. Aquifers feed streams, lakes, and rivers, but their waters are finite. Large aquifers exist beneath deserts, but these were created eons ago in wetter times. Expert hydrologists say that like oil, once the “fossil” waters of ancient reservoirs are mined, they are gone forever.

Peabody’s Black Mesa Mine extracted, pulverized, and mixed coal with water drawn from the Navajo aquifer to form a slurry. This was sent along a 273-mile-long pipeline to the Mojave Generating Station in Laughlin, Nevada, to power Los Angeles. Every year, the mine extracted 1.4 billion gallons (4,000+ acre feet) of water from the aquifer, an estimated 45 billion gallons (130,000+ acre feet) in all.

Pumping out an aquifer draws down the water level and empties it forever. Water quality deteriorates and springs and soil dry out. Agricultural irrigation and oil and coal extraction are the biggest users of waters from aquifers in the U.S. Some predict that the Ogallala aquifer, once stretching beneath five mid-western states, may be able to replenish after six thousand years of rainfall.

Rain is the most accurate measure of available water in a region, yet over-pumping water beyond its capacity to refill is widespread in the western U.S. and around the world. The Middle East ran out of water years ago—it was the first major region in the world to do so. Studies predict that two thirds of the world’s population are at risk of water shortages by 2025. As ground water levels fall, lakes, rivers, and streams are depleted, and the land, fish, trees, and animals die, leaving a barren desert.

Mining in the Great Basin

The skyrocketing demand for lithium, one of the minerals needed for the production of electric cars, is based on the misperception that green technology helps the planet. Yet, as Argentine professor of thermodynamics and lithium mining expert Dr. Daniel Galli said at a scientific meeting, lithium mining is “really mining mountains of water.” Lithium Americas plans to pump massive amounts of water—up to 1.7 billion gallons (5,200 acre feet) annually—from an aquifer in the Quinn River Valley in Nevada’s Great Basin, the largest desert in the United States.

Thacker Pass, the site of the proposed 1.3 billion dollar open-pit lithium mine, would pump 1,200 acre feet more water per year than Peabody Energy Corporation extracted from the Navajo aquifer. Yet, the Quinn River aquifer is already over-allocated by fifty percent, and more than 10 billion gallons (30,000 acre feet) per year. Nevada is one of the driest states in the nation, and Thacker Pass is only the first of many proposed lithium mines in the state. Multiple active placer claims (7,996) have been located in 18 different hydrographic basins.

Deceit about water fuels these mines. Lithium Americas’ environmental impact assessment is grossly inaccurate, according to hydrologist Dr. Erick Powell. By classifying year-round creeks as “ephemeral” and underreporting the flow rate of 14 springs, Lithium Americas is claiming there is less water in the area than there actually is. This masks the real effects the mine would have—drying up hundreds of square miles of land, drawing down the groundwater level, sucking water from neighboring aquifers—all while claiming its operations would have no effect.

Peabody Energy Corporation’s impact assessment similarly misrepresented how their withdrawals would harm the Navajo aquifer. Peabody Energy used a flawed method to measure the withdrawals, according to former National Science Research Fellow Daniel Higgins. Now Navajo Nation wells require drilling down 2,000–3,000 feet, and the water is depressurized and slow to flow to the surface.

Thacker Pass lithium mine would pump groundwater at a disturbing rate, up to 3,250 gallons per minute. Once used, wastewater would contaminate local groundwater with dangerous heavy metals, including a “plume” of antimony that would last at least 300 years. Lithium Americas plans to dig the mine deeper than the groundwater level and keep it dry by continuously pumping water out, but when the pumping stops, groundwater would seep back in, picking up the toxins.

It hurts me to think about this. I imagine water being rapidly extracted from my own body, my bloodstream poisoned. The best tasting water rises to the surface when it is ready, after gestating as long as it likes in the dark Earth. Springs are sacred. When I feel welcome, I place my lips on the earthy surface and fill my mouth with their sweet flavor and vibrant texture.

Mining in the Atacama Desert

Thirteen thousand feet above sea level, the indigenous Atacamas people live in the Atacama Desert, the most arid desert in the world and the driest place on Earth. For millennia, they have used their scarce supply of water and sparse terrain carefully. Their laws and spirituality have always been intertwined with the health and well-being of the land and water. Living in mud-brick homes, pack animals, llama and alpaca, provide them with meat, hide, and wool.

But lithium lies beneath their ancestral land. Since 1980, mining companies have made billions in the Salar de Atacama region in Chile, where lithium mining now consumes sixty-five percent of the water. Some local communities need to have water driven in, and other villagers have been forced to abandon their settlements. There is no longer enough water to graze their animals. Beautiful lagoons hundreds of flamingos call home have gone dry. The birds have disappeared, and the ground is hard and cracked.

In addition to the Thacker Pass mine proposal, Lithium Americas has a mine in the Atacama Desert, a joint Canadian-Chilean venture named Minera Exar in the Cauchari-Olaroz basin in Jujuy, Argentina. Digging for lithium began in Jujuy in 2015, and there is already irreversible damage, according to a 2018 hydrology report. Watering holes have gone dry, and indigenous leaders are scared that soon there will be nothing left.

Even more water is needed to mine the traces of lithium found in brine than in an open-pit mine. At the Sales de Jujuy plant, the wells pump at a rate of more than two million gallons per day, even though this region receives less than four inches of rain a year. Pumping water from brine aquifers decreases the amount of fresh groundwater. Freshwater refills the spaces emptied by brine pumping and is irreversibly mixed with brine and salinized.

The Sanctity of Water

As a river guide, I live close to water. Swallowed by its wild beauty, I am restored to a healthier existence. Far from roads, cars, and cities, I watch water swirl around rocks or ripple over sand. I merge with its generous flow, floating through mountains, forest, or canyon. Rivers teach me how to listen to the currents—whether they cascade in a playful bubble, swell in a loud rush, or ebb in a gentle silence—for clues about what lies ahead.

The indigenous Atacamas peoples understand that water is sacred and have purposefully protected it for centuries. Rather than looking at how nature can be used, our culture needs to emulate the Atacamas peoples and develop the capacity to consider its obligations around water. Instead of electric cars, what we need is an ethical approach to our relationship with the land. Honoring the rights of water, species, and ecosystems is the foundation of a sustainable society. Decisions can be made based on knowledge of the land, weather patterns, and messages from nature.

For millennia, indigenous peoples have perceived water, animals, and mountains as sentient. If humans today could recognize their intelligence, perhaps they would understand that underground reservoirs have a value and purpose, beyond humans. When I enter a cave, I am walking into a living being. My eyes adjust to the dark. Pressing my hand against the wall, I steady myself on the uneven ground, hidden by varying amounts of water. Pausing, I listen to a soft dripping noise, echoing like a heartbeat as dew slides off the rocks. I can almost hear the cave breathing.

The life-giving waters of aquifers keep everything alive, but live unseen under the ground. As a soul guide, I invite people to be nourished by the visions of their dreams, a parallel world that is also seemingly invisible. Our dominant culture dismisses the value of these perceptions, just as it usurps water by disregarding natural cycles. Yet to create a sustainable world, humans need to be able to listen to nature and their dreams. The depths of our souls are inextricably linked to the ancient waters that flow underground. Dreams arise like springs from an aquifer, seeding our visionary potential, expanding our consciousness, and revealing other ways to live, radically different than empire.

Water Bearers

I set my backpack down on a high sandstone cliff overlooking a large watering hole. Ten feet below the hole, the red rock canyon drops into a much larger pool. My friend hikes down to it, filling her cookpot with water. She balances it atop her head on the way up, moving her hips to keep the pot steady. Arriving back, she pours the water into the smaller hole from which we drink and returns to the large pool to gather more.

Women in all societies have carried water throughout history. In many rural communities, they still spend much of the day gathering it. Sherri Mitchell of the Penobscot Nation calls women “the water bearers of the Universe.” The cycles in a woman’s body move in relation with the Earth’s tides, guiding them to nourish and protect the waters of Earth. We all need to become water bearers now.

Indigenous peoples, who have always been the Earth’s greatest defenders, protect eighty percent of global diversity, even though they comprise less than five percent of the world’s population. They understand water is sacred, and the world’s groundwater systems must be defended. For six years, indigenous peoples have been fighting to prevent lithium mining in the Salinas Grandes salt flats, in Jujuy, Argentina. Five hundred indigenous people camped on the land with signs: “No to lithium. Yes, to water and life in our territories.”

In February 2021, President Biden signed executive orders supporting the domestic mining of “critical” minerals like lithium, but two lawsuits, one by five Nevada-based conservation groups, have been filed against the Bureau of Land Management for approving the Thacker Pass lithium mine. Environmentalists Max Wilbert and Will Falk are organizing a protest to protect Thacker Pass. Local residents, including Northern Paiute and Western Shoshone peoples, are speaking out, fighting to protect their land and water.

We can see when a river runs dry, but most people are not aware of the invisible, slow-burning disaster happening under the ground. Some say those who oppose lithium mining should give up cell phones. If that is true, perhaps those who favor mines should give up drinking water. Protecting water needs to be at the center of any plan for a sustainable future.

The “fossil water” found in deserts should be used only in emergency, certainly not for mining. Sickened by corporate water grabbing, I support those trying to stop Thacker Pass Lithium mine and aim to join them. The aquifers there have nurtured so many for so long—eagles, pronghorn antelope, mule deer, old-growth sagebrush, hawks, falcons, sage-grouse, and Lahontan cutthroat trout. I pray these sacred wombs of the Earth can live on to nourish all of life.


For more on the issue:

Climate scientists: concept of net zero is a dangerous trap

Climate scientists: concept of net zero is a dangerous trap

In this article, originally published on The Conversation, three scientists argue that the concept of net zero which is heavily relying on carbon capture and storage technologies is a dangerous illusion.

By James Dyke, Senior Lecturer in Global Systems, University of Exeter, Robert Watson, Emeritus Professor in Environmental Sciences, University of East Anglia, and Wolfgang Knorr, Senior Research Scientist, Physical Geography and Ecosystem Science, Lund University


Sometimes realisation comes in a blinding flash. Blurred outlines snap into shape and suddenly it all makes sense. Underneath such revelations is typically a much slower-dawning process. Doubts at the back of the mind grow. The sense of confusion that things cannot be made to fit together increases until something clicks. Or perhaps snaps.

Collectively we three authors of this article must have spent more than 80 years thinking about climate change. Why has it taken us so long to speak out about the obvious dangers of the concept of net zero? In our defence, the premise of net zero is deceptively simple – and we admit that it deceived us.

The threats of climate change are the direct result of there being too much carbon dioxide in the atmosphere. So it follows that we must stop emitting more and even remove some of it. This idea is central to the world’s current plan to avoid catastrophe. In fact, there are many suggestions as to how to actually do this, from mass tree planting, to high tech direct air capture devices that suck out carbon dioxide from the air.

The current consensus is that if we deploy these and other so-called “carbon dioxide removal” techniques at the same time as reducing our burning of fossil fuels, we can more rapidly halt global warming. Hopefully around the middle of this century we will achieve “net zero”. This is the point at which any residual emissions of greenhouse gases are balanced by technologies removing them from the atmosphere.

This is a great idea, in principle. Unfortunately, in practice it helps perpetuate a belief in technological salvation and diminishes the sense of urgency surrounding the need to curb emissions now.

We have arrived at the painful realisation that the idea of net zero has licensed a recklessly cavalier “burn now, pay later” approach which has seen carbon emissions continue to soar. It has also hastened the destruction of the natural world by increasing deforestation today, and greatly increases the risk of further devastation in the future.

To understand how this has happened, how humanity has gambled its civilisation on no more than promises of future solutions, we must return to the late 1980s, when climate change broke out onto the international stage.

Steps towards net zero

On June 22 1988, James Hansen was the administrator of Nasa’s Goddard Institute for Space Studies, a prestigious appointment but someone largely unknown outside of academia.

By the afternoon of the 23rd he was well on the way to becoming the world’s most famous climate scientist. This was as a direct result of his testimony to the US congress, when he forensically presented the evidence that the Earth’s climate was warming and that humans were the primary cause: “The greenhouse effect has been detected, and it is changing our climate now.”

If we had acted on Hansen’s testimony at the time, we would have been able to decarbonise our societies at a rate of around 2% a year in order to give us about a two-in-three chance of limiting warming to no more than 1.5°C. It would have been a huge challenge, but the main task at that time would have been to simply stop the accelerating use of fossil fuels while fairly sharing out future emissions.

Alt text

 © Robbie AndrewCC BY

Four years later, there were glimmers of hope that this would be possible. During the 1992 Earth Summit in Rio, all nations agreed to stabilise concentrations of greenhouse gases to ensure that they did not produce dangerous interference with the climate. The 1997 Kyoto Summit attempted to start to put that goal into practice. But as the years passed, the initial task of keeping us safe became increasingly harder given the continual increase in fossil fuel use.

It was around that time that the first computer models linking greenhouse gas emissions to impacts on different sectors of the economy were developed. These hybrid climate-economic models are known as Integrated Assessment Models. They allowed modellers to link economic activity to the climate by, for example, exploring how changes in investments and technology could lead to changes in greenhouse gas emissions.

They seemed like a miracle: you could try out policies on a computer screen before implementing them, saving humanity costly experimentation. They rapidly emerged to become key guidance for climate policy. A primacy they maintain to this day.

Unfortunately, they also removed the need for deep critical thinking. Such models represent society as a web of idealised, emotionless buyers and sellers and thus ignore complex social and political realities, or even the impacts of climate change itself. Their implicit promise is that market-based approaches will always work. This meant that discussions about policies were limited to those most convenient to politicians: incremental changes to legislation and taxes.

Around the time they were first developed, efforts were being made to secure US action on the climate by allowing it to count carbon sinks of the country’s forests. The US argued that if it managed its forests well, it would be able to store a large amount of carbon in trees and soil which should be subtracted from its obligations to limit the burning of coal, oil and gas. In the end, the US largely got its way. Ironically, the concessions were all in vain, since the US senate never ratified the agreement.

Postulating a future with more trees could in effect offset the burning of coal, oil and gas now. As models could easily churn out numbers that saw atmospheric carbon dioxide go as low as one wanted, ever more sophisticated scenarios could be explored which reduced the perceived urgency to reduce fossil fuel use. By including carbon sinks in climate-economic models, a Pandora’s box had been opened.

It’s here we find the genesis of today’s net zero policies.

That said, most attention in the mid-1990s was focused on increasing energy efficiency and energy switching (such as the UK’s move from coal to gas) and the potential of nuclear energy to deliver large amounts of carbon-free electricity. The hope was that such innovations would quickly reverse increases in fossil fuel emissions.

But by around the turn of the new millennium it was clear that such hopes were unfounded. Given their core assumption of incremental change, it was becoming more and more difficult for economic-climate models to find viable pathways to avoid dangerous climate change. In response, the models began to include more and more examples of carbon capture and storage, a technology that could remove the carbon dioxide from coal-fired power stations and then store the captured carbon deep underground indefinitely.

This had been shown to be possible in principle: compressed carbon dioxide had been separated from fossil gas and then injected underground in a number of projects since the 1970s. These Enhanced Oil Recovery schemes were designed to force gases into oil wells in order to push oil towards drilling rigs and so allow more to be recovered – oil that would later be burnt, releasing even more carbon dioxide into the atmosphere.

Carbon capture and storage offered the twist that instead of using the carbon dioxide to extract more oil, the gas would instead be left underground and removed from the atmosphere. This promised breakthrough technology would allow climate friendly coal and so the continued use of this fossil fuel. But long before the world would witness any such schemes, the hypothetical process had been included in climate-economic models. In the end, the mere prospect of carbon capture and storage gave policy makers a way out of making the much needed cuts to greenhouse gas emissions.

The rise of net zero

When the international climate change community convened in Copenhagen in 2009 it was clear that carbon capture and storage was not going to be sufficient for two reasons.

First, it still did not exist. There were no carbon capture and storage facilities in operation on any coal fired power station and no prospect the technology was going to have any impact on rising emissions from increased coal use in the foreseeable future.

The biggest barrier to implementation was essentially cost. The motivation to burn vast amounts of coal is to generate relatively cheap electricity. Retrofitting carbon scrubbers on existing power stations, building the infrastructure to pipe captured carbon, and developing suitable geological storage sites required huge sums of money. Consequently the only application of carbon capture in actual operation then – and now – is to use the trapped gas in enhanced oil recovery schemes. Beyond a single demonstrator, there has never been any capture of carbon dioxide from a coal fired power station chimney with that captured carbon then being stored underground.

Just as important, by 2009 it was becoming increasingly clear that it would not be possible to make even the gradual reductions that policy makers demanded. That was the case even if carbon capture and storage was up and running. The amount of carbon dioxide that was being pumped into the air each year meant humanity was rapidly running out of time.

With hopes for a solution to the climate crisis fading again, another magic bullet was required. A technology was needed not only to slow down the increasing concentrations of carbon dioxide in the atmosphere, but actually reverse it. In response, the climate-economic modelling community – already able to include plant-based carbon sinks and geological carbon storage in their models – increasingly adopted the “solution” of combining the two.

So it was that Bioenergy Carbon Capture and Storage, or BECCS, rapidly emerged as the new saviour technology. By burning “replaceable” biomass such as wood, crops, and agricultural waste instead of coal in power stations, and then capturing the carbon dioxide from the power station chimney and storing it underground, BECCS could produce electricity at the same time as removing carbon dioxide from the atmosphere. That’s because as biomass such as trees grow, they suck in carbon dioxide from the atmosphere. By planting trees and other bioenergy crops and storing carbon dioxide released when they are burnt, more carbon could be removed from the atmosphere.

With this new solution in hand the international community regrouped from repeated failures to mount another attempt at reining in our dangerous interference with the climate. The scene was set for the crucial 2015 climate conference in Paris.

A Parisian false dawn

As its general secretary brought the 21st United Nations conference on climate change to an end, a great roar issued from the crowd. People leaped to their feet, strangers embraced, tears welled up in eyes bloodshot from lack of sleep.

The emotions on display on December 13, 2015 were not just for the cameras. After weeks of gruelling high-level negotiations in Paris a breakthrough had finally been achieved. Against all expectations, after decades of false starts and failures, the international community had finally agreed to do what it took to limit global warming to well below 2°C, preferably to 1.5°C, compared to pre-industrial levels.

The Paris Agreement was a stunning victory for those most at risk from climate change. Rich industrialised nations will be increasingly impacted as global temperatures rise. But it’s the low lying island states such as the Maldives and the Marshall Islands that are at imminent existential risk. As a later UN special report made clear, if the Paris Agreement was unable to limit global warming to 1.5°C, the number of lives lost to more intense storms, fires, heatwaves, famines and floods would significantly increase.

But dig a little deeper and you could find another emotion lurking within delegates on December 13. Doubt. We struggle to name any climate scientist who at that time thought the Paris Agreement was feasible. We have since been told by some scientists that the Paris Agreement was “of course important for climate justice but unworkable” and “a complete shock, no one thought limiting to 1.5°C was possible”. Rather than being able to limit warming to 1.5°C, a senior academic involved in the IPCC concluded we were heading beyond 3°C by the end of this century.

Instead of confront our doubts, we scientists decided to construct ever more elaborate fantasy worlds in which we would be safe. The price to pay for our cowardice: having to keep our mouths shut about the ever growing absurdity of the required planetary-scale carbon dioxide removal.

Taking centre stage was BECCS because at the time this was the only way climate-economic models could find scenarios that would be consistent with the Paris Agreement. Rather than stabilise, global emissions of carbon dioxide had increased some 60% since 1992.

Alas, BECCS, just like all the previous solutions, was too good to be true.

Across the scenarios produced by the Intergovernmental Panel on Climate Change (IPCC) with a 66% or better chance of limiting temperature increase to 1.5°C, BECCS would need to remove 12 billion tonnes of carbon dioxide each year. BECCS at this scale would require massive planting schemes for trees and bioenergy crops.

The Earth certainly needs more trees. Humanity has cut down some three trillion since we first started farming some 13,000 years ago. But rather than allow ecosystems to recover from human impacts and forests to regrow, BECCS generally refers to dedicated industrial-scale plantations regularly harvested for bioenergy rather than carbon stored away in forest trunks, roots and soils.

Currently, the two most efficient biofuels are sugarcane for bioethanol and palm oil for biodiesel – both grown in the tropics. Endless rows of such fast growing monoculture trees or other bioenergy crops harvested at frequent intervals devastate biodiversity.

It has been estimated that BECCS would demand between 0.4 and 1.2 billion hectares of land. That’s 25% to 80% of all the land currently under cultivation. How will that be achieved at the same time as feeding 8-10 billion people around the middle of the century or without destroying native vegetation and biodiversity?

Growing billions of trees would consume vast amounts of water – in some places where people are already thirsty. Increasing forest cover in higher latitudes can have an overall warming effect because replacing grassland or fields with forests means the land surface becomes darker. This darker land absorbs more energy from the Sun and so temperatures rise. Focusing on developing vast plantations in poorer tropical nations comes with real risks of people being driven off their lands.

And it is often forgotten that trees and the land in general already soak up and store away vast amounts of carbon through what is called the natural terrestrial carbon sink. Interfering with it could both disrupt the sink and lead to double accounting.

As these impacts are becoming better understood, the sense of optimism around BECCS has diminished.

Pipe dreams

Given the dawning realisation of how difficult Paris would be in the light of ever rising emissions and limited potential of BECCS, a new buzzword emerged in policy circles: the “overshoot scenario”. Temperatures would be allowed to go beyond 1.5°C in the near term, but then be brought down with a range of carbon dioxide removal by the end of the century. This means that net zero actually means carbon negative. Within a few decades, we will need to transform our civilisation from one that currently pumps out 40 billion tons of carbon dioxide into the atmosphere each year, to one that produces a net removal of tens of billions.

Mass tree planting, for bioenergy or as an attempt at offsetting, had been the latest attempt to stall cuts in fossil fuel use. But the ever-increasing need for carbon removal was calling for more. This is why the idea of direct air capture, now being touted by some as the most promising technology out there, has taken hold. It is generally more benign to ecosystems because it requires significantly less land to operate than BECCS, including the land needed to power them using wind or solar panels.

Unfortunately, it is widely believed that direct air capture, because of its exorbitant costs and energy demand, if it ever becomes feasible to be deployed at scale, will not be able to compete with BECCS with its voracious appetite for prime agricultural land.

It should now be getting clear where the journey is heading. As the mirage of each magical technical solution disappears, another equally unworkable alternative pops up to take its place. The next is already on the horizon – and it’s even more ghastly. Once we realise net zero will not happen in time or even at all, geoengineering – the deliberate and large scale intervention in the Earth’s climate system – will probably be invoked as the solution to limit temperature increases.

One of the most researched geoengineering ideas is solar radiation management – the injection of millions of tons of sulphuric acid into the stratosphere that will reflect some of the Sun’s energy away from the Earth. It is a wild idea, but some academics and politicians are deadly serious, despite significant risks. The US National Academies of Sciences, for example, has recommended allocating up to US$200 million over the next five years to explore how geoengineering could be deployed and regulated. Funding and research in this area is sure to significantly increase.

Difficult truths

In principle there is nothing wrong or dangerous about carbon dioxide removal proposals. In fact developing ways of reducing concentrations of carbon dioxide can feel tremendously exciting. You are using science and engineering to save humanity from disaster. What you are doing is important. There is also the realisation that carbon removal will be needed to mop up some of the emissions from sectors such as aviation and cement production. So there will be some small role for a number of different carbon dioxide removal approaches.

The problems come when it is assumed that these can be deployed at vast scale. This effectively serves as a blank cheque for the continued burning of fossil fuels and the acceleration of habitat destruction.

Carbon reduction technologies and geoengineering should be seen as a sort of ejector seat that could propel humanity away from rapid and catastrophic environmental change. Just like an ejector seat in a jet aircraft, it should only be used as the very last resort. However, policymakers and businesses appear to be entirely serious about deploying highly speculative technologies as a way to land our civilisation at a sustainable destination. In fact, these are no more than fairy tales.

The only way to keep humanity safe is the immediate and sustained radical cuts to greenhouse gas emissions in a socially just way.

Academics typically see themselves as servants to society. Indeed, many are employed as civil servants. Those working at the climate science and policy interface desperately wrestle with an increasingly difficult problem. Similarly, those that champion net zero as a way of breaking through barriers holding back effective action on the climate also work with the very best of intentions.

The tragedy is that their collective efforts were never able to mount an effective challenge to a climate policy process that would only allow a narrow range of scenarios to be explored.

Most academics feel distinctly uncomfortable stepping over the invisible line that separates their day job from wider social and political concerns. There are genuine fears that being seen as advocates for or against particular issues could threaten their perceived independence. Scientists are one of the most trusted professions. Trust is very hard to build and easy to destroy.

But there is another invisible line, the one that separates maintaining academic integrity and self-censorship. As scientists, we are taught to be sceptical, to subject hypotheses to rigorous tests and interrogation. But when it comes to perhaps the greatest challenge humanity faces, we often show a dangerous lack of critical analysis.

In private, scientists express significant scepticism about the Paris Agreement, BECCS, offsetting, geoengineering and net zero. Apart from some notable exceptions, in public we quietly go about our work, apply for funding, publish papers and teach. The path to disastrous climate change is paved with feasibility studies and impact assessments.

Rather than acknowledge the seriousness of our situation, we instead continue to participate in the fantasy of net zero. What will we do when reality bites? What will we say to our friends and loved ones about our failure to speak out now?

The time has come to voice our fears and be honest with wider society. Current net zero policies will not keep warming to within 1.5°C because they were never intended to. They were and still are driven by a need to protect business as usual, not the climate. If we want to keep people safe then large and sustained cuts to carbon emissions need to happen now. That is the very simple acid test that must be applied to all climate policies. The time for wishful thinking is over.

Letter #16 Re-Evaluating Solar Photovoltaic Power: Considering the ecological impacts we aim to reduce

Letter #16 Re-Evaluating Solar Photovoltaic Power: Considering the ecological impacts we aim to reduce

In her “Letter to Greta Thunberg” series, Katie Singer explains the real ecological impacts of so many modern technologies on which the hope for a bright green (tech) future is based on.


A letter to Greta Thunberg
by Katie Singer

Even when reality is harsh, I prefer it. I’d rather engineers say that my water could be off for three hours than tell me that replacing the valve will take one hour. I prefer knowing whether or not tomatoes come from genetically modified seed. If dyeing denim wreaks ecological hazards, I’d rather not keep ignorant.

The illusion that we’re doing good when we’re actually causing harm is not constructive. With reality, discovering true solutions becomes possible.

As extreme weather events (caused, at least in part, by fossil fuels’ greenhouse gas [GHG] emissions) challenge electrical infrastructures, we need due diligent evaluations that help us adapt to increasingly unpredictable situations—and drastically reduce greenhouse gas emissions and ecological damage. I have a hard time imagining a future without electricity, refrigerators, stoves, washing machines, phones and vehicles. I also know that producing and disposing of manufactured goods ravages the Earth.

Internationally, governments are investing in solar photovoltaics (PVs) because they promise less ecological impacts than other fuel sources. First, I vote for reviewing aspects of solar systems that tend to be overlooked.

Coal-fired power plants commonly provide electricity to smelt silicon for solar panels. Photo credit: Petr Štefek

Hazards of Solar Photovoltaic Power
1. Manufacturing silicon wafers for solar panels depends on fossil fuels, nuclear and/or hydro power. Neither solar nor wind energy can power a smelter, because interrupted delivery of electricity can cause explosions at the factory. Solar PV panels’ silicon wafers are “one of the most highly refined artifacts ever created.”[1] Manufacturing silicon wafers starts with mining quartz; pure carbon (i.e. petroleum coke [an oil byproduct] or charcoal from burning trees without oxygen); and harvesting hard, dense wood, then transporting these substances, often internationally, to a smelter that is kept at 3000F (1648C) for years at a time. Typically, smelters are powered by electricity generated by a combination of coal, natural gas, nuclear and hydro power. The first step in refining the quartz produces metallurgical grade silicon. Manufacturing solar-grade silicon (with only one impurity per million) requires several other energy-intensive, greenhouse gas (GHG) and toxic waste-emitting steps. [2] [3] [4]

2. Manufacturing silicon wafers generates toxic emissions
In 2016, New York State’s Department of Environmental Conservation issued Globe Metallurgical Inc. a permit to release, per year: up to 250 tons of carbon monoxide, 10 tons of formaldehyde, 10 tons of hydrogen chloride, 10 tons of lead, 75,000 tons of oxides of nitrogen, 75,000 tons of particulates, 10 tons of polycyclic aromatic hydrocarbons, 40 tons of sulfur dioxide and up to 7 tons of sulfuric acid mist. To clarify, this is the permittable amount of toxins allowed annually for one metallurgical-grade silicon smelter in New York State. [5] Hazardous emissions generated by silicon manufacturing in China (the world’s leading manufacturer of solar PVs) likely has significantly less regulatory limits.

3. PV panels’ coating is toxic
PV panels are coated with fluorinated polymers, a kind of Teflon. Teflon films for PV modules contain polytetrafluoroethylene (PTFE) and fluorinated ethylene (FEP). When these chemicals get into drinking water, farming water, food packaging and other common materials, people become exposed. About 97% of Americans have per- and polyfluoroalkyl substances (PFAs) in their blood. These chemicals do not break down in the environment or in the human body, and they can accumulate over time. [6] [7] While the long-term health effects of exposure to PFAs are unknown, studies submitted to the EPA by DuPont (which manufactures them) from 2006 to 2013 show that they caused tumors and reproductive problems in lab animals. Perfluorinated chemicals also increase risk of testicular and kidney cancers, ulcerative colitis (Crohn’s disease), thyroid disease, pregnancy-induced hypertension (pre-eclampsia) and elevated cholesterol. How much PTFEs are used in solar panels? How much leaks during routine operation—and when hailstorms (for example) break a panels’ glass? How much PTFE leaks from panels discarded in landfills? How little PFA is needed to impact health?

4. Manufacturing solar panels generates toxic waste. In California, between 2007 and the first half of 2011, seventeen of the state’s 44 solar-cell manufacturing facilities produced 46.5 million pounds of sludge (semi-solid waste) and contaminated water. California’s hazardous waste facilities received about 97 percent of this waste; more than 1.4 million pounds were transported to facilities in nine other states, adding to solar cells’ carbon footprint. [8]

5. Solar PV panels can disrupt aquatic insects’ reproduction. At least 300 species of aquatic insects (i.e. mayflies, caddis flies, beetles and stoneflies) typically lay their eggs on the surface of water. Birds, frogs and fish rely on these aquatic insects for food. Aquatic insects can mistake solar panels’ shiny dark surfaces for water. When they mate on panels, the insects become vulnerable to predators. When they lay their eggs on the panels’ surface, their efforts to reproduce fail. Covering panels with stripes of white tape or similar markings significantly reduces insect attraction to panels. Such markings can reduce panels’ energy collection by about 1.8 percent. Researchers also recommend not installing solar panels near bodies of water or in the desert, where water is scarce. [9]

Solar PV users may be unaware of their system’s ecological impacts. Photo credit: Vivint Solar from Pexels

6. Unless solar PV users have battery backup (unless they’re off-grid), utilities are obliged to provide them with on-demand power at night and on cloudy days. Most of a utility’s expenses are dedicated not to fuel, but to maintaining infrastructure—substations, power lines, transformers, meters and professional engineers who monitor voltage control and who constantly balance supply of and demand for power. [10] Excess power reserves will increase the frequency of alternating current. When the current’s frequency speeds up, a motor’s timing can be thrown off. Manufacturing systems and household electronics can have shortened life or fail catastrophically. Inadequate reserves of power can result in outages.

The utility’s generator provides a kind of buffer to its power supply and its demands. Rooftop solar systems do not have a buffer.

In California, where grid-dependent rooftop solar has proliferated, utilities sometimes pay nearby states to take their excess power in order to prevent speeding up of their systems’ frequency. [11]

Rooftop solar (and wind turbine) systems have not reduced fossil-fuel-powered utilities. In France, from 2002-2019, while electricity consumption remained stable, a strong increase in solar and wind powered energy (over 100 GW) did not reduce the capacity of power plants fueled by coal, gas, nuclear and hydro. [12]

Comparing GHG emissions generated by different fuel sources shows that solar PV is better than gas and coal, but much worse than nuclear and wind power. A solar PV system’s use of batteries increases total emissions dramatically. Compared to nuclear or fossil fuel plants, PV has little “energy return on energy Invested.” [13]

7. Going off-grid requires batteries, which are toxic. Lead-acid batteries are the least expensive option; they also have a short life and lower depth of discharge (capacity) than other options. Lead is a potent neurotoxin that causes irreparable harm to children’s brains. Internationally, because of discarded lead-acid batteries, one in three children have dangerous lead levels in their blood. [14] Lithium-ion batteries have a longer lifespan and capacity compared to lead acid batteries. However, lithium processing takes water from farmers and poisons waterways. [15] Lithium-ion batteries are expensive and toxic when discarded. Saltwater batteries do not contain heavy metals and can be recycled easily. However, they are relatively untested and not currently manufactured.

8. Huge solar arrays require huge battery electric storage systems (BESS). A $150 million battery storage system can provide 100 MW for, at most, one hour and eighteen minutes. This cannot replace large-scale delivery of electricity. Then, since BESS lithium-ion batteries must be kept cool in summer and warm in winter, they need large heating, ventilation, air conditioning (HVAC) systems. (If the Li-ion battery overheats, the results are catastrophic.) Further, like other batteries, they lose their storage capacity over time and must be replaced—resulting in more extraction, energy and water use, and toxic waste. [16]

9. Solar PV systems cannot sufficiently power energy guzzlers like data centers, access networks, smelters, factories or electric vehicle [EV] charging stations. If French drivers shifted entirely to EVs, the country’s electricity demands would double. To produce this much electricity with low-carbon emissions, new nuclear plants would be the only option. [17] In 2007, Google boldly aimed to develop renewable energy that would generate electricity more cheaply than coal-fired plants can in order to “stave off catastrophic climate change.” Google shut down this initiative in 2011 when their engineers realized that “even if Google and others had led the way toward a wholesale adaptation of renewable energy, that switch would not have resulted in significant reductions of carbon dioxide emissions…. Worldwide, there is no level of investment in renewables that could prevent global warming.” [18]

10. Solar arrays impact farming. When we cover land with solar arrays and wind turbines, we lose plants that can feed us and sequester carbon. [19]

11. Solar PV systems’ inverters “chop” current and cause “dirty” power, which can impact residents’ health. [20]

12. At the end of their usable life, PV panels are hazardous waste. The toxic chemicals in solar panels include cadmium telluride, copper indium selenide, cadmium gallium (di)selenide, copper indium gallium (di)selenide, hexafluoroethane, lead, and polyvinyl fluoride. Silicon tetrachloride, a byproduct of producing crystalline silicon, is also highly toxic. In 2016, The International Renewable Energy Agency (IRENA) estimated that the world had 250,000 metric tons of solar panel waste that year; and by 2050, the amount could reach 78 million metric tons. The Electric Power Research Institute recommends not disposing of solar panels in regular landfills: if modules break, their toxic materials could leach into soil. [21] In short, solar panels do not biodegrade and are difficult to recycle.

To make solar cells more recyclable, Belgian researchers recommend replacing silver contacts with copper ones, reducing the silicon wafers’ (and panels’) thickness, and removing lead from the panels’ electrical connections. [22]

Aerial view of a solar farm. Photo credit: Dsink000

 

 

 

 

 

 

 

13. Solar farms warm the Earth’s atmosphere.
Only 15% of sunlight absorbed by solar panels becomes electricity; 85% returns to the environment as heat. Re-emitted heat from large-scale solar farms affects regional and global temperatures. Scientists’ modeling shows that covering 20% of the Sahara with solar farms (to power Europe) would raise local desert temperatures by 1.5°C (2.7°F). By covering 50% of the Sahara, the desert’s temperature would increase by 2.5°C (4.5°F). Global temperatures would increase as much as 0.39°C—with polar regions warming more than the tropics, increasing loss of Arctic Sea ice. [23] As governments create “green new deals,” how should they use this modeling?

Other areas need consideration here: dust and dirt that accumulate on panels decreases their efficiency; washing them uses water that might otherwise go to farming. Further, Saharan dust, transported by wind, provides vital nutrients to the Amazon’s plants and the Atlantic Ocean. Solar farms on the Sahara could have other global consequences. [24]

14. Solar PV users may believe that they generate “zero-emitting,” “clean” power without awareness of the GHGs, extractions, smelting, chemicals and cargo shipping involved in manufacturing such systems—or the impacts of their disposal. If our only hope is to live with much less human impact to ecosystems, then how could we decrease solar PVs’ impacts? Could we stop calling solar PV power systems “green” and “carbon-neutral?” If not, why not?


Katie Singer’s writing about nature and technology is available at www.OurWeb.tech/letters/. Her most recent book is An Electronic Silent Spring.

REFERENCES

1. Schwarzburger, Heiko, “The trouble with silicon,” PV Magazine, September 15, 2010.

2. Troszak, Thomas A., “Why do we burn coal and trees to make solar panels?” August, 2019.  https://www.researchgate.net/publication/335083312_Why_do_we_burn_coal_and_trees_to_make_solar_panels

3. Kato, Kazuhiko, et. al., “Energy Pay-back Time and Life-cycle CO2 Emission of Residential PV Power System with Silicon PV Module,” Progress in Photovoltaics: Research and Applications, John Wiley & Sons, 1998.

4. Gibbs, Jeff and Michael Moore, “Planet of the Humans,” 2019 documentary about the ecological impacts and money behind “renewable” power systems, including solar, wind and biomass. www.planetofthehumans.com

5. New York State Dept. of Environmental Conservation – Facility DEC ID: 9291100078 PERMIT Issued to: Global Metallurgical Inc.; http://www.dec.ny.gov/dardata/boss/afs/permits/929110007800009_r3.pdf  

6. https://www.epa.gov/pfas/basic-information-pfas; https://www.niehs.nih.gov/health/topics/agents/pfc/index.cfm
https://www.medpagetoday.com/publichealthpolicy/environmentalhealth/84009
Way, Dan, “Policymakers demand answers about GenX-like compounds in solar panels,” CJ Exclusives, July 16, 2018. https://www.carolinajournal.com/news-article/policymakers-largely-unaware-of-genx-like-compounds-in-solar-panels/
“Solar panels could be a source of GenX and other perfluorinated contaminants,” NSJ Staff News, Feb. 16, 2018.  https://nsjonline.com/article/2018/02/solar-panels-could-be-a-source-of-genx-and-other-perflourinated-contaminants/
Lerner, Sharon, “The Teflon Toxin,” The Intercept, Aug. 17, 2015. About PFOAs, hazardous chemicals used in Teflon coating and on solar panels and found in 97% of peoples’ bodies.
Lim, Xiao Zhi “The Fluorine Detectives,” Nature, Feb. 13, 2019. https://www.scientificamerican.com/article/the-fluorine-detectives/  

7. Rich, Nathaniel, “The Lawyer Who Became DuPont’s Worst Nightmare,” January 6, 2016. About attorney Robert Bilott’s twenty-year battle against DuPont for contaminating a West Virginia town with unregulated PFOAs. See also Todd Haynes film, “Dark Waters,” 2019.

8. https://www.wired.com/story/solar-panels-are-starting-to-die-leaving-behind-toxic-trash/
Hodgson, Sam, “Solar panel makers grapple with hazardous waste problem,” Associated Press, Feb. 11, 2013; https://business.financialpost.com/commodities/energy/solar-panel-makers-grapple-with-hazardous-waste-problem

9. Egri, Adam, Bruce A. Robertson, et al., “Reducing the Maladaptive Attractiveness of Solar Panels to Polarotactic Insects,” Conservation Biology, April, 2010.

10. “Exhibit E to Nevada Assembly Committee on Labor,” Submitted by Shawn M. Elicegui, May 20, 2025, on behalf of NV Energy.

11. https://www.latimes.com/business/la-fi-solar-batteries-renewable-energy-california-20190605-story.html “California has too much solar power. That might be good for ratepayers,” Sammy Roth, LA Times, June 5, 2019. https://www.wsj.com/articles/how-california-utilities-are-managing-excess-solar-power-1488628803, “How California Utilities Are Managing Excess Solar Power,” Cassandra Sweet, Wall Street Journal, March 4, 2017.
12 Jancovici: Audition Assemblée Nationale: Impact des EnR – 16 Mai 2019.  https://www.assemblee-nationale.fr/dyn/opendata/CRCANR5L15S2019PO762821N030.html. See also video with slides: https://www.youtube.com/watch?v=Hr9VlAM71O0&t=1560s; minutes 45:20-48:30.

13 https://jancovici.com/wp-content/uploads/2020/07/Jancovici_Mines_ParisTech_cours_7.pdf (slides 18 -19)

14  UNICEF and Pure Earth, “A third of the world’s children poisoned by lead,” 29 July 2020. https://www.unicef.org/press-releases/third-worlds-children-poisoned-lead-new-groundbreaking-analysis-says

15. Katwala, Amit, “The spiraling environmental cost of our lithium battery addiction,” 8.5.18; https://www.wired.co.uk/article/lithium-batteries-environment-impact. Choi, Hye-Bin, et al., “The impact of anthropogenic inputs on lithium content in river and tap water,” Nature Communications, 2019.

16. Martin, Calvin Luther, “BESS Bombs: The huge explosive toxic batteries the wind& solar companies are sneaking into your backyard, Parts 1 and 2,” Aug. 28, 2019.  https://rivercitymalone.com/win-solar-energy/bess-bombs-part-1/
https://rivercitymalone.com/win-solar-energy/bess-bombs-part-2/

17. https://jancovici.com/transition-energetique/transports/la-voiture-electrique-est-elle-la-solution-aux-problemes-de-pollution-automobile/

18. https://spectrum.ieee.org/energy/renewables/what-it-would-really-take-to-reverse-climate-change.

19. Carroll, Mike, N.C. Cooperative Extension, Craven County Center, updated 2020. “Considerations for Transferring Agricultural Land to Solar Panel Energy Production.”  https://craven.ces.ncsu.edu/considerations-for-transferring-agricultural-land-to-solar-panel-energy-production/

20. Segell, Michael, “Is Dirty Electricity Making You Sick?” Prevention Magazine, Jan. 2009.

21.https://fee.org/articles/solar-panels-produce-tons-of-toxic-waste-literally/ https://www.forbes.com/sites/michaelshellenberger/2018/05/23/if-solar-panels-are-so-clean-why-do-they-produce-so-much-toxic-waste/?sh=14e584e0121c

22. O’Sullivan, Barry, “Are Your Solar Panels Recyclable?” 9 Feb. 2015.

23. Lu, Zhengyao and Benjamin Smith, “Solar panels in Sahara could boost renewable energy but damage the global climate—here’s why,” TheConversation.com, Feb. 11, 2021. https://theconversation.com/solar-panels-in-sahara-could-boost-renewable-energy-but-damage-the-global-climate-heres-why-153992

24. Gray, Ellen, “NASA Satellite Reveals How Much Saharan Dust Feeds Amazon’s Plants,” Feb. 22, 2015. https://www.nasa.gov/content/goddard/nasa-satellite-reveals-how-much-saharan-dust-feeds-amazon-s-plants

When Women Become Allies to Save Watersheds and Wildlife

When Women Become Allies to Save Watersheds and Wildlife

This article was produced by Local Peace Economy, a project of the Independent Media Institute.

By Barbara Williams

The word “Minnesota” derives from one of two Dakota words, either Mni Sóta meaning clear blue water or Mnissota meaning cloudy water. Just one letter can change the entire meaning. Just one oil spill could ruin the entire ecosystem.

I traveled to northern Minnesota with Jane Fonda and Tessa Wick in March to stand with the Ojibwe who are fighting a massive assault on their ancestral territory. Line 3 is a pipeline that was built in the 1960s and currently has 900 structural problems according to Enbridge, the Canadian company that owns it. Under the guise of replacing it, Enbridge is in fact abandoning the old one and aggressively laying the infrastructure to expand it into a larger pipeline with greater capacity. The proposed monstrosity would snake through 200 pristine lakes and rivers in northern Minnesota including watersheds for the wild rice that is unique to this part of the world and has been intrinsic to the Anishinaabeg/Ojibwe way of life for centuries. A spill could permanently destroy rice beds as well as the fish and wildlife habitat. Enbridge has had over 800 spills in the last 15 years, most notably the largest inland oil spill in U.S. history when 1.2 million gallons leaked into the Kalamazoo River in 2010. A spill is inevitable.

During his lame-duck period, Donald Trump approved Line 3, in spite of no environmental impact study. It is currently under review. Now that justice has been rendered in the George Floyd case, there is hope that Minnesota Attorney General Keith Ellison will turn his attention to the social and environmental injustice of Line 3. President Biden should overturn the Army Corps permit to Enbridge as he did with the Keystone XL pipeline.

Our first stop was at a compound on the White Earth Reservation. It houses 8th Fire Solar, a facility where tribal members are building thermal solar panels. It is the headquarters for Honor the Earth, an organization founded by Winona LaDuke, with the mission of creating awareness and support for Native environmental issues. Winona is a magnetic and fiery leader who has long been a vital force protecting the earth. In addition to harvesting wild rice (manoomin) and building solar panels, Winona runs a fledgling hemp business, taps maple trees, and has ventured into small-batch coffee roasting. The people on the White Earth Reservation are making every effort to be self-sufficient through sustainable activities.

We were served delicious buffalo egg rolls while the women water protectors shared stories of getting roughed up by the local police for protesting the pipeline. They were strip-searched and kept in overcrowded cells—in the time of COVID-19. The Minnesota Public Utilities Commission has created an Enbridge-funded account to pay for policing Enbridge opponents—meaning they are paid more when they harass and arrest activists. When we were convoying to a press conference, the two women driving in front of us were pulled over for not signaling 100 feet before turning. Fortunately, they were both constitutional lawyers—and white, I might add. After delaying them for 15 minutes, the officer realized what she was up against and backed down.

On the banks of the Crow Wing River, against a backdrop of Ojibwe grandmothers in traditional garb, Jane and Winona shared a panel with Tara Houska, an Ojibwe, Yale-educated tribal lawyer who hung up her suit in D.C. to come back and live with other water protectors on a 70-acre resistance camp called the Giniw Collective.

Jane’s presence had brought out a slew of media. She has become the wise woman educating and inspiring her vast network of old and new fans. She spoke knowledgeably on the salient issues surrounding climate change. She emphasized the importance of good-paying jobs being in place as we transition from fossil fuels to sustainable energy. She mentioned a statement Winona made about a moment when we had the choice to have a carbohydrate history or a hydrocarbon history, and we chose the wrong one, adding, “It’s time to correct that.” Tara explained the illegitimacy of Line 3 being built on public lands. She has joined the charge of young activists fed up with ineffectual political policy who are using their bodies and agency to say “no more.” Winona quoted Arundhati Roy, urging us to see the “pandemic as portal”: “We must go through the portal leaving dead ideas behind, ready to imagine a new world.”

The crowd was energized; everybody was wearing red. There was a festive feeling of optimism in the air. At key points, a giant black bear puppet roared with approval or grunted with displeasure. Indigenous drummers drummed. River otters played.

Four years ago, I accompanied Jane on a flyover of the Canadian tar sands in Fort McMurray, Alberta, source of the dirty oil that Enbridge exports. From the air, the open-pit mines made me think of cancer sores with the outgoing vessels bringing disease to the rest of the body. The jobs pay well. It’s how my sister and her husband bought their home. Workers go where the money is. But it’s a dying industry. Justin Trudeau enthusiastically signed on to the Paris climate accord and vowed to invest in renewable energy sources, but he has bowed to the corporate powers who are squeezing out every ounce of filthy lucre from the tar sands before they collapse. Not only is tar sand extraction the dirtiest and most inefficient process, but it’s also the most uneconomical. If the government took the bold step of subsidizing other sectors of the economy such as renewables, housing and transportation, to the degree they subsidize the tar sands, it would be far more beneficial to the economy and people’s lives—in the long run. But they are shortsighted.

The fish and wildlife that the Métis First Nations of the Athabasca region have traditionally subsisted on are riddled with deformities and tumors. Eighty-seven percent of the community believes the tar sands are responsible. We sat with Cece, who was a heavy equipment operator for seven years. At 60 years old, she had outlived all her coworkers, including her husband, who died of cancer the year before. She ran for tribal chief on a platform of pushing for stricter tar sands regulations, but the industry bribed her opponent with the promise of a senior care facility if he would show his support. She lost by one vote. Divide and conquer, the age-old tactic of domination.

With Line 3, Enbridge does not want to repeat the clashes they encountered at Standing Rock, so they have pumped money into targeted communities. The chronic neglect of government on the reservations, exacerbated by the economic downturn from the pandemic, has served to Enbridge’s advantage. People need to feed their families, and Enbridge is there with the jobs. Enbridge created a trust from which the Fond du Lac tribal government doles out monthly payments to their members. It’s a terrible dilemma for individuals who fear reprisal if they express opposition. The project has created deep divisions within the Indigenous community, but the vast majority are fervently against it.

With people coming to work from all over the country, the Enbridge man camps are potential COVID-19 superspreaders. According to the Violence Intervention Project in Thief River Falls, at least two women have been sexually assaulted. Numerous women say they have been harassed by pipeline workers and do not feel safe. Two Enbridge employees based in Wisconsin were recently arrested for sex trafficking.

Jane did a Skyped interview with Lawrence O’Donnell on MSNBC. In a breathtaking six-and-a-half-minute uninterrupted spiel, she laid out the micro and the macro of the entire situation. Later, she worried it might have come across as manic. No, Tessa and I assured her, it came across as urgent.

After a long drive, Tara led us down a narrow, snow-covered dirt road to a small encampment of tents where they were sugaring the maple trees. Sap is collected and continuously poured into a gigantic hand-hewn pot mounted over an open fire, then reduced down for several days. It’s very labor-intensive—the ratio is 26 gallons of sap to make one gallon of syrup. They are not selling the syrup; they want to hold on to it in case there’s a shortage or some other catastrophe occurs. They’re holding on to their wild rice too. Everyone is on tenterhooks waiting for a decision from the White House. Their future hangs in the balance.


Barbara Williams is a Canadian musician, actress, and activist. As a musician, she has performed in concerts devoted to peace, workers’ rights, and the environment. She is the author of The Hope in Leaving: A Memoir.

Letter #16 Re-Evaluating Solar Photovoltaic Power: Considering the ecological impacts we aim to reduce

Letter #12 How we manufacture silicon: computers’ crucial ingredient not found in nature

In her “Letter to Greta Thunberg” series, Katie Singer explains the real ecological impacts of so many modern technologies on which the hope for a bright green (tech) future is based on.

A letter to Greta Thunberg
by Katie Singer


Dear Greta,

Could we discuss silicon, that substance on which our digital world depends? [1] Silicon is a semiconductor, and tiny electronic switches called transistors are made from it. Like brain cells, transistors control the flow of information in a computer’s integrated circuits. Transistors store memory, amplify sound, transmit and receive data, run apps and much, much more.

One smartphone (call it a luxury, hand-held computer with portals to the Internet) can hold more than four billion transistors on a few tiny silicon chips, each about the size of a fingernail.

Computer chips are made from electronic-grade silicon, which can have no more than one impure atom per billion. But pure silicon is not found in nature. Producing it requires a series of steps that guzzle electricity [2] and generate greenhouse gases (GHGs) and toxic waste.

Silicon’s story is not easy to swallow. Still, if we truly aim to decrease our degradation of the Earth and GHG emissions, we cannot ignore it.

Step One  

Silicon production starts with collecting and washing quartz rock (not sand), a pure carbon (usually coal, charcoal, petroleum coke, [3] or metallurgical coke) and a slow-burning wood. These three substances are transported to a facility with a submerged-arc furnace.[4]

Note that transporting the raw materials necessary for silicon production—between multiple countries, via cargo ships, trucks, trains and airplanes—uses oil and generates greenhouse gases. [5]

Step Two

Kept at 3000F (1649C) for years at a time, a submerged-arc furnace or smelter “reduces” the silicon from the quartz. During this white-hot chemical reaction, gases escape upward from the furnace. Metallurgical-grade silicon settles to the bottom, 97-99% pure—not nearly pure enough for electronics. [6]

If power to a silicon smelter is interrupted for too long, the smelter’s pot could be damaged. [7] Since solar and wind power is intermittent, they cannot power a smelter.

Typically, Step Two takes up to six metric tons of raw materials to make one metric ton (t) of silicon. A typical furnace consumes about 15 megawatt hours of electricity per metric ton (MWh/t) [8] of silicon produced, plus four MWh/t for ventilation and dust collection; and it generates tremendous amounts of CO2.[9]

Manufacturing silicon also generates toxic emissions. In 2016, New York State’s Department of Environmental Conservation issued a permit to Globe Metallurgical Inc. to release, per year: up to 250 tons of carbon monoxide, 10 tons of formaldehyde, 10 tons of hydrogen chloride, 10 tons of lead, 75,000 tons of oxides of nitrogen, 75,000 tons of particulates, 10 tons of polycyclic aromatic hydrocarbons, 40 tons of sulfur dioxide and up to 7 tons of sulfuric acid mist. [10] To clarify, this is the permittable amount of toxic waste allowed annually for one New York State metallurgical-grade silicon smelter. Hazardous waste generated by manufacturing silicon in China likely has significantly less (if any) regulatory limits.

Step Three

Step Two’s metallurgical-grade silicon is crushed and mixed with hydrogen chloride (HCL) to synthesize trichlorosilane (TCS) gas. Once purified, the TCS is sent with pure hydrogen to a bell jar reactor, where slender filaments of pure silicon have been pre-heated to about 2012F (1100C). In a vapor deposition process that takes several days, silicon gas atoms collect on glowing strands to form large polysilicon rods—kind of like growing rock candy. If power is lost during this process, fires and explosions can occur. A polysilicon plant therefore depends on more than one source of electricity—i.e. two coal-fired power plants, or a combination of coal, nuclear and hydro power. [11]

A large, modern polysilicon plant can require up to 400 megawatts of continuous power to produce up to 20,000 tons of polysilicon per year (~175 MW/hours per ton of polysilicon). [12] Per ton, this is more than ten times the energy used in Step Two—and older plants are usually less efficient. A single plant can draw as much power as an entire city of 300,000 homes.

Once cooled, the polysilicon rods are removed from the reactor, then sawed into sections or fractured into chunks. The polysilicon is etched with nitric acid and hydrofluoric acid [13] to remove surface contamination. Then, it’s bagged in a chemically clean room and shipped to a crystal grower.

Step Four

Step Three’s polysilicon chunks are re-melted to a liquid, then pulled into a single crystal of silicon to create a cylindrical ingot. Cooled, the ingot’s (contaminated) crown and tail are cut off. Making ingots often requires more electricity than smelting. [14]The silicon ingot’s remaining portion is sent to a slicer.

Step Five

Like a loaf of bread, the silicon ingot is sliced into wafers. More than 50 percent of the ingot is lost in this process. It becomes sawdust, which cannot be recycled. [15]

Step Six

Layer by layer, the silicon will be “doped” with tiny amounts of boron, gallium, phosphorus or arsenic to control its electrical properties. Dozens of layers are produced during hundreds of steps to turn each electronic-grade wafer into microprocessors, again using a great deal of energy and toxic chemicals.

Questions for a world out of balance 

In 2013, manufacturers began producing more transistors than farmers grow grains of wheat or rice. [16] Now, manufacturers make 1000 times more transistors than farmers grow grains of wheat and rice combined. [17]

After I learned what it takes to produce silicon, I could hardly talk for a month. Because I depend on a computer and Internet access, I depend on silicon—and the energy-intensive, toxic waste-emitting, greenhouse gas-emitting steps required to manufacture it.

Of course, silicon is just one substance necessary for every computer. As I report in letter #3 [18], one smartphone holds more than 1000 substances, each with their own energy-intensive, GHG-emitting, toxic waste-emitting supply chain. [19] One electric vehicle can have 50-100 computers. [20] When a computer’s microprocessors are no longer useful, they cannot be recycled; they become electronic waste. [21]

Solar panels also depend on pure silicon. At the end of their lifecycle, solar panels are also hazardous waste. (In another letter, I will outline other ecological impacts of manufacturing, operating and disposing of solar PV systems.)

I’d certainly welcome solutions to silicon’s ecological impacts. Given the magnitude of the issues, I’d mistrust quick fixes. Our first step, I figure, is to ask questions. What’s it like to live near a silicon smelter? How many silicon smelters operate on our planet, and where are they? If we recognize that silicon production generates greenhouse gases and toxic emissions, can we rightly call any product that uses it “renewable,” “zero-emitting,” “green” or “carbon-neutral?”

Where do petroleum coke, other pure carbons and the wood used to smelt quartz and produce silicon come from? How/could we limit production of silicon?

How does our species’ population affect silicon’s production and consumption? I’ve just learned that if we reduced fertility rates to an average of one child per woman (voluntarily, not through coercion of any kind), the human population would start to approach two billion within four generations.[22] (At this point, we’re nearing eight billion people.) To reduce our digital footprint, should we have less children? Would we have less children?

What would our world look like if farmers grew more wheat and rice than manufacturers make transistors? Instead of a laptop, could we issue every student a raised bed with nutrient-dense soil, insulating covers and a manual for growing vegetables?

What questions do you have about silicon?

Yours,
Katie Singer

Katie Singer’s writing about nature and technology is available at www.OurWeb.tech/letters/. Her most recent book is An Electronic Silent Spring.

REFERENCES

  1. Without industrial process designer Tom Troszak’s 2019 photo-essay, which explains how silicon is manufactured for solar panels (and electronic-grade silicon), I could not have written this letter. Troszak, Thomas A., “Why Do We Burn Coal and Trees for Solar Panels?” https://www.researchgate.net/publication/335083312_Why_do_we_burn_coal_and_trees_to_make_solar_panels
    “Planet of the Humans,” Jeff Gibbs and Michael Moore’s documentary, released on YouTube in 2020, also shows how silicon is manufactured for solar panels. https://planetofthehumans.com/
  2. Schwarzburger, Heiko, “The trouble with silicon,” https://www.pv-magazine.com/magazine-archive/the-trouble-with-silicon_10001055/ September 15, 2010.
  3. Stockman, Lorne, “Petroleum Coke: The Coal Hiding in the Tar Sands,” Oil Change International, January,2013; www.priceofoil.org
  4. Silicon processing: from quartz to crystalline silicon solar cells; https://www.researchgate.net/publication/265000429_Silicon_processing_from_quartz_to_crystalline_silicon_solar_cells; Daqo new Energy: The Lowest-Cost Producers Will Survive (NYSE:DQ), 2017, https://seekingalpha.com/article/4104631-daqo-new-energy-lowest-cost-producers-will-survive.
  5. “Greenhouse gas emissions from global shipping, 2013-2015; https://theicct.org/sites/default/files/publications/Global-shipping-GHG-emissions-2013-2015_ICCT-Report_17102017_vF.pdf
  6. Chalamala, B., “Manufacturing of Silicon Materials for Microelectronics and PV (No. SAND2018-1390PE), Sandia National Lab, NM, 2018. https://www.osti.gov/servlets/purl/1497235; Polysilicon Production: Siemens Process (Sept. 2020); Kato, Kazuhiko, et. al., “Energy Pay-back Time and Life-cycle CO2 Emission of Residential PV Power System with Silicon PV Module,” Progress in Photovoltaics: Research and Applications, 6(2), 105-115, John Wiley & Sons, 1998; https://onlinelibrary.wiley.com/doi/abs/10.1002/(SICI)1099-159X(199803/04)6:2%3C105::AID-PIP212%3D3.0.CO;2-C
  7. Schwarzburger, 2010; Troszak, “The effect of embodied energy on the energy payback time (EPBT) for solar PV;” https://www.researchgate.net/publication/335612277_The_effect_of_embodied_energy_on_the_energy_payback_time_EPBT_for_solar_PV/figures
  8. Kramer, Becky, “Northeast Washington silicon smelter plans raise concerns,” The Spokesman-Review, 11.1.17.
  9. Thorsil Metallurgical Grade Silicon Plan; Helguvik, Reykjanes municipality (Reykjanesbaer), Reykjanes peninsula, Iceland, Environmental Impact Assessment, February, 2015.
  10. New York State Dept. of Environmental Conservation – Facility DEC ID: 9291100078 PERMIT Issued to: Global Metallurgical Inc.; http://www.dec.ny.gov/dardata/boss/afs/permits/929110007800009_r3.pdf
  11. “Polysilicon Market Analysis: Why China is beginning to dominate the polysilicon market,” 2020, https://www.bernreuter.com/polysilicon/market analysis/; also, Bruns, Adam, 2009.
  12. Bruns, Adam, “Wacker Completes Dynamic Trio of Billion-Dollar Projects in Tennessee: ‘Project Bond’ cements the state’s clean energy leadership,” 2009, www.siteselection.com.
  13. Schwartzburger, 2010.
  14. Dale, M. and S.M. Benson, “Energy balance of the global photovoltaic (PV) industry-is the PV industry a net electricity producer?” Environmental Science and Technology, 47(7), 3482-3489, 2013.
  15. The Society of Chemical Engineers of Japan (ed.), “Production of silicon wafers and environmental problems,” Introduction to VLSI Process Engineering, Chapman & Hall, 1993.
  16. Hayes, Brian, “The Memristor,” American Scientist, 2011.
  17. https://marginalrevolution.com/marginalrevolution/2019/01/claims-about-transistors.html
  18. www.DearGreta.com/letter-3/
  19. Needhidasan, S., M. Samuel and R. Chidambaram, “Electronic waste: an emerging threat to the environment of urban India,” J. of env. health science and engineering, 2014, 12(1), 36.
  20. www.DearGreta.com/letter-5/
  21. Needhidasan, S., 2014.
  22. Hickey, Colin, et al. “Population Engineering and the Fight against Climate Change.” Social Theory and Practice, vol. 42, no. 4, 2016, pp. 845–870., www.jstor.org/stable/24870306.
The Big Green Lie

The Big Green Lie

We in DGR stand in solidarity with Survival International and support them because we believe that their analysis is correct and the organization is doing incredibly important work in standing up for indigenous peoples worldwide. While we encourage everyone to support Survival International and their very well-made campaigns, as an organization DGR pushes for more radical approaches than writing or signing letters and petitions, begging those in power to act in a different way. Those in power have never been on the side of the masses, the poor, the indigenous or the natural world. Asking nicely will not stop them continuing their atrocities.


By Survival International

At the next Convention on Biological Diversity summit, world leaders plan to agree turning 30% of the Earth into “Protected Areas” by 2030.

Big conservation NGOs say this will mitigate climate change, reduce wildlife loss, enhance biodiversity and so save our environment. They are wrong.

Protected Areas will not save our planet. On the contrary, they will increase human suffering and so accelerate the destruction of the spaces they claim to protect because local opposition to them will grow. They have no effect on climate change at all, and have been shown to be generally poor at preventing wildlife loss.

It is vital that real solutions are put forward to address these urgent problems and that the real cause – exploitation of natural resources for profit and growing overconsumption, driven by the Global North – is properly acknowledged and discussed. But this is unlikely to happen because there are too many vested interests that depend on existing consumption patterns continuing.

Who will suffer if 30% of Earth is “protected”? It won’t be those who have overwhelmingly caused the climate crisis, but rather indigenous and other local people in the Global South who play little or no part in the environment’s destruction. Kicking them off their land to create Protected Areas won’t help the climate: Indigenous peoples are the best guardians of the natural world and an essential part of human diversity that is a key to protecting biodiversity.

We must stop the push for 30%.

These Khadia men were thrown off their land after it was turned into a protected area. They lived for months under plastic sheets. Millions more face this fate if the 30% plan goes ahead.

These Khadia men were thrown off their land after it was turned into a protected area. They lived for months under plastic sheets. Millions more face this fate if the 30% plan goes ahead. © Survival

The truth about Protected areas

In many parts of the world a Protected Area is where the local people who called the land home for generations are no longer allowed to live or use the natural environment to feed their families, gather medicinal plants or visit their sacred sites. This follows the model of the United States’ nineteenth century creation of the world’s first national parks on lands stolen from Native Americans. Many US national parks forced the peoples who had created the wildlife-rich “wilderness” landscapes into landlessness and poverty.

This is still happening to indigenous peoples and other communities in Africa and parts of Asia. Local people are pushed out by force, coercion or bribery. They are beaten, tortured and abused by park rangers when they try to hunt to feed their families or just to access their ancestral lands. The best guardians of the land, once self-sufficient and with the lowest carbon footprint of any of us, are reduced to landless impoverishment and often end up adding to urban overcrowding. Usually these projects are funded and run by big Western conservation NGOs. Once the locals are gone, tourists, extractive industries and others are welcomed in. For these reasons, local opposition to Protected Areas is growing.

“If the jungle is taken away from us, how will we survive?”

Kunni Bai, a Baiga woman, denounces efforts to evict her people in the name of “conservation”.

Why should we oppose it?

Doubling Protected Areas to cover 30% of the globe will ensure these problems become much worse. As the most biodiverse regions are those where indigenous peoples still live, these will be the first areas targeted by the conservation industry. It will be the biggest land grab in world history and it will reduce hundreds of millions of people to landless poverty – all in the name of conservation. Creating Protected Areas has rarely been done with the consent of indigenous communities, or respect for their human rights. There is no sign that it will be any different in the future. More Protected Areas are likely to result in more militarization and human rights abuses.

The idea of “fortress conservation” – that local peoples must be removed from their land in order to protect ‘nature’ – is colonial. It’s environmentally damaging and rooted in racist and ecofascist ideas about which people are worth more, and which are worth less and can be pushed off their land and impoverished, or attacked and killed.

The conservation industry is looking to get $140 billion every year to fund its land grab.

What do we propose?

We must fight against this big green lie.

If we’re serious about putting the brakes on biodiversity loss, the cheapest and best-proven method is to support as much indigenous land as possible. Eighty per cent of the planet’s biodiversity is already found there.

For tribes, for nature, for all humanity. #BigGreenLie

More information on the 30% land grab:

– Mapping For Rights: The ‘Post-2020 Global Biodiversity Framework’

– ‘New Deal for Nature: Paying the Emperor to Fence the Wind’

– #DecolonizeConservation: Tribal Voice videos

– Joint statement by NGOs: concerns over the proposed 30% target

– The Big Green Lie: an infographic explainer

– EU Conference on 2030 Biodiversity Strategy

– 30% by 2030 and Nature-Based Solutions: the new green colonial rule

– Letter to UK Prime Minister Boris Johnson

 

More information on colonial conservation