Letter #12 How we manufacture silicon: computers’ crucial ingredient not found in nature

Letter #12 How we manufacture silicon: computers’ crucial ingredient not found in nature

In her “Letter to Greta Thunberg” series, Katie Singer explains the real ecological impacts of so many modern technologies on which the hope for a bright green (tech) future is based on.

A letter to Greta Thunberg
by Katie Singer


Dear Greta,

Could we discuss silicon, that substance on which our digital world depends? [1] Silicon is a semiconductor, and tiny electronic switches called transistors are made from it. Like brain cells, transistors control the flow of information in a computer’s integrated circuits. Transistors store memory, amplify sound, transmit and receive data, run apps and much, much more.

One smartphone (call it a luxury, hand-held computer with portals to the Internet) can hold more than four billion transistors on a few tiny silicon chips, each about the size of a fingernail.

Computer chips are made from electronic-grade silicon, which can have no more than one impure atom per billion. But pure silicon is not found in nature. Producing it requires a series of steps that guzzle electricity [2] and generate greenhouse gases (GHGs) and toxic waste.

Silicon’s story is not easy to swallow. Still, if we truly aim to decrease our degradation of the Earth and GHG emissions, we cannot ignore it.

Step One  

Silicon production starts with collecting and washing quartz rock (not sand), a pure carbon (usually coal, charcoal, petroleum coke, [3] or metallurgical coke) and a slow-burning wood. These three substances are transported to a facility with a submerged-arc furnace.[4]

Note that transporting the raw materials necessary for silicon production—between multiple countries, via cargo ships, trucks, trains and airplanes—uses oil and generates greenhouse gases. [5]

Step Two

Kept at 3000F (1649C) for years at a time, a submerged-arc furnace or smelter “reduces” the silicon from the quartz. During this white-hot chemical reaction, gases escape upward from the furnace. Metallurgical-grade silicon settles to the bottom, 97-99% pure—not nearly pure enough for electronics. [6]

If power to a silicon smelter is interrupted for too long, the smelter’s pot could be damaged. [7] Since solar and wind power is intermittent, they cannot power a smelter.

Typically, Step Two takes up to six metric tons of raw materials to make one metric ton (t) of silicon. A typical furnace consumes about 15 megawatt hours of electricity per metric ton (MWh/t) [8] of silicon produced, plus four MWh/t for ventilation and dust collection; and it generates tremendous amounts of CO2.[9]

Manufacturing silicon also generates toxic emissions. In 2016, New York State’s Department of Environmental Conservation issued a permit to Globe Metallurgical Inc. to release, per year: up to 250 tons of carbon monoxide, 10 tons of formaldehyde, 10 tons of hydrogen chloride, 10 tons of lead, 75,000 tons of oxides of nitrogen, 75,000 tons of particulates, 10 tons of polycyclic aromatic hydrocarbons, 40 tons of sulfur dioxide and up to 7 tons of sulfuric acid mist. [10] To clarify, this is the permittable amount of toxic waste allowed annually for one New York State metallurgical-grade silicon smelter. Hazardous waste generated by manufacturing silicon in China likely has significantly less (if any) regulatory limits.

Step Three

Step Two’s metallurgical-grade silicon is crushed and mixed with hydrogen chloride (HCL) to synthesize trichlorosilane (TCS) gas. Once purified, the TCS is sent with pure hydrogen to a bell jar reactor, where slender filaments of pure silicon have been pre-heated to about 2012F (1100C). In a vapor deposition process that takes several days, silicon gas atoms collect on glowing strands to form large polysilicon rods—kind of like growing rock candy. If power is lost during this process, fires and explosions can occur. A polysilicon plant therefore depends on more than one source of electricity—i.e. two coal-fired power plants, or a combination of coal, nuclear and hydro power. [11]

A large, modern polysilicon plant can require up to 400 megawatts of continuous power to produce up to 20,000 tons of polysilicon per year (~175 MW/hours per ton of polysilicon). [12] Per ton, this is more than ten times the energy used in Step Two—and older plants are usually less efficient. A single plant can draw as much power as an entire city of 300,000 homes.

Once cooled, the polysilicon rods are removed from the reactor, then sawed into sections or fractured into chunks. The polysilicon is etched with nitric acid and hydrofluoric acid [13] to remove surface contamination. Then, it’s bagged in a chemically clean room and shipped to a crystal grower.

Step Four

Step Three’s polysilicon chunks are re-melted to a liquid, then pulled into a single crystal of silicon to create a cylindrical ingot. Cooled, the ingot’s (contaminated) crown and tail are cut off. Making ingots often requires more electricity than smelting. [14]The silicon ingot’s remaining portion is sent to a slicer.

Step Five

Like a loaf of bread, the silicon ingot is sliced into wafers. More than 50 percent of the ingot is lost in this process. It becomes sawdust, which cannot be recycled. [15]

Step Six

Layer by layer, the silicon will be “doped” with tiny amounts of boron, gallium, phosphorus or arsenic to control its electrical properties. Dozens of layers are produced during hundreds of steps to turn each electronic-grade wafer into microprocessors, again using a great deal of energy and toxic chemicals.

Questions for a world out of balance 

In 2013, manufacturers began producing more transistors than farmers grow grains of wheat or rice. [16] Now, manufacturers make 1000 times more transistors than farmers grow grains of wheat and rice combined. [17]

After I learned what it takes to produce silicon, I could hardly talk for a month. Because I depend on a computer and Internet access, I depend on silicon—and the energy-intensive, toxic waste-emitting, greenhouse gas-emitting steps required to manufacture it.

Of course, silicon is just one substance necessary for every computer. As I report in letter #3 [18], one smartphone holds more than 1000 substances, each with their own energy-intensive, GHG-emitting, toxic waste-emitting supply chain. [19] One electric vehicle can have 50-100 computers. [20] When a computer’s microprocessors are no longer useful, they cannot be recycled; they become electronic waste. [21]

Solar panels also depend on pure silicon. At the end of their lifecycle, solar panels are also hazardous waste. (In another letter, I will outline other ecological impacts of manufacturing, operating and disposing of solar PV systems.)

I’d certainly welcome solutions to silicon’s ecological impacts. Given the magnitude of the issues, I’d mistrust quick fixes. Our first step, I figure, is to ask questions. What’s it like to live near a silicon smelter? How many silicon smelters operate on our planet, and where are they? If we recognize that silicon production generates greenhouse gases and toxic emissions, can we rightly call any product that uses it “renewable,” “zero-emitting,” “green” or “carbon-neutral?”

Where do petroleum coke, other pure carbons and the wood used to smelt quartz and produce silicon come from? How/could we limit production of silicon?

How does our species’ population affect silicon’s production and consumption? I’ve just learned that if we reduced fertility rates to an average of one child per woman (voluntarily, not through coercion of any kind), the human population would start to approach two billion within four generations.[22] (At this point, we’re nearing eight billion people.) To reduce our digital footprint, should we have less children? Would we have less children?

What would our world look like if farmers grew more wheat and rice than manufacturers make transistors? Instead of a laptop, could we issue every student a raised bed with nutrient-dense soil, insulating covers and a manual for growing vegetables?

What questions do you have about silicon?

Yours,
Katie Singer

Katie Singer’s writing about nature and technology is available at www.OurWeb.tech/letters/. Her most recent book is An Electronic Silent Spring.

REFERENCES

  1. Without industrial process designer Tom Troszak’s 2019 photo-essay, which explains how silicon is manufactured for solar panels (and electronic-grade silicon), I could not have written this letter. Troszak, Thomas A., “Why Do We Burn Coal and Trees for Solar Panels?” https://www.researchgate.net/publication/335083312_Why_do_we_burn_coal_and_trees_to_make_solar_panels
    “Planet of the Humans,” Jeff Gibbs and Michael Moore’s documentary, released on YouTube in 2020, also shows how silicon is manufactured for solar panels. https://planetofthehumans.com/
  2. Schwarzburger, Heiko, “The trouble with silicon,” https://www.pv-magazine.com/magazine-archive/the-trouble-with-silicon_10001055/ September 15, 2010.
  3. Stockman, Lorne, “Petroleum Coke: The Coal Hiding in the Tar Sands,” Oil Change International, January,2013; www.priceofoil.org
  4. Silicon processing: from quartz to crystalline silicon solar cells; https://www.researchgate.net/publication/265000429_Silicon_processing_from_quartz_to_crystalline_silicon_solar_cells; Daqo new Energy: The Lowest-Cost Producers Will Survive (NYSE:DQ), 2017, https://seekingalpha.com/article/4104631-daqo-new-energy-lowest-cost-producers-will-survive.
  5. “Greenhouse gas emissions from global shipping, 2013-2015; https://theicct.org/sites/default/files/publications/Global-shipping-GHG-emissions-2013-2015_ICCT-Report_17102017_vF.pdf
  6. Chalamala, B., “Manufacturing of Silicon Materials for Microelectronics and PV (No. SAND2018-1390PE), Sandia National Lab, NM, 2018. https://www.osti.gov/servlets/purl/1497235; Polysilicon Production: Siemens Process (Sept. 2020); Kato, Kazuhiko, et. al., “Energy Pay-back Time and Life-cycle CO2 Emission of Residential PV Power System with Silicon PV Module,” Progress in Photovoltaics: Research and Applications, 6(2), 105-115, John Wiley & Sons, 1998; https://onlinelibrary.wiley.com/doi/abs/10.1002/(SICI)1099-159X(199803/04)6:2%3C105::AID-PIP212%3D3.0.CO;2-C
  7. Schwarzburger, 2010; Troszak, “The effect of embodied energy on the energy payback time (EPBT) for solar PV;” https://www.researchgate.net/publication/335612277_The_effect_of_embodied_energy_on_the_energy_payback_time_EPBT_for_solar_PV/figures
  8. Kramer, Becky, “Northeast Washington silicon smelter plans raise concerns,” The Spokesman-Review, 11.1.17.
  9. Thorsil Metallurgical Grade Silicon Plan; Helguvik, Reykjanes municipality (Reykjanesbaer), Reykjanes peninsula, Iceland, Environmental Impact Assessment, February, 2015.
  10. New York State Dept. of Environmental Conservation – Facility DEC ID: 9291100078 PERMIT Issued to: Global Metallurgical Inc.; http://www.dec.ny.gov/dardata/boss/afs/permits/929110007800009_r3.pdf
  11. “Polysilicon Market Analysis: Why China is beginning to dominate the polysilicon market,” 2020, https://www.bernreuter.com/polysilicon/market analysis/; also, Bruns, Adam, 2009.
  12. Bruns, Adam, “Wacker Completes Dynamic Trio of Billion-Dollar Projects in Tennessee: ‘Project Bond’ cements the state’s clean energy leadership,” 2009, www.siteselection.com.
  13. Schwartzburger, 2010.
  14. Dale, M. and S.M. Benson, “Energy balance of the global photovoltaic (PV) industry-is the PV industry a net electricity producer?” Environmental Science and Technology, 47(7), 3482-3489, 2013.
  15. The Society of Chemical Engineers of Japan (ed.), “Production of silicon wafers and environmental problems,” Introduction to VLSI Process Engineering, Chapman & Hall, 1993.
  16. Hayes, Brian, “The Memristor,” American Scientist, 2011.
  17. https://marginalrevolution.com/marginalrevolution/2019/01/claims-about-transistors.html
  18. www.DearGreta.com/letter-3/
  19. Needhidasan, S., M. Samuel and R. Chidambaram, “Electronic waste: an emerging threat to the environment of urban India,” J. of env. health science and engineering, 2014, 12(1), 36.
  20. www.DearGreta.com/letter-5/
  21. Needhidasan, S., 2014.
  22. Hickey, Colin, et al. “Population Engineering and the Fight against Climate Change.” Social Theory and Practice, vol. 42, no. 4, 2016, pp. 845–870., www.jstor.org/stable/24870306.
The Big Green Lie

The Big Green Lie

We in DGR stand in solidarity with Survival International and support them because we believe that their analysis is correct and the organization is doing incredibly important work in standing up for indigenous peoples worldwide. While we encourage everyone to support Survival International and their very well-made campaigns, as an organization DGR pushes for more radical approaches than writing or signing letters and petitions, begging those in power to act in a different way. Those in power have never been on the side of the masses, the poor, the indigenous or the natural world. Asking nicely will not stop them continuing their atrocities.


By Survival International

At the next Convention on Biological Diversity summit, world leaders plan to agree turning 30% of the Earth into “Protected Areas” by 2030.

Big conservation NGOs say this will mitigate climate change, reduce wildlife loss, enhance biodiversity and so save our environment. They are wrong.

Protected Areas will not save our planet. On the contrary, they will increase human suffering and so accelerate the destruction of the spaces they claim to protect because local opposition to them will grow. They have no effect on climate change at all, and have been shown to be generally poor at preventing wildlife loss.

It is vital that real solutions are put forward to address these urgent problems and that the real cause – exploitation of natural resources for profit and growing overconsumption, driven by the Global North – is properly acknowledged and discussed. But this is unlikely to happen because there are too many vested interests that depend on existing consumption patterns continuing.

Who will suffer if 30% of Earth is “protected”? It won’t be those who have overwhelmingly caused the climate crisis, but rather indigenous and other local people in the Global South who play little or no part in the environment’s destruction. Kicking them off their land to create Protected Areas won’t help the climate: Indigenous peoples are the best guardians of the natural world and an essential part of human diversity that is a key to protecting biodiversity.

We must stop the push for 30%.

These Khadia men were thrown off their land after it was turned into a protected area. They lived for months under plastic sheets. Millions more face this fate if the 30% plan goes ahead.

These Khadia men were thrown off their land after it was turned into a protected area. They lived for months under plastic sheets. Millions more face this fate if the 30% plan goes ahead. © Survival

The truth about Protected areas

In many parts of the world a Protected Area is where the local people who called the land home for generations are no longer allowed to live or use the natural environment to feed their families, gather medicinal plants or visit their sacred sites. This follows the model of the United States’ nineteenth century creation of the world’s first national parks on lands stolen from Native Americans. Many US national parks forced the peoples who had created the wildlife-rich “wilderness” landscapes into landlessness and poverty.

This is still happening to indigenous peoples and other communities in Africa and parts of Asia. Local people are pushed out by force, coercion or bribery. They are beaten, tortured and abused by park rangers when they try to hunt to feed their families or just to access their ancestral lands. The best guardians of the land, once self-sufficient and with the lowest carbon footprint of any of us, are reduced to landless impoverishment and often end up adding to urban overcrowding. Usually these projects are funded and run by big Western conservation NGOs. Once the locals are gone, tourists, extractive industries and others are welcomed in. For these reasons, local opposition to Protected Areas is growing.

“If the jungle is taken away from us, how will we survive?”

Kunni Bai, a Baiga woman, denounces efforts to evict her people in the name of “conservation”.

Why should we oppose it?

Doubling Protected Areas to cover 30% of the globe will ensure these problems become much worse. As the most biodiverse regions are those where indigenous peoples still live, these will be the first areas targeted by the conservation industry. It will be the biggest land grab in world history and it will reduce hundreds of millions of people to landless poverty – all in the name of conservation. Creating Protected Areas has rarely been done with the consent of indigenous communities, or respect for their human rights. There is no sign that it will be any different in the future. More Protected Areas are likely to result in more militarization and human rights abuses.

The idea of “fortress conservation” – that local peoples must be removed from their land in order to protect ‘nature’ – is colonial. It’s environmentally damaging and rooted in racist and ecofascist ideas about which people are worth more, and which are worth less and can be pushed off their land and impoverished, or attacked and killed.

The conservation industry is looking to get $140 billion every year to fund its land grab.

What do we propose?

We must fight against this big green lie.

If we’re serious about putting the brakes on biodiversity loss, the cheapest and best-proven method is to support as much indigenous land as possible. Eighty per cent of the planet’s biodiversity is already found there.

For tribes, for nature, for all humanity. #BigGreenLie

More information on the 30% land grab:

– Mapping For Rights: The ‘Post-2020 Global Biodiversity Framework’

– ‘New Deal for Nature: Paying the Emperor to Fence the Wind’

– #DecolonizeConservation: Tribal Voice videos

– Joint statement by NGOs: concerns over the proposed 30% target

– The Big Green Lie: an infographic explainer

– EU Conference on 2030 Biodiversity Strategy

– 30% by 2030 and Nature-Based Solutions: the new green colonial rule

– Letter to UK Prime Minister Boris Johnson

 

More information on colonial conservation

Interview with award winning Canadian filmmaker Julia Barnes

Interview with award winning Canadian filmmaker Julia Barnes

Just in time for Earth Week, WLRN’s April Neault interviewed Julia Barnes, producer of the new film Bright Green Lies, documenting the fundamental problems with ‘green’ energy.

Award winning Canadian filmmaker Julia Barnes sat down with WLRN member, April Neault, on April 16th to discuss her newest documentary entitled Bright Green Lies, based on the recently released book of the same name. Julia talks about how and why she started making documentaries, her passion for environmentalism and the overlaps between environmentalism and feminism. Check out Julia’s vimeo page for links to watch her award winning documentary Sea of Life, released 5 years ago.

https://vimeo.com/juliabarnes

Also, check out the Bright Green Lies webpage to purchase a ticket to the live streaming of her upcoming documentary: https://www.brightgreenlies.com/

Recognizing the true guardians of the forest: Q&A with David Kaimowitz

Recognizing the true guardians of the forest: Q&A with David Kaimowitz

Indigenous peoples worldwide are the victims of the largest genocide in human history, which is ongoing. Wherever indigenous cultures have not been completely destroyed or assimilated, they stand as relentless defenders of the landbases and natural communities which are there ancestral homes. They also provide living proof that humans as a species are not inherently destructive, but a societal structure based on large scale monoculture, endless energy consumption, accumulation of wealth and power for a few elites, human supremacy and patriarchy (i.e. civilization) is. DGR stands in strong solidarity with indigenous peoples.


This article originally appeared on Mongabay.

by  on 14 April 2021

The Environmental Impacts of “Green” Technology

The Environmental Impacts of “Green” Technology

Happening today:
Bright Green Lies the documentary premieres Earth Day – April 22nd — as a live-streaming event and Q&A with director Julia Barnes, and authors Derrick Jensen, Lierre Keith, and Max Wilbert. Tickets are available at https://www.brightgreenlies.com/


This article originally appeared on Counterpunch.

By Julia Barnes

Solar panels, wind turbines, and electric cars have long been touted as solutions to the climate crisis.

The “green” image attached to these technologies masks a dark reality; they are adding to the problem of environmental destruction, failing to reduce CO2 emissions, and accelerating the mass extinction of life on the planet.

In my upcoming film Bright Green Lies, based on the book by the same name, I take a critical look at the industries that claim to be about saving the planet.

60% of the European Union’s “renewable” energy comes from biomass. Forests across North America are being clear cut and shipped across the Atlantic to be burned for electricity. Biomass is inaccurately counted as carbon neutral, when in reality emissions from biomass plants can exceed that of coal fired power plants. The burning of wood in Europe is subsidized to the tune of nearly 7 billion euros per year.

Dams have been called “methane bombs” because they produce large amounts of methane. They also harm rivers by increasing the water temperature and blocking the passage of fish who swim upriver to spawn.

So-called “renewables” like solar panels and wind turbines are made of finite materials that require mining. The materials that go into creating “green” tech range from copper and steel to concrete, sand, and rare earths. In Baotou, China, a dystopian lake is filled with toxic waste from rare earths mining. Fossil fuels are burned throughout the production process.

Wind turbines in the US kill over 1 million birds per year. Bats who fly near the turbines can die of barotrauma – their lungs exploding from the pressure differential caused by the blades.

A proposed lithium mine in northern Nevada currently threatens 5000 acres of old growth sagebrush habitat. The industry calls this a “green” mine because the lithium will be used in electric car batteries. I doubt the golden eagles, sage grouse, pronghorn antelope, rabbitbrush, or Crosby’s buckwheat who call the area home would agree. The mine would burn around 11,300 gallons of diesel fuel and produce thousands of tons of sulfuric acid per day.

There are plans to mine the deep sea to extract the materials for electric car batteries and “renewable” energy storage. It is predicted that each mining vessel would process 2-6 million cubic feet of sediment per day. The remaining slurry would be dumped back into the ocean where it would smother and burry organisms, toxify the food web, and potentially disrupt the plankton who produce two thirds of earth’s oxygen.

These are just a few examples of the environmental harms associated with “green” technology. To scale up the production of these technologies would require increased mining, habitat destruction, global shipping, industrial manufacturing, and the production of more toxic waste. “Renewables” are predicted to be the number one cause of habitat destruction by mid-century.

So-called green technologies both emerge from and support the industrial system that is destroying life on the planet.

We have been told a story that there is a baseline demand for energy, and that if this demand could be met with so-called renewables, fossil fuel use would diminish. This story runs contrary to the entire history of energy usage. Historically, as new sources of energy have been added to the grid, old sources have remained constant or grown. Instead of displacing each other, each additional source stacks on top of the rest, and industrial civilization becomes more energy intensive.

We see the same pattern today, in the real world, with the addition of so-called renewables. On a global scale, “green” technologies do not even deliver on their most basic promise of reducing fossil fuel consumption.

All the mining, pollution and habitat destruction simply adds to the harm being done to the planet. Nothing about the production of “green” energy helps the natural world.

The push for “green” energy solves for the wrong variable. It takes a high-energy, high-consumption industrial civilization as a given, when this is precisely what needs to change if we are to live sustainably on this planet.

The real solutions are obvious; stop the industries that are causing the harm and allow life to come back. Fossil fuels need our opposition. So do lithium mines, rare earths mines, copper mines, iron mines, and industrial wind and solar facilities. Fracking should not be tolerated. Neither should biomass plants or hydroelectric dams.

Forests, prairies, mangroves, seagrasses, and fish have all been decimated. They could all sequester large amounts of carbon if we allowed them to recover.

While making my first documentary, Sea of Life, I visited the village of Cabo Pulmo. The ocean there had once been heavily overfished, but within ten years of creating a marine protected area, the biomass – the mass of life in the ocean – increased by over 450%. When I arrived, 20 years after the marine reserve was created, I found an ocean that was teeming with fish.

Life wants to live. If we can stop the harm, nature will do the repair work that’s necessary. But there are limits to how far things can be pushed, and we are running out of time. Up to 200 species are going extinct every day. The destruction of the world is accelerating, thanks in part, to the very industries being touted as “green”. With life on the planet at stake, we cannot afford to waste time on false solutions.

Bright Green Lies the book is available now.

Julia Barnes is the director of the award-winning documentary Sea of Life.

‘The People Have Spoken’: Left-Wing, Indigenous-Led Party Vows to Stop Greenland Uranium Mining Project After Historic Win

‘The People Have Spoken’: Left-Wing, Indigenous-Led Party Vows to Stop Greenland Uranium Mining Project After Historic Win

While this is a great temporary success, we have to keep in mind that Greenland is a vast island and very scarcely populated. The pressure by multinational corporations to exploit the countries resources will likely increase in the near future.

This article originally appeared on CommonDreams.

Featured image: Members of the Inuit Ataqatigiit (AI) Party wave party flags as they celebrate following the exit polls results of the legislative election in Nuuk, on April 6, 2021. Greenland went to the polls on April 6 after an election campaign focused on a disputed mining project in the autonomous Danish territory, as the Arctic island confronts the impact of global warming. (Photo: Emil Helms / Ritzau Scanpix / AFP)


“Greenlanders are sending a strong message that for them it’s not worth sacrificing the environment to achieve independence and economic development.”

Jon Queally, staff writer

Members of the left-wing and Indigenous-led Inuit Ataqatigiit (AI) party in Greenland celebrated late Tuesday after winning a majority of parliamentary seats in national elections and vowed to use their new power to block controversial rare-earth mining projects in the country.

Poll results released Wednesday morning showed that the Inuit Ataqatigiit won 36.6 percent of the vote compared to the 29 percent garnered by the center-left Siumut party, which has dominated domestic politics since Greenland won autonomy from Denmark in 1979. If those margins hold, according to the Associated Press, AI is expected to grab 12 out of the 31 seats in the Inatsisartut, the local parliament, a 50 percent increase from the 8 seats it currently holds.

As Agence France-Presse reports:

The dividing line between the two parties was whether to authorise a controversial giant rare earth and uranium mining project, which is currently the subject of public hearings.

The Kuannersuit deposit, in the island’s south, is considered one of the world’s richest in uranium and rare earth minerals—a group of 17 metals used as components in everything from smartphones to electric cars and weapons.

IA has called for a moratorium on uranium mining, which would effectively put a halt to the project.

According to Reuters, the results cast “doubt on the mining complex at Kvanefjeld in the south of the Arctic island and sends a strong signal to international mining companies wanting to exploit Greenland’s vast untapped mineral resources.”

“The people have spoken,” IA leader Mute Egede told local news oultet DR when asked about Kvanefjeld. “It won’t happen.”

“We must listen to the voters who are worried,” he said. “We say no to uranium mining.”

In other comments following the party’s victory, Egede said, “There are two issues that have been important in this election campaign: people’s living conditions is one. And then there is our health and the environment.”

“It’s not that Greenlanders don’t want mining, but they don’t want dirty mining,” Mered added. “Greenlanders are sending a strong message that for them it’s not worth sacrificing the environment to achieve independence and economic development.”