Top Scientists: We Face “A Ghastly Future”

Top Scientists: We Face “A Ghastly Future”

Editor’s note: According to the scientists who wrote the following paper, “future environmental conditions will be far more dangerous than currently believed. The scale of the threats to the biosphere and all its lifeforms—including humanity—is in fact so great that it is difficult to grasp for even well-informed experts.”

We agree, and have been working to both inform people about these issues and to resist the destruction of the planet since our organization formed over a decade ago. “Any else [other than telling the truth about our ecological crisis] is misleading at best,” the scientists write, “or negligent and potentially lethal for the human enterprise [and, we must add, much of life on this planet] at worst.”

Modern civilization is a society of the spectacle in which media corporations focus more on who won the football game or how the queen is buried than about the breakdown of planetary ecology. This scientific report is essential reading and should be a headline news story worldwide. However, this information is inherently subversive, and therefore is either ignored or framed in such a way as to support the goals of the wealthy.

For years, our co-founder Derrick Jensen has asked his audiences, “Do you think this culture will undergo a voluntary transformation to a sane and sustainable way of life?” No one ever says yes. This is why Deep Green Resistance exists.

Deep Green Resistance starts where the environmental movement leaves off: industrial civilization is incompatible with life. Technology can’t fix it, and shopping—no matter how green—won’t stop it. To save this planet, we need a serious resistance movement that can bring down the industrial economy. Deep Green Resistance is a plan of action for anyone determined to fight for this planet—and win.


Underestimating the Challenges of Avoiding a Ghastly Future

PERSPECTIVE article Frontiers in Conservation Science, 13 January 2021 Section Global Biodiversity Threats https://doi.org/10.3389/fcosc.2020.615419

By Bradshaw, Ehrlich, Beattie, Ceballos, Crist, Diamond, Dirzo, Ehrlich, Harte, Harte, Pyke, Raven, Ripple, Saltré, Turnbull, Wackernagel, and Blumstein

We report three major and confronting environmental issues that have received little attention and require urgent action. First, we review the evidence that future environmental conditions will be far more dangerous than currently believed. The scale of the threats to the biosphere and all its lifeforms—including humanity—is in fact so great that it is difficult to grasp for even well-informed experts. Second, we ask what political or economic system, or leadership, is prepared to handle the predicted disasters, or even capable of such action. Third, this dire situation places an extraordinary responsibility on scientists to speak out candidly and accurately when engaging with government, business, and the public. We especially draw attention to the lack of appreciation of the enormous challenges to creating a sustainable future. The added stresses to human health, wealth, and well-being will perversely diminish our political capacity to mitigate the erosion of ecosystem services on which society depends. The science underlying these issues is strong, but awareness is weak. Without fully appreciating and broadcasting the scale of the problems and the enormity of the solutions required, society will fail to achieve even modest sustainability goals.

Introduction

Humanity is causing a rapid loss of biodiversity and, with it, Earth’s ability to support complex life. But the mainstream is having difficulty grasping the magnitude of this loss, despite the steady erosion of the fabric of human civilization (Ceballos et al., 2015; IPBES, 2019; Convention on Biological Diversity, 2020; WWF, 2020). While suggested solutions abound (Díaz et al., 2019), the current scale of their implementation does not match the relentless progression of biodiversity loss (Cumming et al., 2006) and other existential threats tied to the continuous expansion of the human enterprise (Rees, 2020). Time delays between ecological deterioration and socio-economic penalties, as with climate disruption for example (IPCC, 2014), impede recognition of the magnitude of the challenge and timely counteraction needed. In addition, disciplinary specialization and insularity encourage unfamiliarity with the complex adaptive systems (Levin, 1999) in which problems and their potential solutions are embedded (Selby, 2006; Brand and Karvonen, 2007). Widespread ignorance of human behavior (Van Bavel et al., 2020) and the incremental nature of socio-political processes that plan and implement solutions further delay effective action (Shanley and López, 2009; King, 2016).

We summarize the state of the natural world in stark form here to help clarify the gravity of the human predicament. We also outline likely future trends in biodiversity decline (Díaz et al., 2019), climate disruption (Ripple et al., 2020), and human consumption and population growth to demonstrate the near certainty that these problems will worsen over the coming decades, with negative impacts for centuries to come. Finally, we discuss the ineffectiveness of current and planned actions that are attempting to address the ominous erosion of Earth’s life-support system. Ours is not a call to surrender—we aim to provide leaders with a realistic “cold shower” of the state of the planet that is essential for planning to avoid a ghastly future.

Biodiversity Loss

Major changes in the biosphere are directly linked to the growth of human systems (summarized in Figure 1). While the rapid loss of species and populations differs regionally in intensity (Ceballos et al., 2015, 2017, 2020; Díaz et al., 2019), and most species have not been adequately assessed for extinction risk (Webb and Mindel, 2015), certain global trends are obvious. Since the start of agriculture around 11,000 years ago, the biomass of terrestrial vegetation has been halved (Erb et al., 2018), with a corresponding loss of >20% of its original biodiversity (Díaz et al., 2019), together denoting that >70% of the Earth’s land surface has been altered by Homo sapiens (IPBES, 2019). There have been >700 documented vertebrate (Díaz et al., 2019) and ~600 plant (Humphreys et al., 2019) species extinctions over the past 500 years, with many more species clearly having gone extinct unrecorded (Tedesco et al., 2014). Population sizes of vertebrate species that have been monitored across years have declined by an average of 68% over the last five decades (WWF, 2020), with certain population clusters in extreme decline (Leung et al., 2020), thus presaging the imminent extinction of their species (Ceballos et al., 2020). Overall, perhaps 1 million species are threatened with extinction in the near future out of an estimated 7–10 million eukaryotic species on the planet (Mora et al., 2011), with around 40% of plants alone considered endangered (Antonelli et al., 2020). Today, the global biomass of wild mammals is <25% of that estimated for the Late Pleistocene (Bar-On et al., 2018), while insects are also disappearing rapidly in many regions (Wagner, 2020; reviews in van Klink et al., 2020).

FIGURE 1

www.frontiersin.org

Figure 1. Summary of major environmental-change categories expressed as a percentage change relative to the baseline given in the text. Red indicates the percentage of the category that is damaged, lost, or otherwise affected, whereas blue indicates the percentage that is intact, remaining, or otherwise unaffected. Superscript numbers indicate the following references: 1IPBES, 2019; 2Halpern et al., 2015; 3Krumhansl et al., 2016; 4Waycott et al., 2009; 5Díaz et al., 2019; 6Christensen et al., 2014; 7Frieler et al., 2013; 8Erb et al., 2018; 9Davidson, 2014; 10Grill et al., 2019; 11WWF, 2020; 12Bar-On et al., 2018; 13Antonelli et al., 2020; 14Mora et al., 2011.

Freshwater and marine environments have also been severely damaged. Today there is <15% of the original wetland area globally than was present 300 years ago (Davidson, 2014), and >75% of rivers >1,000 km long no longer flow freely along their entire course (Grill et al., 2019). More than two-thirds of the oceans have been compromised to some extent by human activities (Halpern et al., 2015), live coral cover on reefs has halved in <200 years (Frieler et al., 2013), seagrass extent has been decreasing by 10% per decade over the last century (Waycott et al., 2009; Díaz et al., 2019), kelp forests have declined by ~40% (Krumhansl et al., 2016), and the biomass of large predatory fishes is now <33% of what it was last century (Christensen et al., 2014).

With such a rapid, catastrophic loss of biodiversity, the ecosystem services it provides have also declined. These include inter alia reduced carbon sequestration (Heath et al., 2005; Lal, 2008), reduced pollination (Potts et al., 2016), soil degradation (Lal, 2015), poorer water and air quality (Smith et al., 2013), more frequent and intense flooding (Bradshaw et al., 2007; Hinkel et al., 2014) and fires (Boer et al., 2020; Bowman et al., 2020), and compromised human health (Díaz et al., 2006; Bradshaw et al., 2019). As telling indicators of how much biomass humanity has transferred from natural ecosystems to our own use, of the estimated 0.17 Gt of living biomass of terrestrial vertebrates on Earth today, most is represented by livestock (59%) and human beings (36%)—only ~5% of this total biomass is made up by wild mammals, birds, reptiles, and amphibians (Bar-On et al., 2018). As of 2020, the overall material output of human endeavor exceeds the sum of all living biomass on Earth (Elhacham et al., 2020).

Sixth Mass Extinction

A mass extinction is defined as a loss of ~75% of all species on the planet over a geologically short interval—generally anything <3 million years (Jablonski et al., 1994; Barnosky et al., 2011). At least five major extinction events have occurred since the Cambrian (Sodhi et al., 2009), the most recent of them 66 million years ago at the close of the Cretaceous period. The background rate of extinction since then has been 0.1 extinctions million species−1 year−1 (Ceballos et al., 2015), while estimates of today’s extinction rate are orders of magnitude greater (Lamkin and Miller, 2016). Recorded vertebrate extinctions since the 16th century—the mere tip of the true extinction iceberg—give a rate of extinction of 1.3 species year−1, which is conservatively >15 times the background rate (Ceballos et al., 2015). The IUCN estimates that some 20% of all species are in danger of extinction over the next few decades, which greatly exceeds the background rate. That we are already on the path of a sixth major extinction is now scientifically undeniable (Barnosky et al., 2011; Ceballos et al., 2015, 2017).

Ecological Overshoot: Population Size and Overconsumption

The global human population has approximately doubled since 1970, reaching nearly 7.8 billion people today (prb.org). While some countries have stopped growing and even declined in size, world average fertility continues to be above replacement (2.3 children woman−1), with an average of 4.8 children woman−1 in Sub-Saharan Africa and fertilities >4 children woman−1 in many other countries (e.g., Afghanistan, Yemen, Timor-Leste). The 1.1 billion people today in Sub-Saharan Africa—a region expected to experience particularly harsh repercussions from climate change (Serdeczny et al., 2017)—is projected to double over the next 30 years. By 2050, the world population will likely grow to ~9.9 billion (prb.org), with growth projected by many to continue until well into the next century (Bradshaw and Brook, 2014; Gerland et al., 2014), although more recent estimates predict a peak toward the end of this century (Vollset et al., 2020).

Large population size and continued growth are implicated in many societal problems. The impact of population growth, combined with an imperfect distribution of resources, leads to massive food insecurity. By some estimates, 700–800 million people are starving and 1–2 billion are micronutrient-malnourished and unable to function fully, with prospects of many more food problems in the near future (Ehrlich and Harte, 2015a,b). Large populations and their continued growth are also drivers of soil degradation and biodiversity loss (Pimm et al., 2014). More people means that more synthetic compounds and dangerous throw-away plastics (Vethaak and Leslie, 2016) are manufactured, many of which add to the growing toxification of the Earth (Cribb, 2014). It also increases chances of pandemics (Daily and Ehrlich, 1996b) that fuel ever-more desperate hunts for scarce resources (Klare, 2012). Population growth is also a factor in many social ills, from crowding and joblessness, to deteriorating infrastructure and bad governance (Harte, 2007). There is mounting evidence that when populations are large and growing fast, they can be the sparks for both internal and international conflicts that lead to war (Klare, 2001; Toon et al., 2007). The multiple, interacting causes of civil war in particular are varied, including poverty, inequality, weak institutions, political grievance, ethnic divisions, and environmental stressors such as drought, deforestation, and land degradation (Homer-Dixon, 1991, 1999; Collier and Hoeer, 1998; Hauge and llingsen, 1998; Fearon and Laitin, 2003; Brückner, 2010; Acemoglu et al., 2017). Population growth itself can even increase the probability of military involvement in conflicts (Tir and Diehl, 1998). Countries with higher population growth rates experienced more social conflict since the Second World War (Acemoglu et al., 2017). In that study, an approximate doubling of a country’s population caused about four additional years of full-blown civil war or low-intensity conflict in the 1980s relative to the 1940–1950s, even after controlling for a country’s income-level, independence, and age structure.

Simultaneous with population growth, humanity’s consumption as a fraction of Earth’s regenerative capacity has grown from ~ 73% in 1960 to 170% in 2016 (Lin et al., 2018), with substantially greater per-person consumption in countries with highest income. With COVID-19, this overshoot dropped to 56% above Earth’s regenerative capacity, which means that between January and August 2020, humanity consumed as much as Earth can renew in the entire year (overshootday.org). While inequality among people and countries remains staggering, the global middle class has grown rapidly and exceeded half the human population by 2018 (Kharas and Hamel, 2018). Over 70% of all people currently live in countries that run a biocapacity deficit while also having less than world-average income, excluding them from compensating their biocapacity deficit through purchases (Wackernagel et al., 2019) and eroding future resilience via reduced food security (Ehrlich and Harte, 2015b). The consumption rates of high-income countries continue to be substantially higher than low-income countries, with many of the latter even experiencing declines in per-capita footprint (Dasgupta and Ehrlich, 2013; Wackernagel et al., 2019).

This massive ecological overshoot is largely enabled by the increasing use of fossil fuels. These convenient fuels have allowed us to decouple human demand from biological regeneration: 85% of commercial energy, 65% of fibers, and most plastics are now produced from fossil fuels. Also, food production depends on fossil-fuel input, with every unit of food energy produced requiring a multiple in fossil-fuel energy (e.g., 3 × for high-consuming countries like Canada, Australia, USA, and China; overshootday.org). This, coupled with increasing consumption of carbon-intensive meat (Ripple et al., 2014) congruent with the rising middle class, has exploded the global carbon footprint of agriculture. While climate change demands a full exit from fossil-fuel use well before 2050, pressures on the biosphere are likely to mount prior to decarbonization as humanity brings energy alternatives online. Consumption and biodiversity challenges will also be amplified by the enormous physical inertia of all large “stocks” that shape current trends: built infrastructure, energy systems, and human populations.

It is therefore also inevitable that aggregate consumption will increase at least into the near future, especially as affluence and population continue to grow in tandem (Wiedmann et al., 2020). Even if major catastrophes occur during this interval, they would unlikely affect the population trajectory until well into the 22nd Century (Bradshaw and Brook, 2014). Although population-connected climate change (Wynes and Nicholas, 2017) will worsen human mortality (Mora et al., 2017; Parks et al., 2020), morbidity (Patz et al., 2005; Díaz et al., 2006; Peng et al., 2011), development (Barreca and Schaller, 2020), cognition (Jacobson et al., 2019), agricultural yields (Verdin et al., 2005; Schmidhuber and Tubiello, 2007; Brown and Funk, 2008; Gaupp et al., 2020), and conflicts (Boas, 2015), there is no way—ethically or otherwise (barring extreme and unprecedented increases in human mortality)—to avoid rising human numbers and the accompanying overconsumption. That said, instituting human-rights policies to lower fertility and reining in consumption patterns could diminish the impacts of these phenomena (Rees, 2020).

Failed International Goals and Prospects for the Future

Stopping biodiversity loss is nowhere close to the top of any country’s priorities, trailing far behind other concerns such as employment, healthcare, economic growth, or currency stability. It is therefore no surprise that none of the Aichi Biodiversity Targets for 2020 set at the Convention on Biological Diversity’s (CBD.int) 2010 conference was met (Secretariat of the Convention on Biological Diversity, 2020). Even had they been met, they would have still fallen short of realizing any substantive reductions in extinction rate. More broadly, most of the nature-related United Nations Sustainable Development Goals (SDGs) (e.g., SDGs 6, 13–15) are also on track for failure (Wackernagel et al., 2017; Díaz et al., 2019; Messerli et al., 2019), largely because most SDGs have not adequately incorporated their interdependencies with other socio-economic factors (Bradshaw and Di Minin, 2019; Bradshaw et al., 2019; Messerli et al., 2019). Therefore, the apparent paradox of high and rising average standard of living despite a mounting environmental toll has come at a great cost to the stability of humanity’s medium- and long-term life-support system. In other words, humanity is running an ecological Ponzi scheme in which society robs nature and future generations to pay for boosting incomes in the short term (Ehrlich et al., 2012). Even the World Economic Forum, which is captive of dangerous greenwashing propaganda (Bakan, 2020), now recognizes biodiversity loss as one of the top threats to the global economy (World Economic Forum, 2020).

The emergence of a long-predicted pandemic (Daily and Ehrlich, 1996a), likely related to biodiversity loss, poignantly exemplifies how that imbalance is degrading both human health and wealth (Austin, 2020; Dobson et al., 2020; Roe et al., 2020). With three-quarters of new infectious diseases resulting from human-animal interactions, environmental degradation via climate change, deforestation, intensive farming, bushmeat hunting, and an exploding wildlife trade mean that the opportunities for pathogen-transferring interactions are high (Austin, 2020; Daszak et al., 2020). That much of this degradation is occurring in Biodiversity Hotspots where pathogen diversity is also highest (Keesing et al., 2010), but where institutional capacity is weakest, further increases the risk of pathogen release and spread (Austin, 2020; Schmeller et al., 2020).

Climate Disruption

The dangerous effects of climate change are much more evident to people than those of biodiversity loss (Legagneux et al., 2018), but society is still finding it difficult to deal with them effectively. Civilization has already exceeded a global warming of ~ 1.0°C above pre-industrial conditions, and is on track to cause at least a 1.5°C warming between 2030 and 2052 (IPCC, 2018). In fact, today’s greenhouse-gas concentration is >500 ppm CO2-e (Butler and Montzka, 2020), while according to the IPCC, 450 ppm CO2-e would give Earth a mere 66% chance of not exceeding a 2°C warming (IPCC, 2014). Greenhouse-gas concentration will continue to increase (via positive feedbacks such as melting permafrost and the release of stored methane) (Burke et al., 2018), resulting in further delay of temperature-reducing responses even if humanity stops using fossil fuels entirely well before 2030 (Steffen et al., 2018).

Human alteration of the climate has become globally detectable in any single day’s weather (Sippel et al., 2020). In fact, the world’s climate has matched or exceeded previous predictions (Brysse et al., 2013), possibly because of the IPCC’s reliance on averages from several models (Herger et al., 2018) and the language of political conservativeness inherent in policy recommendations seeking multinational consensus (Herrando-Pérez et al., 2019). However, the latest climate models (CMIP6) show greater future warming than previously predicted (Forster et al., 2020), even if society tracks the needed lower-emissions pathway over the coming decades. Nations have in general not met the goals of the 5 year-old Paris Agreement (United Nations, 2016), and while global awareness and concern have risen, and scientists have proposed major transformative change (in energy production, pollution reduction, custodianship of nature, food production, economics, population policies, etc.), an effective international response has yet to emerge (Ripple et al., 2020). Even assuming that all signatories do, in fact, manage to ratify their commitments (a doubtful prospect), expected warming would still reach 2.6–3.1°C by 2100 (Rogelj et al., 2016) unless large, additional commitments are made and fulfilled. Without such commitments, the projected rise of Earth’s temperature will be catastrophic for biodiversity (Urban, 2015; Steffen et al., 2018; Strona and Bradshaw, 2018) and humanity (Smith et al., 2016).

Regarding international climate-change accords, the Paris Agreement (United Nations, 2016) set the 1.5–2°C target unanimously. But since then, progress to propose, let alone follow, (voluntary) “intended national determined contributions” for post-2020 climate action have been utterly inadequate.

Political Impotence

If most of the world’s population truly understood and appreciated the magnitude of the crises we summarize here, and the inevitability of worsening conditions, one could logically expect positive changes in politics and policies to match the gravity of the existential threats. But the opposite is unfolding. The rise of right-wing populist leaders is associated with anti-environment agendas as seen recently for example in Brazil (Nature, 2018), the USA (Hejny, 2018), and Australia (Burck et al., 2019). Large differences in income, wealth, and consumption among people and even among countries render it difficult to make any policy global in its execution or effect.

A central concept in ecology is density feedback (Herrando-Pérez et al., 2012)—as a population approaches its environmental carrying capacity, average individual fitness declines (Brook and Bradshaw, 2006). This tends to push populations toward an instantaneous expression of carrying capacity that slows or reverses population growth. But for most of history, human ingenuity has inflated the natural environment’s carrying capacity for us by developing new ways to increase food production (Hopfenberg, 2003), expand wildlife exploitation, and enhance the availability of other resources. This inflation has involved modifying temperature via shelter, clothing, and microclimate control, transporting goods from remote locations, and generally reducing the probability of death or injury through community infrastructure and services (Cohen, 1995). But with the availability of fossil fuels, our species has pushed its consumption of nature’s goods and services much farther beyond long-term carrying capacity (or more precisely, the planet’s biocapacity), making the readjustment from overshoot that is inevitable far more catastrophic if not managed carefully (Nyström et al., 2019). A growing human population will only exacerbate this, leading to greater competition for an ever-dwindling resource pool. The corollaries are many: continued reduction of environmental intactness (Bradshaw et al., 2010; Bradshaw and Di Minin, 2019), reduced child health (especially in low-income nations) (Bradshaw et al., 2019), increased food demand exacerbating environmental degradation via agro-intensification (Crist et al., 2017), vaster and possibly catastrophic effects of global toxification (Cribb, 2014; Swan and Colino, 2021), greater expression of social pathologies (Levy and Herzog, 1974) including violence exacerbated by climate change and environmental degradation itself (Agnew, 2013; White, 2017, 2019), more terrorism (Coccia, 2018), and an economic system even more prone to sequester the remaining wealth among fewer individuals (Kus, 2016; Piketty, 2020) much like how cropland expansion since the early 1990s has disproportionately concentrated wealth among the super-rich (Ceddia, 2020). The predominant paradigm is still one of pegging “environment” against “economy”; yet in reality, the choice is between exiting overshoot by design or disaster—because exiting overshoot is inevitable one way or another.

Given these misconceptions and entrenched interests, the continued rise of extreme ideologies is likely, which in turn limits the capacity of making prudent, long-term decisions, thus potentially accelerating a vicious cycle of global ecological deterioration and its penalties. Even the USA’s much-touted New Green Deal (U. S. House of Representatives, 2019) has in fact exacerbated the country’s political polarization (Gustafson et al., 2019), mainly because of the weaponization of ‘environmentalism’ as a political ideology rather than being viewed as a universal mode of self-preservation and planetary protection that ought to transcend political tribalism. Indeed, environmental protest groups are being labeled as “terrorists” in many countries (Hudson, 2020). Further, the severity of the commitments required for any country to achieve meaningful reductions in consumption and emissions will inevitably lead to public backlash and further ideological entrenchments, mainly because the threat of potential short-term sacrifices is seen as politically inopportune. Even though climate change alone will incur a vast economic burden (Burke et al., 2015; Carleton and Hsiang, 2016; Auffhammer, 2018) possibly leading to war (nuclear, or otherwise) at a global scale (Klare, 2020), most of the world’s economies are predicated on the political idea that meaningful counteraction now is too costly to be politically palatable. Combined with financed disinformation campaigns in a bid to protect short-term profits (Oreskes and Conway, 2010; Mayer, 2016; Bakan, 2020), it is doubtful that any needed shift in economic investments of sufficient scale will be made in time.

While uncertain and prone to fluctuate according to unpredictable social and policy trends (Boas et al., 2019; McLeman, 2019; Nature Climate Change, 2019), climate change and other environmental pressures will trigger more mass migration over the coming decades (McLeman, 2019), with an estimated 25 million to 1 billion environmental migrants expected by 2050 (Brown, 2008). Because international law does not yet legally recognize such “environmental migrants” as refugees (United Nations University, 2015) (although this is likely to change) (Lyons, 2020), we fear that a rising tide of refugees will reduce, not increase, international cooperation in ways that will further weaken our capacity to mitigate the crisis.

Changing the Rules of the Game

While it is neither our intention nor capacity in this short Perspective to delve into the complexities and details of possible solutions to the human predicament, there is no shortage of evidence-based literature proposing ways to change human behavior for the benefit of all extant life. The remaining questions are less about what to do, and more about how, stimulating the genesis of many organizations devoted to these pursuits (e.g., ipbes.org, goodanthropocenes.net, overshootday.org, mahb.stanford.edu, populationmatters.org, clubofrome.org, steadystate.org, to name a few). The gravity of the situation requires fundamental changes to global capitalism, education, and equality, which include inter alia the abolition of perpetual economic growth, properly pricing externalities, a rapid exit from fossil-fuel use, strict regulation of markets and property acquisition, reigning in corporate lobbying, and the empowerment of women. These choices will necessarily entail difficult conversations about population growth and the necessity of dwindling but more equitable standards of living.

Conclusions

We have summarized predictions of a ghastly future of mass extinction, declining health, and climate-disruption upheavals (including looming massive migrations) and resource conflicts this century. Yet, our goal is not to present a fatalist perspective, because there are many examples of successful interventions to prevent extinctions, restore ecosystems, and encourage more sustainable economic activity at both local and regional scales. Instead, we contend that only a realistic appreciation of the colossal challenges facing the international community might allow it to chart a less-ravaged future. While there have been more recent calls for the scientific community in particular to be more vocal about their warnings to humanity (Ripple et al., 2017; Cavicchioli et al., 2019; Gardner and Wordley, 2019), these have been insufficiently foreboding to match the scale of the crisis. Given the existence of a human “optimism bias” that triggers some to underestimate the severity of a crisis and ignore expert warnings, a good communication strategy must ideally undercut this bias without inducing disproportionate feelings of fear and despair (Pyke, 2017; Van Bavel et al., 2020). It is therefore incumbent on experts in any discipline that deals with the future of the biosphere and human well-being to eschew reticence, avoid sugar-coating the overwhelming challenges ahead and “tell it like it is.” Anything else is misleading at best, or negligent and potentially lethal for the human enterprise at worst.


Originally published in Frontiers in Conservation Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY).

Will Civilization Collapse Because It’s Running Out of Oil?

Will Civilization Collapse Because It’s Running Out of Oil?

Editor’s note: Oil has been called the “master resource” of industrial civilization, because it facilitates almost every other economic activity and subsidizes almost every other form of extraction. Chainsaws, for example, run on gasoline; tractors run on diesel fuel; and 10 calories of fossil fuel energy (mostly oil) is used to produce 1 calorie of industrial food. From transportation to shipping, industrial production, plastics, construction, medicine, and beyond, industrial civilization is a culture of oil.

Richard Heinberg presents an interesting conundrum for us. He is one of the world’s foremost experts on peak oil, and understands the energy dynamics (such as EROI, energy density, transmission issues, and intermittency) that make a wholesale replacement of fossil fuels by “renewables” impossible. And while he understands the depths of ecological crisis, he is not biocentric.

This leads to our differences from Heinberg. While he calls for mass adoption of “renewables” as part of the Post Carbon Institute, we advocate for dismantling the industrial economy — including the so-called “renewables” industry — by whatever means are necessary to halt the ecological crisis.

Nonetheless, Heinberg is an expert on peak oil, and we share this article to update our readers on the latest information on that topic.


by Richard Heinberg / CommonDreams

 

Will civilization collapse because it’s running out of oil? That question was debated hotly almost 20 years ago; today, not so much. Judging by Google searches, interest in “peak oil” surged around 2003 (the year my book The Party’s Over was published), peaked around 2005, and drifted until around 2010 before dropping off dramatically.

Keeping most of the remaining oil in the ground will be a task of urgency and complexity, one that cannot be accomplished under a business-as-usual growth economy.

Well, civilization hasn’t imploded for lack of fuel—not yet, at least. Instead, oil has gotten more expensive and economic growth has slowed. “Tight oil” produced in the US with fracking technology came to the rescue, sort of. For a little while. This oil was costlier to extract than conventional oil, and production from individual wells declined rapidly, thus entailing one hell of a lot of drilling. During the past decade, frackers went deeply into debt as they poked tens of thousands of holes into Texas, North Dakota, and a few other states, sending US oil production soaring. Central banks helped out by keeping interest rates ultra-low and by injecting trillions of dollars into the economy. National petroleum output went up farther and faster than had ever happened anywhere before in the history of the oil industry.

Most environmentalists therefore tossed peak oil into their mental bin of “things we don’t need to worry about” as they focused laser-like on climate change. Mainstream energy analysts then and now assume that technology will continue to overcome resource limits in the immediate future, which is all that really seems to matter. Much of what is left of the peak oil discussion focuses on “peak demand”—i.e., the question of when electric cars will become so plentiful that we’ll no longer need so much gasoline.

Nevertheless, those who’ve engaged with the oil depletion literature have tended to come away with a few useful insights:

  • Energy is the basis of all aspects of human society.
  • Fossil fuels enabled a dramatic expansion of energy usable by humanity, in turn enabling unprecedented growth in human population, economic activity, and material consumption.
  • It takes energy to get energy, and the ratio of energy returned versus energy spent (energy return on investment, or EROI) has historically been extremely high for fossil fuels, as compared to previous energy sources.
  • Similar EROI values will be necessary for energy alternatives if we wish to maintain our complex, industrial way of life.
  • Depletion is as important a factor as pollution in assessing the sustainability of society.

Now a new research paper has arrived on the scene, authored by Jean Laherrère, Charles Hall, and Roger Bentley—all veterans of the peak oil debate, and all experts with many papers and books to their credit. As its title suggests (“How Much Oil Remains for the World to Produce? Comparing Assessment Methods, and Separating Fact from Fiction“), the paper mainly addresses the question of future oil production. But to get there, it explains why this is a difficult question to answer, and what are the best ways of approaching it. There are plenty of technical issues to geek out on, if that’s your thing. For example, energy analytics firm Rystad recently downgraded world oil reserves by about 9 percent (from 1,903 to 1,725 billion barrels), but the authors of the new research paper suggest that reserves estimates should be cut by a further 300 billion barrels due to long-standing over-reporting by OPEC countries. That’s a matter for debate, and readers will have to make up their own minds whether the authors make a convincing case.

For readers who just want the bottom line, here goes. The most sensible figure for the aggregate amount of producible “conventional oil” originally in place (what we’ve already burned, plus what could be burned in the future) is about 2,500 billion barrels. We’ve already extracted about half that amount. When this total quantity is plotted as a logistical curve over time, the peak of production occurs essentially now, give or take a very few years. Indeed, conventional oil started a production plateau in 2005 and is now declining. Conventional oil is essentially oil that can be extracted using traditional drilling methods and that can flow at surface temperature and pressure conditions naturally. If oil is defined more broadly to include unconventional sources like tight oil, tar sands, and extra-heavy oil, then possible future production volumes increase, but the likely peak doesn’t move very far forward in time. Production of tight oil can still grow in the Permian play in Texas and New Mexico, but will likely be falling by the end of the decade. Extra-heavy oil from Venezuela and tar sands from Canada won’t make much difference because they require a lot of energy for processing (i.e., their EROI is low); indeed, it’s unclear whether much of Venezuela’s enormous claimed Orinoco reserves will ever be extracted.

Of course, logistical curves are just ways of using math to describe trends, and trends can change. Will the decline of global oil production be gradual and smooth, like the mathematically generated curves in these experts’ charts? That depends partly on whether countries dramatically reduce fossil fuel usage in order to stave off catastrophic climate change. If the world gets serious about limiting global warming, then the downside of the curve can be made steeper through policies like carbon taxes. Keeping most of the remaining oil in the ground will be a task of urgency and complexity, one that cannot be accomplished under a business-as-usual growth economy. We’ll need energy for the energy transition (to build solar panels, wind turbines, batteries, heat pumps, electric cars, mass transit, etc.), and most of that energy, at least in the early stages of the transition, will have to come from fossil fuels. If oil, the most important of those fuels, will be supply-constrained, that adds to the complexity of managing investment and policy so as to minimize economic pain while pursuing long-range climate goals.

As a side issue, the authors note (as have others) that IPCC estimates of future carbon emissions under its business-as-usual scenario are unrealistic. We just don’t have enough economically extractable fossil fuels to make that worst-case scenario come true. However, even assuming a significant downgrade of reserves (and thus of projected emissions), burning all of the oil we have would greatly exceed emissions targets for averting climate catastrophe.

One factor potentially limiting future oil production not discussed in the new paper has to do with debt. Many observers of the past 15 years of fracking frenzy have pointed out that the industry’s ability to increase levels of oil production has depended on low interest rates, which enabled companies to produce oil now and pay the bills later. Now central banks are raising interest rates in an effort to fight inflation, which is largely the result of higher oil and gas prices. But hiking interest rates will only discourage oil companies from drilling. This could potentially trigger a self-reinforcing feedback loop of crashing production, soaring energy prices, higher interest rates, and debt defaults, which would likely cease only with a major economic crash. So, instead of a gentle energy descent, we might get what Ugo Bardi calls a “Seneca Cliff.”

So far, we are merely seeing crude and natural gas shortages, high energy prices, broken supply chains, and political upheaval. Energy challenges are now top of mind for policymakers and the public in a way that we haven’t seen since oil prices hit a record $147 barrel in 2008, when peak oil received some semblance of attention. But now we run the risk of underlying, irreversible supply constraints being lost in the noise of other, more immediate contributors to the supply and price shocks the world is experiencing—namely lingering effects from the pandemic, the war in Ukraine and sanctions on Russian oil and gas, and far stricter demands for returns from domestic investors. Keeping the situation from devolving further will take more than just another fracking revolution, which bought us an extra decade of business-as-usual. This time, we’re going to have to start coming to terms with nature’s limits. That means shared sacrifice, cooperation, and belt tightening. It also means reckoning with our definitions of prosperity and progress, and getting down to the work of reconfiguring an economy that has become accustomed to (and all too comfortable with) fossil-fueled growth.


Richard Heinberg is a senior fellow at the Post Carbon Institute and the author of fourteen books, including his most recent: “Power: Limits and Prospects for Human Survival”(2021). Previous books include: “Our Renewable Future: Laying the Path for One Hundred Percent Clean Energy” (2016), “Afterburn: Society Beyond Fossil Fuels” (2015), and “Peak Everything: Waking Up to the Century of Declines (2010).

 

Photo by Chris LeBoutillier on Unsplash.

Even Common Species Are Experiencing Population Crashes

Even Common Species Are Experiencing Population Crashes

By Max Wilbert

Yesterday I met this juvenile red-shafted Northern Flicker in the high desert of Oregon.

Flickers are common, but like all life on Earth, they are in danger. Bird populations around the world are collapsing. Even “common” species like the American Robin have seen massive population declines because of habitat destruction, insect population collapse, housecats, and other human impacts.

Flickers are not safe. They face all these impacts. This tree is a Western Juniper, one of several Juniper species who are being clearcut en masse across Oregon, Idaho, Nevada, California, Wyoming, and Montana. Ironically, this is not for lumber or even firewood, but because of a misguided attempt at “restoration” of water cycles which have been harmed by overgrazing, overpumping, and more and more human impacts. People are arguing that cutting down the forest will mean more water available for humans. It’s insane.

These trees are also being cut down to supposedly help the Greater Sage-Grouse, another bird species which has lost 98% of it’s population. The Sage-Grouse is mostly being harmed by habitat destruction for ranching, mining, oil and gas exploration, urban sprawl, as well as increasing wildfires (about 90% of wildfires are caused by humans). Vast forests of native Juniper and Pinyon Pine trees, some of them hundreds of years old, are being cut down in the name of this “restoration.” The trees are being scapegoated, and the birds who rely on them will go as they do. Already, the Pinyon Jay (who are symbiotic with Pinyon Pine trees) is experiencing massive population crashes — more than 90% — as their forests are destroyed.

There are many other threats to Flickers. As I mentioned, insect populations are crashing, and they are the main food source for Flickers. Like Orca whales starving as salmon populations go extinct, the Flickers will go as the insects go.

Industrial civilization is driving a mass extermination of life, turning forests into fields into deserts, creating hundreds of oceanic dead zones in seas vacuumed of fish by vast trawlers, and destabilizing the climate. It’s a moral imperative for us to take action to stop this.

 

Photo by Sonika Agarwal on Unsplash

Combating Extinction Will Help Stop Global Warming

Combating Extinction Will Help Stop Global Warming

Editor’s note: The dominant global culture (“industrial civilization”) is built on resource extraction and forced conversion of habitat to exclusive human use, and this has serious consequences.

Both global warming and the ongoing mass extermination of life on the planet (which has been deemed “the sixth mass extinction”), as well as other ecological crises (aquifer depletion, toxification of the total environment, ecosystem collapse, oceanic dead zones, etc.) are symptoms of humanity’s broken relationship to the planet. In plain terms: this way of life is killing the planet.

Today’s article reminds us that these crises are deeply interlinked, and so are solutions. While we are a revolutionary organization, every small step in the right direction also matters. And as a biocentric organization, we are in favor of actions to protect the natural world rather than putting our faith in technological Bright Green Lies.


By Tara Lohan / The Revelator

Mass extinction lurks beneath the surface of the sea. That was the dire message from a study published in April in the journal Science, which found that continuing to emit greenhouse gases unchecked could trigger a mass die-off of ocean animals that rivals the worst extinction events in Earth’s history.

The findings serve as just the latest reminder that climate change and biodiversity loss are interconnected crises — even if they’re rarely addressed in tandem by policymakers.

Toward that point, the Science study came with a dose of hopeful news: Action to curb greenhouse gas emissions and keep warming below 2 degrees Celsius could cut that extinction risk by 70%.

Additional research published in Global Change Biology offers another encouraging finding. The study, by an international team of scientists, found that not only can we do better at addressing biodiversity issues — we can do it while also targeting climate change.

“Many instances of conservation actions intended to slow, halt or reverse biodiversity loss can simultaneously slow anthropogenic climate change,” the researchers wrote in the study.

Their work looked at 21 proposed action targets for biodiversity that will be the focus of this fall’s international convening of the Convention on Biological Diversity in Kunming, China — a meeting delayed two years by the COVID-19 pandemic. The researchers found that two-thirds of those biodiversity targets also support climate change mitigation, even though they weren’t explicitly designed for that goal. The best opportunities to work on these crises together were actions to avoid deforestation and restore degraded ecosystems. Of particular focus, the study found, should be coastal ecosystems such as mangroves, seagrass and salt marshes, which can store large amounts of carbon and support a diversity of animals.

Mangrove GalapagosA pelican enjoys a perch in a mangrove stand in the Galapagos. Photo: Hans Johnson (CC BY 2.0)

Also important is restoring forests and woodlands, but doing so with native species is critical. Planting monocultures of nonnative trees won’t boost biodiversity, the researchers point out, despite such endeavors being incentivized as a climate change solution.

Another target is reducing runoff into rivers, lakes and coastal waters from excess nutrients — including nitrogen and phosphorus — that cause algal blooms and oxygen-depleted waters. This eutrophication, combined with warming, may increase greenhouse gas emissions in freshwater bodies, in addition to harming fish and other animals.

Expanding and connecting the network of protected areas is another mutualistic target. Globally, we’ve protected about 15% of land and 7% of marine habitats. But we need to bump those numbers up considerably. As the researchers behind the Global Change Biology study put it, “There is a substantial overlap of 92% between areas that require reversing biodiversity loss and the areas needing protection for enhancing carbon storage and drawdown.”

Working on these issues in tandem can help boost the benefits.

We’re also spending large sums of money in all the wrong places. The study lists the reduction or elimination of subsidies that are harmful to biodiversity and the climate as “one of the most important and urgent reforms.”

We spend 10 times more on subsidies for environmentally harmful practices than on biodiversity conservation, the researchers note. Brazil, for example, spends 88 times more on subsidizing activities linked to deforestation than on those that may help stop it.

Other target areas to boost biodiversity and climate work include recovering and conserving wild species; greening urban areas; eliminating overfishing; reducing food and agricultural waste; and shifting diets to include more plant-based foods and less meat and dairy.

And, the researchers say, we need to “mainstream” the issues together — embedding both climate and biodiversity targets and metrics into policy, business and consumer practices.

Understanding these issues should start early, too. A study of school curricula in 46 countries found that fewer than half addressed climate change, and a paltry one-fifth referenced biodiversity. Both these subjects should be covered more and integrated together, the researchers say.

It’s not possible, after all, to tackle one crisis without addressing the other.

To fight climate change, we need fully functioning ecosystems with healthy populations of native plants and animals.

“And climate change is damaging this capacity,” said Hans-Otto Pörtner, a study coauthor and climate researcher at the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research. “Only when we succeed in drastically reducing emissions from fossil fuels can nature help us to stabilize the climate.”


Derrick Jensen: The Myth of Human Supremacy

Derrick Jensen: The Myth of Human Supremacy

The following is an extract from Derrick Jensen’s 2016 book The Myth of Human Supremacy. From the book jacket: “In this impassioned polemic, radical environmental philosopher Derrick Jensen debunks the near-universal belief in a hierarchy of nature and the superiority of humans. Vast and underappreciated complexities of nonhuman life are explored in detail—from the cultures of pigs and prairie dogs, to the creative use of tools by elephants and fish, to the acumen of caterpillars and fungi. The paralysis of the scientific establishment on moral and ethical issues is confronted and a radical new framework for assessing the intelligence and sentience of nonhuman life is put forth.” Visit Derrick’s website to buy the book.


By Derrick Jensen

You’ve probably noticed I haven’t talked about the origins of human supremacism. Some say it began with the domestication of nonhuman animals, as we came to think of these as our dependent inferiors, as our slaves, our beasts of burden. Some say it began with agriculture, where the entire landbase was converted to human use. Some say the model for human supremacism is male supremacism: women are physically differentiable from men, and some men decided that differentiability meant inferiority, and validated their own superiority by repeatedly violating and controlling women; this model was then applied across racial, cultural, and species differences. Some say human supremacism really got its start with the creation of a monotheistic sky god and the consequent removal of meaning from the material earth.

These questions of origins, while interesting and on some levels important, are not vital to the current discussion. Right now this narcissistic, sociopathic human supremacist culture is killing the planet, and we need to stop it. Asking where it started feels a bit to me like wondering about the childhood traumas of the axe murderer who is tearing apart your loved ones. Sure, it’s a discussion to be had, but can we please stop the murderer first?

#

Because human supremacism—like other supremacisms—is not based on fact, but rather on pre-existing bigotry (and the narcissism and tangible self-interest on which all bigotries are based), I don’t expect this book will cause many human supremacists to reconsider their supremacism, just as books on male or white supremacism don’t generally cause male or white supremacists to reconsider theirs. The book isn’t written for them. This book is written to give support to the people—and there are a lot of us—who are not human supremacists, and who are disgusted with the attitudes and behaviors of the supremacists, who are attempting to stop the supremacists from killing all that lives. It is written for those who are appalled by nonhumans being tortured, displaced, destroyed, exterminated by supremacists in service to authoritarian technics. It is written for those who are tired of the incessant—I would say obsessive—propaganda required to prop up human supremacism. It is written for those who recognize the self-serving stupidity and selective blindness of the supremacist position.

It is written for those who prefer a living planet to authoritarian technics. It is written for those who prefer democratic decision-making processes to authoritarian technics. It is written for those who prefer life to machines.

#

I’m sitting again by the pond. The wind still plays gently among the reeds, plays also with the surface of the water.

This time I do not hear the sound of a family of jays softly talking amongst themselves. This time I hear the sound of chainsaws.

The forests on both sides of where I live are being clearcut. I don’t know why. Or rather, on a superficial level I do. The people who “own” both pieces of land had a “problem” they needed to “solve.” “Problem”? They needed money. Or they wanted money. Or they craved money. It doesn’t matter. “Solution”? Cut the trees and sell them.

Never mind those who live there.

So for weeks now I’ve been hearing the whine of chainsaws and the screams of trees as they fall. For weeks now I’ve been feeling the shock waves when the trees hit the ground.

Such is life at the end of the world.

#

We end on the plains of eastern Colorado, where as I write this a friend is trying desperately to protect prairie dogs. A “developer” wants to put in a mall on top of one of the largest extant prairie dog villages along Colorado’s Front Range. The village has 3,000 to 8,000 burrows.

Prior to this human supremacist culture moving into the Great Plains, the largest prairie dog community in the world, which was in Texas, covered 25,000 square miles, and was home to perhaps 400 million prairie dogs. The total range for prairie dogs was about 150,000 to 200,000 square miles, and population was well over a billion.

Now, prairie dogs have been reduced to about five percent of their range and two percent of their population.

Yet because yet another rich person wants to build yet another mall (in this economy, with so many empty stores already?), much of this prairie dog community will be poisoned. That community includes the twenty or more other species who live with and depend upon prairie dogs. The prairie dogs (and some others) who are not poisoned will be buried alive by the bulldozers, then covered with concrete. This includes the pregnant females, who prefer not to leave their dens.

If you recall, prairie dogs have complex languages, with words for many threats. They have language to describe hawks, and to describe snakes, and to describe coyotes. They have language to describe a woman wearing a yellow shirt, and different language for a woman wearing a blue shirt. They have had to come up with language to describe a man with a gun.

Do they, I wonder, have language to describe a bulldozer? Do they have language to describe the pregnant females of their community being buried alive?

And do they have language to describe the murderous insatiability of human supremacists? And do others? Do blue whales and the few remaining tigers? Do the last three northern white rhinos, all that’s left because some human supremacists believe their horns are aphrodisiacs? Do elephants? Did the black-skinned pink-tusked elephants of China? Did the Mesopotamian elephants? And what about others? What about the disappearing fireflies? What about the dammed and re-dammed and re-dammed Mississippi? What about the once-mighty Columbia? What about the once-free Amazon? Do they have language to describe this murderous insatiability?

#

And perhaps more to the point, do we?

#

By the time you read this, the prairie dogs my friend is fighting to protect will probably be dead, killed so someone can build yet another cathedral to human supremacism. And by the time you read this, yet another dam will have been built on the Mekong, on the upper reaches of the Amazon, on the upper Nile. By the time you read this there will be 7,000 to 10,000 more dams in the world. By the time you read this there will be more dead zones in the oceans. By the time you read this there will be another 100,000 species driven extinct.

And all for what?

To serve authoritarian technics, to serve an obsession to validate and re-validate a self-perceived superiority that is so fragile that each new other we encounter must be violated, and then violated, and then violated, till there is nothing left and we move on to violate another.

This is not the future I want. This is not the future I will accept.

#

What I want from this book is for readers to begin to remember what it is to be human, to begin to remember what it is to be a member of a larger biotic community. What I want is for you—and me, and all of us—to fall back into the world into which you—and me, and all of us—were born, before you, too, like all of us were taught to become a bigot, before you, too, like all of us were taught to become a human supremacist, before you, too, like all of us were turned into a servant of this machine culture like your and my parents and their parents before them. I want for you—and me, and all of us—to fall into a world where you—like all of us—are one among many, a world of speaking subjects, a world of infinite complexity, a world where we each depend on the others, all of us understanding that the health of the real world is primary.

The world is being murdered. It is being murdered by actions that are perpetrated to support and perpetuate a worldview. Those actions must be stopped. Given what is at stake, failure is no longer an option. The truth is that it never was an option.

So where do we begin? We begin by questioning the unquestioned beliefs that are the real authorities of this culture, and then we move out from there. And once you’ve begun that questioning, my job is done, because once those questions start they never stop. From that point on, what you do is up to you.


More from Derrick Jensen on the DGR News Service.

Hydroelectric  Dams Are Not Green

Hydroelectric Dams Are Not Green

Editor’s note: Hydroelectric dams are not green energy, despite many claims that they are. Hydropower kills rivers, displaces millions of human beings, drives anadromous fish and other life dependent on free-flowing rivers extinct, and actually releases substantial greenhouse gasses. This post includes a short excerpt from Bright Green Lies as well as an article detailing a destructive dam proposal in Bolivia.


Dams are Not Green Energy

Excerpted from Chapter 11: The Hydropower Lie of Bright Green Lies: How the Environmental Movement Lost Its Way by Derrick Jensen, Lierre Keith, and Max Wilbert

Once upon a time, dams were recognized for the environmental atrocities they are. Human beings understood that dams kill rivers, from source to sea. They understood that dams kill forests, marsh- lands, grasslands.

In the 12th century, Richard the Lionhearted (King Richard I of England) put in place a law forbidding dams from preventing salmon passage. In the 14th century, Robert the Bruce did some- thing similar for Scotland. His descendant Robert the III went even further, declaring that three convictions for killing salmon out of season would be a capital offense.

Fast-forward to today, when dams are claimed to provide “clean” and “green” energy.

Where’s Robert the III when you need him?

As recently as three decades ago, at least environmentalists still consistently opposed dams. But the coup that turned so much environmentalism away from protecting the real world and into a lobbying arm of favored sectors of the industrial economy has rhetorically turned dams into environmental saviors. And climate change activists are among the most relentless missionaries for the gospel of the green dam.

This issue is urgent. While here in the United States, no new large dams have been built in many years (although many shovel-ready proposals are waiting for public funding), large hydropower dams are being built around the world as quickly as (in)humanly possible.

Once again, environmental engineer Mark Jacobson is an exam- ple, as he always seems to be, of someone working hard to kill the planet in order to save it. His 100 percent “renewable” transition plans—and remember, bright greens and many mainstream environmentalists love this guy—call for building about 270 new large hydroelectric dams globally, each at least the size of the Hoover or Glen Canyon dams.6 He also calls for major expansions to existing dams by adding new turbines. His models rely heavily on hydro because solar and wind facilities are by their nature intermittent and unreliable.


In Bolivia, Indigenous groups fear the worst from dam project on Beni River

By Translated by Maxwell Radwin

  • More than 5,000 Indigenous people would be impacted by flooding from the construction of two dams in Bolivia, according to Indigenous organizations and environmentalists.
  • Successive governments have mulled the Chepete-El Bala hydroelectric project for more than half a century, and the current administration of President Luis Acre has now revived it as a national priority.
  • While Indigenous groups have successfully rejected the plan in the past, this time a group of 10 Indigenous organizations have signed an agreement with the state energy company approving feasibility studies.
  • If completed, the reservoirs for the project would cover a combined area larger than Bolivia’s capital, La Paz, and inundate an area that’s home to thousands of plant and animal species.

The Bolivian government has revived a long-held plan to build a hydroelectric plant in a corner of the country’s western La Paz department, sparking concerns about the potential displacement of more than 5,000 Indigenous people from the area.

The affected communities live in two protected areas, Madidi National Park and Pilón Lajas Biosphere Reserve and Communal Lands, parts of which would be flooded for the twin dams of the Chepete-El Bala hydroelectric project.

President Luis Arce, who served as minister of the economy in the earlier administration of Evo Morales, is following the same road map as his predecessor, who in July 2007 announced the original plans for the hydroelectric dams as a national priority.

Ruth Alipaz denuncia que más de 5000 indígenas de cinco naciones perderán sus territorios. Foto: Chema Formentí. dams are not green energy
Since 2018, there have been concerns that around 5,000 Indigenous people would be impacted by dam construction. Image courtesy of Chema Formentí.

The idea to generate hydropower in the Beni River Basin, specifically in El Bala Gorge, has been around for more than 50 years and given up on numerous times due to its economic unfeasibility and high environmental cost. The last time it was rejected by Indigenous communities was during the Hugo Banzer government in the late 1990s, before being nearly resurrected under Morales, Bolivia’s first Indigenous president.

Since then, the issue had largely faded for the six Indigenous communities that live in the area: the Mosetén, Tsiman, Esse Ejja, Leco, Tacana and Uchupiamona. The groups are now speaking out against the hydropower project, saying it would “cut off” the three rivers vital to their existence: the Beni and two of its tributaries, the Tuichi and Quiquibey.

“This would mean forced displacement and that means taking away our territory. We would be forced to leave our space, our ancestral domain,” said Alex Villca, a member of the National Coordinator for the Defense of Indigenous Peasant Territories and Protected Areas (Contiocap) of Bolivia. “We would be giving up what is most important: without territory there are no Indigenous peoples. This would be accepting a silent death. Wherever they take us, it would never be the same.”

The Indigenous leader said the problem goes even further. He said that in the Chepete mountains, some Indigenous peoples live in voluntary isolation — believed to be Mosetén, although there aren’t many studies to confirm this — and that they would be “totally” affected if the dams were constructed in the area. “We know from our brothers that there exists, in the peaks of the Chepete, a community in voluntary isolation that must be unaware of all these plans. Imagine how that would affect them if this project comes to fruition,” Villca said.

Tenders resumed

In 2021, Bolivia’s National Electric Energy Company (Ende) resumed the commissioning of the Chepete-El Bala project, announcing tenders for geological and geotechnical studies. The state-owned company said that in the case of the Chepete plant, the planned reservoir area would flood 46 square kilometers (18 square miles) of the total area of 3,859 square kilometers (1,490 square miles) of the Pilón Lajas reserve. The reservoir at El Bala, meanwhile, would cover 94 km2 (36 mi2) of the 18,895-km2 (7,295-mi2) Madidi park.

reservoir in the tropics - dams are not green energy
El Bala Gorge on the Beni River. Image courtesy of Chema Formentí.

In August, the Office of Indigenous Peoples of La Paz (Cpilap) signed an agreement with Ende authorizing the final design studies for the Chepete-El Bala project.

The agreement establishes that Cpilap must “allow the entry of Ende Corporation and its contracted companies to the areas of direct and indirect influence in order to carry out research, information gathering, socialization and data collection that allows studies, the creation of projects, to finalize the design to implement electric power generation, transmission and distribution.”

Villca spoke out against the signing of the agreement. “What worries us is that the tenor of the agreement is that it not only allows for complementary studies but also, in the future, allows Ende to start construction of the Chepete and El Bala hydroelectric plants. This is much more serious.”

Cpilap is a regional organization that brings together 10 Indigenous organizations in La Paz department: the Indigenous Council of the Tacana Peoples, the Office of the Indigenous Leco de Apolo, the Leco Indigenous People and Larecaja Native Communities, the Mosetén Indigenous Peoples Organization, the Indigenous Peoples of de San José de Uchupiamonas, the Esse Ejja of Eiyoquibo Indigenous Community, the Regional Council of T-simane Mosetén of Pilón Lajas, the Native Agroecological Community of Palos Blancos, the Tacana II Indigenous Communities of Rio Madre de Dios, and the Captaincy of the Araona Indigenous People. All of these organizations, according to Villca, are connected to Arce and Morales’s ruling party, the Movement for Socialism (MAS).

Gonzalo Oliver Terrazas, president of Cpilap, said five of the six affected Indigenous communities agreed with the hydropower project. The sixth community are the Mosetén, who didn’t sign the agreement. “This agreement doesn’t mean that the dam will be built,” he said. “The goal is to determine the feasibility or infeasibility of the project. Another important aspect that the agreement has is the social component, which we have included so that there can be electricity and housing projects.”

The Association of Indigenous Communities of the Beni, Tuichi and Quiquibey Rivers, an organization started in 2001 to defend the ancestral territories of the six Indigenous communities impacted by the project, has demanded that a prior consultation be carried out with the communities to approve or reject the project. The communities met over one weekend and decided to reject the government initiative, demonstrating that there are leaders for and against conducting feasibility studies for the project.

The hills of El Bala near the town of Rurrenabaque. Image courtesy of Chema Formentí.

“We remind [the government] that in 2016 there was a 12-day vigil and the expulsion of the Geodata and Servicons companies that had started work and studies in the territory without fulfilling a free, prior and informed consent [FPIC] consultation in good faith so as to receive the consent of the communities,” said a document published by the association.

Terrazas said the signing of the agreement with Ende doesn’t mean there won’t be consultation with Indigenous communities. He said that if the feasibility of the project is approved, a consultation will be carried out with the communities to approve or reject the construction of the hydropower plants.

In January 2018, Ende returned the prefeasibility study to the Italian company Geodata Engineering for correction. Geodata recommended “to postpone the development of the El Bala 220 hydroelectric plant until the conditions in the Bolivian energy market and abroad indicate that it is convenient to start its implementation.”

City-size reservoir

The project, which would start after a public tender is launched, would flood at least 662 km2 (256 mi2) of land for the two dams, according to Indigenous groups. Combined, the two reservoirs would cover an area five times bigger than Bolivia’s capital, La Paz. And if the dried-out salt lake of Poopó, in the department of Oruro, doesn’t recover, Chepete-El Bala would be the second-biggest lake in Bolivia after Titicaca.

The project calls for building the first dam in the Beni River’s Chepete Gorge, 70 km (43 mi) upstream from the town of Rurrenabaque, in the department of Beni, and the second near El Bala Gorge, 13.5 km (8.3 mi) upstream of the same town.

dams are not green energy
The town of Rurrenabaque, which would have two dams upstream. Image courtesy of Chema Formentí.

The Chepete dam would raise the water level to 158 meters (518 feet), forming a lake that would be 400 m (1,312 ft) above sea level. The dam at El Bala would raise the water level by 20 m (65 ft) and its reservoir would be 220 m (721 ft) above sea level. Unlike the Chepete dam, which would be a concrete wall, the dam at El Bala would consist of gates and generators in the middle of the river.

Extinction and displacement

According to the Solón Foundation, an environmental NGO, a total of 5,164 people would be relocated for the project, the majority of them Indigenous. The area is also home to 424 plant species of plants, 201 land mammals, 652 birds, 483 amphibians and reptiles, and 515 fish species. It’s not clear which species are most likely to go locally extinct as a result of the flooding, or how many would be affected.

The main fear of the Indigenous communities in the area is that the construction of both dams would mean forcibly displacing more than 5,000 residents. The construction of the second reservoir at El Bala, according to the Solón Foundation and Indigenous organizations opposed to the project, would flood the entire community of San Miguel del Bala. There’s no official information on a displacement plan for the communities more than 1,000 residents.

And with the construction of the Chepete reservoir, a little more than 4,000 Indigenous people would be displaced. All the populated areas affected by the reservoir, according to Geodata, have collective titles belonging to the Tacanas, Lecos and Mosetén peoples. Additionally, development on the river could interfere with the livelihoods of many residents, who fish and farm and, in more recent years, oversee communal tourism activities.

Chepete Gorge on the Beni River would be dammed to power a hydroelectric plant. Image courtesy of Alex Villca. - dams are not green energy
Chepete Gorge on the Beni River would be dammed to power a hydroelectric plant. Image courtesy of Alex Villca.

Valentín Luna is an Indigenous Tacana leader and head of the San Miguel del Bala community. Currently, there are at least 20 eco-lodges that have been built in the Madidi and Pilón Lajas protected areas. Most of these initiatives are managed by the local communities. Four of these eco-lodges would be flooded by the dams, according to Luna: one in Chalalán overseen by the Uchupiamonas, one run by San Miguel del Bala residents, one in Villa Alcira, and one run by the Chimanes and Mosetén of Asunción del Quiquibey.

For the Indigenous people who don’t want the dams in their area, the main worry isn’t the end of tourism. They fear that the six Indigenous groups will disappear along with it.

This piece first appeared in Mongabay.


Banner image of Chepete Gorge on the Beni River, located 70 kilometers (43 miles) upstream of the village of Rurrenabaque. Image courtesy of Alex Villca.

Will Falk’s Life-Centered Writing