I was born in Mexico City surrounded by big buildings, a lot of cars and one of the most contaminated environments in the world. When I was 9 years old my family moved to Tijuana in North West Mexico and from this vantage point, on the wrong side of the most famous border town in the world, I became acquainted with American culture. I grew up under the American way of life, meaning in a third-world city ridden with poverty, corruption, drug trafficking, prostitution, industry and an immense hate for foreigners from the South.
Through my school years, I probably heard a couple of times how minerals are acquired and how mining has brought “prosperity” and “progress” to humanity. I mean, even my family name comes from Cornwall, known for its mining sites. The first Straffon to arrive from England to Mexico did so around 1826 in Real del Monte in the State of Hidalgo (another mining town!). However, it is only recently, since I have started following the wonderful work being done in Thacker Pass by Max Wilbert and Will Falk that the horrors of mining came into focus and perspective.
What is mining? You smash a hole in the ground, go down the hole and smash some more then collect the rocks that have been exposed and process them to make jewelry, medicines or technology. Sounds harmless enough. It’s underground and provides work and stuff we need, right? What ill could come out of it? After doing some digging (excuse the pun), I feel ashamed of my terrible ignorance. Mine is the ignorance of the many. This ignorance is more easily perpetuated in a city where all the vile actions are done just so we can have our precious electronics, vehicles and luxuries.
Mine Inc.
Mining, simply put, is the extraction of minerals, metals or other geological materials from earth including the oceans. Mining is required to obtain any material that cannot be grown or artificially created in a laboratory or factory through agricultural processes. These materials are usually found in deposits of ore, lode, vein, seam, reef or placer mining which is usually done in river beds or on beaches with the goal of separating precious metals out of the sand. Ores extracted through mining include metals, coal, oil shale, gemstones, calcareous stone, chalk, rock salt, potash, gravel, and clay. Mining in a wider sense means extraction of any resource such as petroleum, natural gas, or even water.
Mining is one of the most destructive practices done to the environment as well as one of the main causes of deforestation. In order to mine, the land has to be cleared of trees, vegetation and in consequence all living organisms that depend on them to survive are either displaced or killed. Once the ground is completely bare, bulldozers and excavators are used to smash the integrity of the land and soil to extract the metals and minerals.
Mining comes in different forms such as open-pit mining. Like the name suggests, is a type of mining operation that involves the digging of an open pit as a means of gaining access to a desired material. This is a type of surface mining that involves the extraction of minerals and other materials that are conveniently located in close proximity to the surface of the mining site. An open pit mine is typically excavated with a series of benches to reach greater depths.
Open-pit mining initially involves the removal of soil and rock on top of the ore via drilling or blasting, which is put aside for future reclamation purposes after the useful content of the mine has been extracted. The resulting broken up rock materials are removed with front-end loaders and loaded onto dump trucks, which then transport the ore to a milling facility. The landscape itself becomes something out of a gnarly science-fiction movie.
Once extracted, the components are separated by using chemicals like mercury, methyl-mercury and cyanide which of course are toxic to say the least. These chemicals are often discharged into the closest water sources available –streams, rivers, bays and the seas. Of course, this causes severe contamination that in turn affects all the living organisms that inhabit these bodies of water. As much as we like to distinguish ourselves from our wild kin this too affects us tremendously, specially people who depend on the fish as their staple food or as a livelihood.
One of the chemical elements that is so in demand in our current economy is Lithium. Lithium battery production today accounts for about 40% of lithium mining and 25% of cobalt mining. In an all-battery future, global mining would have to expand by more than 200% for copper, by a minimum of 500% for lithium, graphite, and rare earths, and far more for cobalt.
Lithium – Isn’t that a Nirvana song?
Lithium is the lightest metal known and it is used in the manufacture of aircraft, nuclear industry and batteries for computers, cellphones, electric cars, energy storage and even pottery. It also can level your mood in the form of lithium carbonate. It has medical uses and helps in stabilizing excessive mood swings and is thus used as a treatment of bipolar disorder. Between 2014 and 2018, lithium prices skyrocketed 156% . From 6,689 dollars per ton to a historic high of 17,000 dollars in 2018. Although the market has been impacted due to the on-going pandemic, the price of lithium is also rising rapidly with spodumene (lithium ore) at $600 a ton, up 40% on last year’s average price and said by Goldman Sachs to be heading for $676/t next year and then up to $707/t in 2023.
Lithium hydroxide, one of the chemical forms of the metal preferred by battery makers, is trading around $11,250/t, up 13% on last year’s average of $9978/t but said by Goldman Sachs to be heading for $12,274 by the end of the year and then up to $15,000/t in 2023. Lithium is one of the most wanted materials for the electric vehicle industry along cobalt and nickel. Demand will only keep increasing if battery prices can be maintained at a low price.
Simply look at Tesla’s gigafactory in the Nevada desert which produces 13 million individual cells per day. A typical Electronic Vehicle battery cell has perhaps a couple of grams of lithium in it. That’s about one-half teaspoon of sugar. A typical EV can have about 5,000 battery cells. Building from there, a single EV has roughly 10 kilograms—or 22 pounds—of lithium in it. A ton of lithium metal is enough to build about 90 electric cars. When all is said and done, building a million cars requires about 60,000 tons of lithium carbonate equivalent (LCE). Hitting 30% penetration is roughly 30 million cars, works out to about 1.8 million tons of LCE, or 5 times the size of the total lithium mining industry in 2019.
Considering that The United States-Mexico-Canada Agreement (USMCA) is being negotiated, lithium exploitation is a priority as a “must be secured” supply chain resource for the North American corporate machine. In 3 years, cars fabricated in these three countries must have at least 75% of its components produced in the North American regionso they can be duty-free. This includes the production of lithium batteries that could also become a profitable business in Mexico.
Sonora on Lithium
In the mythical Sierra Madre Occidental (“Western Mother” Mountain Range) which extends South of the United States, there is a small town known as Bacadéhuachi. This town is approximately 11 km away from one of the biggest lithium deposits in the world known as La Ventana. At the end of 2019, the Mexican Government confirmed the existence of such a deposit and announced that a concession was already granted on a joint venture project between Bacanora Minerals (a Canadian company) and Gangfeng Lithium (a Chinese company) to extract the coveted mineral. The news spread and lots of media outlets and politicians started to refer to lithium as “the oil of the future.”
Sonora Lithium Ltd (“SLL”) is the operational holding company for the Sonora Lithium Project and owns 100% of the La Ventana concession. The La Ventana concession accounts for 88% of the mined ore feed in the Sonora Feasibility Study which covers the initial 19 years of the project mine life. SLL is owned 77.5% by Bacanora and 22.5% by Ganfeng Lithium Ltd.
Sonora holds one of the world’s largest lithium resources and benefits from being both high grade and scalable. The polylithionite mineralisation is hosted within shallow dipping sequences, outcropping on surface. A Mineral Resource estimate was prepared by SRK Consulting (UK) Limited (‘SRK’) in accordance with NI 43-101.”
The Sonora Lithium Project is being developed as an open-pit strip mine with operation planned in two stages. Stage 1 will last for four years with an annual production capacity of approximately 17,500t of lithium carbonate, while stage 2 will ramp up the production to 35,000 tonnes per annum (tpa). The mining project is also designed to produce up to 28,800 tpa of potassium sulfate (K2SO4), for sale to the fertilizer industry.
On September 1st, 2020, Mexico’s President, Andres Manuel Lopez Obrador, dissolved the Under-secretariat of Mining as part of his administration’s austerity measures. This is a red flag to environmental protection as it creates a judicial void which foreign companies will use to allow them greater freedom to exploit more and safeguard less as part of their mining concession agreements.
Without a sub-secretariat, mediation between companies, communities and environmental regulations is virtually non-existent. Even though exploitation of this particular deposit had been adjudicated a decade ago under Felipe Calderon’s administration, the Mexican state is since then limited to monitoring this project. This lack of regulatory enforcement will catch the attention of investors and politicians who will use the situation to create a brighter, more profitable future for themselves and their stakeholders.
To my mind there is a bigger question – how will Mexico benefit from having one of the biggest deposits of lithium in the world? Taking into account the dissolution of the Mining sub-secretariat and the way business and politics are usually handled in Mexico, I do wonder who will be the real beneficiaries of the aforementioned project.
Extra Activism
Do not forget, mining is an integral part of our capitalist economy; mining is a money making business – both in itself and as a supplier of materials to power our industrial civilization. Minerals and metals are very valuable commodities. Not only do the stakeholders of mining companies make money, but governments also make money from revenues.
There was a spillage in the Sonora river in 2014. It affected over 22,000 people as 40 million liters of copper sulfate were poured into its waters by the Grupo Mexico mining group. Why did this happen? Mining companies are run for the profit of its stakeholder and it was more profitable to dump poison into the river than to find a way to dispose it with a lower environmental impact. Happily for the company stakeholders, company profit was not affected in the least.
Even though the federal Health Secretariat in conjunction with Grupo México announced in 2015 the construction of a 279-million-peso (US $15.6-million) medical clinic and environmental monitoring facility to be known as the Epidemiological and Environmental Vigilance Unit (Uveas) to treat and monitor victims of the contamination, until this day it has not been completed. The government turned a blind eye to the incident after claiming they would help. All the living beings near the river are still suffering the consequences.
Mining is mass extraction and this takes us to the practice of “extractivism” which is the destruction of living communities (now called “resources”) to produce stuff to sell on the world market – converting the living into the dead. While it does include mining – extraction of fossil fuels and minerals below the ground, extractivism goes beyond that and includes fracking, deforestation, agro-industry and megadams.
If you look at history, these practices have deeply affected the communities that have been unlucky enough to experience them, especially indigenous communities, to the advantage of the so-called rich. Extractivism is connected to colonialism and neo-colonialism; just look at the list of mining companies that are from other countries – historically companies are from the Global North. Regardless of their origins, it always ends the same, the rich colonizing the land of the poor. Indigenous communities are disproportionately targeted for extractivism as the minerals are conveniently placed under their land.
While companies may seek the state’s permission, even work with them to share the profits, they often do not obtain informed consent from communities before they begin extracting – moreover stealing – their “resources”. The profit made rarely gets to the affected communities whose land, water sources and labor is often being used. As an example of all of this, we have the In Defense of the Mountain Range movement in Coatepec, Veracruz. Communities are often displaced, left with physical, mental and spiritual ill health, and often experience difficulties continuing with traditional livelihoods of farming and fishing due to the destruction or contamination of the environment.
Cristopher Straffon Marquez a.k.a. Straquez is a theater actor and language teacher currently residing in Tijuana, Baja California, Mexico. Artist by chance and educator by conviction, Straquez was part of the Zeitgeist Movement and Occupy Tijuana Movement growing disappointed by good intentions misled through dubious actions. He then focused on his art and craft as well as briefly participating with The Living Theatre until he stumbled upon Derrick Jensen’s Endgame and consequently with the Deep Green Resistance: Strategy to Save the Planet both changing his mind, heart and soul. Since then, reconnecting with the land, decolonizing the mind and fighting for a living planet have become his goals.
Together we are powerful. Since the #DefundLine3 campaign launched in February, bank executives have received more than 700,000 emails, 7,000 calendar invites and 3,000 phone calls, demanding that they stop funding Line 3. There have been protests at bank branches in 16 states. Collectively, we’ve raised more than $70,000 for those on the frontlines.
Now, we’re pulling all of that energy together for one powerful, coordinated day of action.
There are already actions confirmed in more than 40 US cities ― in New York, DC, San Francisco, Chicago, Boston and more ― as well as in the UK, France, Holland, Switzerland, Costa Rica, Canada and Sierra Leone.
If there isn’t an action near you, organize one! Actions can be small. Going to a local bank branch with your friend to deliver a letter or petition can be a powerful action. Actions can be large. Think hundreds of people shutting down the streets outside of a bank’s headquarters.
On the frontlines, more than 240 people have now been arrested for taking bold direct action to stop the construction of Line 3.
Just a few weeks ago, Indigenous Water Protectors sang and prayed inside of a waaginogaaning, the traditional structure of Anishinaabe peoples, as allies locked to each other around the lodge, blocking Line 3 construction for hours.
After they were arrested, the Indigenous Water Protectors were strip-searched, shackled and kenneled ― for nonviolent misdemeanors. Meanwhile, Enbridge has spent hundreds of thousands of dollars on riot gear, tear gas, and weapons for local militarized police forces that are regularly surveilling and harrassing nonviolent Water Protectors.
Planet of the Humans, an outstanding documentary by Jeff Gibbs and Michael Moore, drew a lot of attention when it was originally published on YouTube for free. But a coordinated censorship campaign lead to it being taken down from YouTube where it had been viewed 8.3 million times.
“Day 4: Still banned. Our YouTube channel still black. In the United States of America. The public now PROHIBITED from watching our film “Planet of the Humans” because it calls out the eco-industrial complex for collaborating with Wall Street and contributing to us losing the battle against the climate catastrophe. As the film points out, with sadness, some of our environmental leaders and groups have hopped into bed with Bloomberg, GoldmanSachs, numerous hedge funds, even the Koch Bros have found a way to game the system— and they don’t want you to know that. They and the people they fund are behind this censorship. We showed their failure and collusion, they didn’t like us for doing that, so instead of having the debate with us out in the open, they chose the route of slandering the film — and now their attempt at the suppression of our free speech. “Democracy Dies in Darkness.” Fascism is given life when “liberals” employ authoritarian tactics. Or sit back and say nothing. Who will speak up against blocking the public from seeing a movie that a group of “green capitalists” don’t want you to see? Where is the Academy? Where is the International Documentary Association? If you leave us standing alone, your film may be next. What is pictured above could be the darkened screen of your next movie. Do we not all know the time we are living in? All this energy spent trying to save our film when we should be saving the planet — but the green capitalists have once again provided a distraction so that no one will see what they’re really up to, so that no one will call them out for thinking we’re going to end the climate crisis by embracing or negotiating with capitalism. We call BS to that — and that is why our film has vanished. But not for long. We will not be silenced. We, and hundreds of millions of others, are the true environmental movement — because we know the billionaires are not our friends.”
Now the movie is up on YouTube again
Michael Moore presents Planet of the Humans, a documentary that dares to say what no one else will — that we are losing the battle to stop climate change on planet earth because we are following leaders who have taken us down the wrong road — selling out the green movement to wealthy interests and corporate America. This film is the wake-up call to the reality we are afraid to face: that in the midst of a human-caused extinction event, the environmental movement’s answer is to push for techno-fixes and band-aids. It’s too little, too late.
Removed from the debate is the only thing that MIGHT save us: getting a grip on our out-of-control human presence and consumption. Why is this not THE issue? Because that would be bad for profits, bad for business. Have we environmentalists fallen for illusions, “green” illusions, that are anything but green, because we’re scared that this is the end—and we’ve pinned all our hopes on biomass, wind turbines, and electric cars? No amount of batteries are going to save us, warns director Jeff Gibbs (lifelong environmentalist and co-producer of “Fahrenheit 9/11” and “Bowling for Columbine“). This urgent, must-see movie, a full-frontal assault on our sacred cows, is guaranteed to generate anger, debate, and, hopefully, a willingness to see our survival in a new way—before it’s too late. https://planetofthehumans.com/
From Julia Barnes, the award-winning director of Sea of Life, Bright Green Lies investigates the change in focus of the mainstream environmental movement, from its original concern with protecting nature, to its current obsession with powering an unsustainable way of life. The film exposes the lies and fantastical thinking behind the notion that solar, wind, hydro, biomass, or green consumerism will save the planet. Tackling the most pressing issues of our time will require us to look beyond the mainstream technological solutions and ask deeper questions about what needs to change.
On a late April morning in Thacker Pass, where some Paiute ancestors have been buried and some massacred, where some people want to dig out the dead to dig out lithium, I woke to a strange, wet snow that fell overnight a day before temperatures in the 70s were forecast. It seemed a bad omen.
Paiute elders teach that very bad things happen when the dead are disturbed. I knew this must be true. So many industrial projects in so many places have destroyed so many burial sites. The cracked bones of the slain have been cracked again and again in the frantic search for coal. Old, spilled blood turned to soil has been mixed with new, spilled blood by those who murder for oil. Now, in Nevada, if the lithium miners have their way, those brave Paiute who died resisting American soldiers will finally be forced onto the reservation when machinery agitates the dust formed by those Paiute bodies and the wind blows that dust to coat the homes of Paiute descendants at Fort McDermitt.
Either these desecrations have caused the world to go to hell or the dead, disturbed, have brought hell to Earth.
I pondered this while pondering the surreality of the spring snow. As heavy as it was, the snow didn’t weigh the ghosts down. Fingers that once clawed with shock at bullet holes, clawed through mud made by their own blood. The ghosts climbed through the sage brush roots and volcanic rocks, to drift over the snow and confront the living with the reality of history. Moans moved with heavy clouds. Screams, sometimes, did too. Raven wings stirred the death hanging on the air. The wind blew with their last words in a language I never knew.
Though the language was strange to me, the meaning was clear enough: each generation’s missing and murdered grieve for the next. A meadowlark, landed on the tip of a nearby sagebrush, and began to sing. He sang: “While there’s still time for some, there’s no time for grief.” He told me to let them grieve.
I threw some cedar on the fire and watched my prayers rise with the smoke. I wondered what the wind will do when there are no more dying words to deliver, what the dead will do when they are confident they will not be disturbed, what the ghosts will do when their lessons are remembered. I wondered: Will Thacker Pass, at last, be still?
In this article Rebecca Wildbear talks about how civilization is wasting our planet’s scarce water sources for mining in its desperate effort to continue this devastating way of life.
Nearly a third of the world lacks safe drinking water, though I have rarely been without. In a red rock canyon in Utah, backpacking on a week-long wilderness training in my mid-twenties, it was challenging to find water. Eight of us often scouted for hours. Some days all we could find to drink was muddy water. We collected rain water and were grateful when we found a spring.
Now water is scarce, and the demand for it is growing. Globally, water use has risen at more than twice the rate of population growth and is still increasing. Ninety percent of water used by humans is used by industry and agriculture, and when groundwater is overused, lakes, streams and rivers dry up, destroying ecosystems and species, harming human health, and impacting food security. Life on Earth will not survive without water.
In the Navajo Nation in Arizona, Utah, and New Mexico, a third of houses lack running water, and in some towns, it is ninety percent. Peabody Energy Corporation, the largest coal producer and a Fortune 500 company, pulled so much water from the Navajo aquifer before closing its mining operation that many wells and springs have run dry. Residents now have to drive 17 miles to wait in line for an hour at a communal well, just to get their drinking water.
Worldwide, the majority of drinkable water comes from underground reservoirs called aquifers. Aquifers feed streams, lakes, and rivers, but their waters are finite. Large aquifers exist beneath deserts, but these were created eons ago in wetter times. Expert hydrologists say that like oil, once the “fossil” waters of ancient reservoirs are mined, they are gone forever.
Peabody’s Black Mesa Mine extracted, pulverized, and mixed coal with water drawn from the Navajo aquifer to form a slurry. This was sent along a 273-mile-long pipeline to the Mojave Generating Station in Laughlin, Nevada, to power Los Angeles. Every year, the mine extracted 1.4 billion gallons (4,000+ acre feet) of water from the aquifer, an estimated 45 billion gallons (130,000+ acre feet) in all.
Pumping out an aquifer draws down the water level and empties it forever. Water quality deteriorates and springs and soil dry out. Agricultural irrigation and oil and coal extraction are the biggest users of waters from aquifers in the U.S. Some predict that the Ogallala aquifer, once stretching beneath five mid-western states, may be able to replenish after six thousand years of rainfall.
Rain is the most accurate measure of available water in a region, yet over-pumping water beyond its capacity to refill is widespread in the western U.S. and around the world. The Middle East ran out of water years ago—it was the first major region in the world to do so. Studies predict that two thirds of the world’s population are at risk of water shortages by 2025. As ground water levels fall, lakes, rivers, and streams are depleted, and the land, fish, trees, and animals die, leaving a barren desert.
Mining in the Great Basin
The skyrocketing demand for lithium, one of the minerals needed for the production of electric cars, is based on the misperception that green technology helps the planet. Yet, as Argentine professor of thermodynamics and lithium mining expert Dr. Daniel Galli said at a scientific meeting, lithium mining is “really mining mountains of water.” Lithium Americas plans to pump massive amounts of water—up to 1.7 billion gallons (5,200 acre feet) annually—from an aquifer in the Quinn River Valley in Nevada’s Great Basin, the largest desert in the United States.
Thacker Pass, the site of the proposed 1.3 billion dollar open-pit lithium mine, would pump 1,200 acre feet more water per year than Peabody Energy Corporation extracted from the Navajo aquifer. Yet, the Quinn River aquifer is already over-allocated by fifty percent, and more than 10 billion gallons (30,000 acre feet) per year. Nevada is one of the driest states in the nation, and Thacker Pass is only the first of many proposed lithium mines in the state. Multiple active placer claims (7,996) have been located in 18 different hydrographic basins.
Deceit about water fuels these mines. Lithium Americas’ environmental impact assessment is grossly inaccurate, according to hydrologist Dr. Erick Powell. By classifying year-round creeks as “ephemeral” and underreporting the flow rate of 14 springs, Lithium Americas is claiming there is less water in the area than there actually is. This masks the real effects the mine would have—drying up hundreds of square miles of land, drawing down the groundwater level, sucking water from neighboring aquifers—all while claiming its operations would have no effect.
Peabody Energy Corporation’s impact assessment similarly misrepresented how their withdrawals would harm the Navajo aquifer. Peabody Energy used a flawed method to measure the withdrawals, according to former National Science Research Fellow Daniel Higgins. Now Navajo Nation wells require drilling down 2,000–3,000 feet, and the water is depressurized and slow to flow to the surface.
Thacker Pass lithium mine would pump groundwater at a disturbing rate, up to 3,250 gallons per minute. Once used, wastewater would contaminate local groundwater with dangerous heavy metals, including a “plume” of antimony that would last at least 300 years. Lithium Americas plans to dig the mine deeper than the groundwater level and keep it dry by continuously pumping water out, but when the pumping stops, groundwater would seep back in, picking up the toxins.
It hurts me to think about this. I imagine water being rapidly extracted from my own body, my bloodstream poisoned. The best tasting water rises to the surface when it is ready, after gestating as long as it likes in the dark Earth. Springs are sacred. When I feel welcome, I place my lips on the earthy surface and fill my mouth with their sweet flavor and vibrant texture.
Mining in the Atacama Desert
Thirteen thousand feet above sea level, the indigenous Atacamas people live in the Atacama Desert, the most arid desert in the world and the driest place on Earth. For millennia, they have used their scarce supply of water and sparse terrain carefully. Their laws and spirituality have always been intertwined with the health and well-being of the land and water. Living in mud-brick homes, pack animals, llama and alpaca, provide them with meat, hide, and wool.
But lithium lies beneath their ancestral land. Since 1980, mining companies have made billions in the Salar de Atacama region in Chile, where lithium mining now consumes sixty-five percent of the water. Some local communities need to have water driven in, and other villagers have been forced to abandon their settlements. There is no longer enough water to graze their animals. Beautiful lagoons hundreds of flamingos call home have gone dry. The birds have disappeared, and the ground is hard and cracked.
In addition to the Thacker Pass mine proposal, Lithium Americas has a mine in the Atacama Desert, a joint Canadian-Chilean venture named Minera Exar in the Cauchari-Olaroz basin in Jujuy, Argentina. Digging for lithium began in Jujuy in 2015, and there is already irreversible damage, according to a 2018 hydrology report. Watering holes have gone dry, and indigenous leaders are scared that soon there will be nothing left.
Even more water is needed to mine the traces of lithium found in brine than in an open-pit mine. At the Sales de Jujuy plant, the wells pump at a rate of more than two million gallons per day, even though this region receives less than four inches of rain a year. Pumping water from brine aquifers decreases the amount of fresh groundwater. Freshwater refills the spaces emptied by brine pumping and is irreversibly mixed with brine and salinized.
The Sanctity of Water
As a river guide, I live close to water. Swallowed by its wild beauty, I am restored to a healthier existence. Far from roads, cars, and cities, I watch water swirl around rocks or ripple over sand. I merge with its generous flow, floating through mountains, forest, or canyon. Rivers teach me how to listen to the currents—whether they cascade in a playful bubble, swell in a loud rush, or ebb in a gentle silence—for clues about what lies ahead.
The indigenous Atacamas peoples understand that water is sacred and have purposefully protected it for centuries. Rather than looking at how nature can be used, our culture needs to emulate the Atacamas peoples and develop the capacity to consider its obligations around water. Instead of electric cars, what we need is an ethical approach to our relationship with the land. Honoring the rights of water, species, and ecosystems is the foundation of a sustainable society. Decisions can be made based on knowledge of the land, weather patterns, and messages from nature.
For millennia, indigenous peoples have perceived water, animals, and mountains as sentient. If humans today could recognize their intelligence, perhaps they would understand that underground reservoirs have a value and purpose, beyond humans. When I enter a cave, I am walking into a living being. My eyes adjust to the dark. Pressing my hand against the wall, I steady myself on the uneven ground, hidden by varying amounts of water. Pausing, I listen to a soft dripping noise, echoing like a heartbeat as dew slides off the rocks. I can almost hear the cave breathing.
The life-giving waters of aquifers keep everything alive, but live unseen under the ground. As a soul guide, I invite people to be nourished by the visions of their dreams, a parallel world that is also seemingly invisible. Our dominant culture dismisses the value of these perceptions, just as it usurps water by disregarding natural cycles. Yet to create a sustainable world, humans need to be able to listen to nature and their dreams. The depths of our souls are inextricably linked to the ancient waters that flow underground. Dreams arise like springs from an aquifer, seeding our visionary potential, expanding our consciousness, and revealing other ways to live, radically different than empire.
Water Bearers
I set my backpack down on a high sandstone cliff overlooking a large watering hole. Ten feet below the hole, the red rock canyon drops into a much larger pool. My friend hikes down to it, filling her cookpot with water. She balances it atop her head on the way up, moving her hips to keep the pot steady. Arriving back, she pours the water into the smaller hole from which we drink and returns to the large pool to gather more.
Women in all societies have carried water throughout history. In many rural communities, they still spend much of the day gathering it. Sherri Mitchell of the Penobscot Nation calls women “the water bearers of the Universe.” The cycles in a woman’s body move in relation with the Earth’s tides, guiding them to nourish and protect the waters of Earth. We all need to become water bearers now.
Indigenous peoples, who have always been the Earth’s greatest defenders, protect eighty percent of global diversity, even though they comprise less than five percent of the world’s population. They understand water is sacred, and the world’s groundwater systems must be defended. For six years, indigenous peoples have been fighting to prevent lithium mining in the Salinas Grandes salt flats, in Jujuy, Argentina. Five hundred indigenous people camped on the land with signs: “No to lithium. Yes, to water and life in our territories.”
In February 2021, President Biden signed executive orders supporting the domestic mining of “critical” minerals like lithium, but two lawsuits, one by five Nevada-based conservation groups, have been filed against the Bureau of Land Management for approving the Thacker Pass lithium mine. Environmentalists Max Wilbert and Will Falk are organizing a protest to protect Thacker Pass. Local residents, including Northern Paiute and Western Shoshone peoples, are speaking out, fighting to protect their land and water.
We can see when a river runs dry, but most people are not aware of the invisible, slow-burning disaster happening under the ground. Some say those who oppose lithium mining should give up cell phones. If that is true, perhaps those who favor mines should give up drinking water. Protecting water needs to be at the center of any plan for a sustainable future.
The “fossil water” found in deserts should be used only in emergency, certainly not for mining. Sickened by corporate water grabbing, I support those trying to stop Thacker Pass Lithium mine and aim to join them. The aquifers there have nurtured so many for so long—eagles, pronghorn antelope, mule deer, old-growth sagebrush, hawks, falcons, sage-grouse, and Lahontan cutthroat trout. I pray these sacred wombs of the Earth can live on to nourish all of life.
In her “Letter to Greta Thunberg” series, Katie Singer explains the real ecological impacts of so many modern technologies on which the hope for a bright green (tech) future is based on.
Even when reality is harsh, I prefer it. I’d rather engineers say that my water could be off for three hours than tell me that replacing the valve will take one hour. I prefer knowing whether or not tomatoes come from genetically modified seed. If dyeing denim wreaks ecological hazards, I’d rather not keep ignorant.
The illusion that we’re doing good when we’re actually causing harm is not constructive. With reality, discovering true solutions becomes possible.
As extreme weather events (caused, at least in part, by fossil fuels’ greenhouse gas [GHG] emissions) challenge electrical infrastructures, we need due diligent evaluations that help us adapt to increasingly unpredictable situations—and drastically reduce greenhouse gas emissions and ecological damage. I have a hard time imagining a future without electricity, refrigerators, stoves, washing machines, phones and vehicles. I also know that producing and disposing of manufactured goods ravages the Earth.
Internationally, governments are investing in solar photovoltaics (PVs) because they promise less ecological impacts than other fuel sources. First, I vote for reviewing aspects of solar systems that tend to be overlooked.
Coal-fired power plants commonly provide electricity to smelt silicon for solar panels. Photo credit: Petr Štefek
Hazards of Solar Photovoltaic Power 1. Manufacturing silicon wafers for solar panels depends on fossil fuels, nuclear and/or hydro power. Neither solar nor wind energy can power a smelter, because interrupted delivery of electricity can cause explosions at the factory. Solar PV panels’ silicon wafers are “one of the most highly refined artifacts ever created.”[1] Manufacturing silicon wafers starts with mining quartz; pure carbon (i.e. petroleum coke [an oil byproduct] or charcoal from burning trees without oxygen); and harvesting hard, dense wood, then transporting these substances, often internationally, to a smelter that is kept at 3000F (1648C) for years at a time. Typically, smelters are powered by electricity generated by a combination of coal, natural gas, nuclear and hydro power. The first step in refining the quartz produces metallurgical grade silicon. Manufacturing solar-grade silicon (with only one impurity per million) requires several other energy-intensive, greenhouse gas (GHG) and toxic waste-emitting steps. [2] [3] [4]
2. Manufacturing silicon wafers generates toxic emissions In 2016, New York State’s Department of Environmental Conservation issued Globe Metallurgical Inc. a permit to release, per year: up to 250 tons of carbon monoxide, 10 tons of formaldehyde, 10 tons of hydrogen chloride, 10 tons of lead, 75,000 tons of oxides of nitrogen, 75,000 tons of particulates, 10 tons of polycyclic aromatic hydrocarbons, 40 tons of sulfur dioxide and up to 7 tons of sulfuric acid mist. To clarify, this is the permittable amount of toxins allowed annually for one metallurgical-grade silicon smelter in New York State. [5] Hazardous emissions generated by silicon manufacturing in China (the world’s leading manufacturer of solar PVs) likely has significantly less regulatory limits.
3. PV panels’ coating is toxic PV panels are coated with fluorinated polymers, a kind of Teflon. Teflon films for PV modules contain polytetrafluoroethylene (PTFE) and fluorinated ethylene (FEP). When these chemicals get into drinking water, farming water, food packaging and other common materials, people become exposed. About 97% of Americans have per- and polyfluoroalkyl substances (PFAs) in their blood. These chemicals do not break down in the environment or in the human body, and they can accumulate over time. [6] [7] While the long-term health effects of exposure to PFAs are unknown, studies submitted to the EPA by DuPont (which manufactures them) from 2006 to 2013 show that they caused tumors and reproductive problems in lab animals. Perfluorinated chemicals also increase risk of testicular and kidney cancers, ulcerative colitis (Crohn’s disease), thyroid disease, pregnancy-induced hypertension (pre-eclampsia) and elevated cholesterol. How much PTFEs are used in solar panels? How much leaks during routine operation—and when hailstorms (for example) break a panels’ glass? How much PTFE leaks from panels discarded in landfills? How little PFA is needed to impact health?
4. Manufacturing solar panels generates toxic waste. In California, between 2007 and the first half of 2011, seventeen of the state’s 44 solar-cell manufacturing facilities produced 46.5 million pounds of sludge (semi-solid waste) and contaminated water. California’s hazardous waste facilities received about 97 percent of this waste; more than 1.4 million pounds were transported to facilities in nine other states, adding to solar cells’ carbon footprint. [8]
5. Solar PV panels can disrupt aquatic insects’ reproduction. At least 300 species of aquatic insects (i.e. mayflies, caddis flies, beetles and stoneflies) typically lay their eggs on the surface of water. Birds, frogs and fish rely on these aquatic insects for food. Aquatic insects can mistake solar panels’ shiny dark surfaces for water. When they mate on panels, the insects become vulnerable to predators. When they lay their eggs on the panels’ surface, their efforts to reproduce fail. Covering panels with stripes of white tape or similar markings significantly reduces insect attraction to panels. Such markings can reduce panels’ energy collection by about 1.8 percent. Researchers also recommend not installing solar panels near bodies of water or in the desert, where water is scarce. [9]
Solar PV users may be unaware of their system’s ecological impacts. Photo credit: Vivint Solar from Pexels
6. Unless solar PV users have battery backup (unless they’re off-grid), utilities are obliged to provide them with on-demand power at night and on cloudy days. Most of a utility’s expenses are dedicated not to fuel, but to maintaining infrastructure—substations, power lines, transformers, meters and professional engineers who monitor voltage control and who constantly balance supply of and demand for power. [10] Excess power reserves will increase the frequency of alternating current. When the current’s frequency speeds up, a motor’s timing can be thrown off. Manufacturing systems and household electronics can have shortened life or fail catastrophically. Inadequate reserves of power can result in outages.
The utility’s generator provides a kind of buffer to its power supply and its demands. Rooftop solar systems do not have a buffer.
In California, where grid-dependent rooftop solar has proliferated, utilities sometimes pay nearby states to take their excess power in order to prevent speeding up of their systems’ frequency. [11]
Rooftop solar (and wind turbine) systems have not reduced fossil-fuel-powered utilities. In France, from 2002-2019, while electricity consumption remained stable, a strong increase in solar and wind powered energy (over 100 GW) did not reduce the capacity of power plants fueled by coal, gas, nuclear and hydro. [12]
Comparing GHG emissions generated by different fuel sources shows that solar PV is better than gas and coal, but much worse than nuclear and wind power. A solar PV system’s use of batteries increases total emissions dramatically. Compared to nuclear or fossil fuel plants, PV has little “energy return on energy Invested.” [13]
7. Going off-grid requires batteries, which are toxic. Lead-acid batteries are the least expensive option; they also have a short life and lower depth of discharge (capacity) than other options. Lead is a potent neurotoxin that causes irreparable harm to children’s brains. Internationally, because of discarded lead-acid batteries, one in three children have dangerous lead levels in their blood. [14] Lithium-ion batteries have a longer lifespan and capacity compared to lead acid batteries. However, lithium processing takes water from farmers and poisons waterways. [15] Lithium-ion batteries are expensive and toxic when discarded. Saltwater batteries do not contain heavy metals and can be recycled easily. However, they are relatively untested and not currently manufactured.
8. Huge solar arrays require huge battery electric storage systems (BESS). A $150 million battery storage system can provide 100 MW for, at most, one hour and eighteen minutes. This cannot replace large-scale delivery of electricity. Then, since BESS lithium-ion batteries must be kept cool in summer and warm in winter, they need large heating, ventilation, air conditioning (HVAC) systems. (If the Li-ion battery overheats, the results are catastrophic.) Further, like other batteries, they lose their storage capacity over time and must be replaced—resulting in more extraction, energy and water use, and toxic waste. [16]
9. Solar PV systems cannot sufficiently power energy guzzlers like data centers, access networks, smelters, factories or electric vehicle [EV] charging stations. If French drivers shifted entirely to EVs, the country’s electricity demands would double. To produce this much electricity with low-carbon emissions, new nuclear plants would be the only option. [17] In 2007, Google boldly aimed to develop renewable energy that would generate electricity more cheaply than coal-fired plants can in order to “stave off catastrophic climate change.” Google shut down this initiative in 2011 when their engineers realized that “even if Google and others had led the way toward a wholesale adaptation of renewable energy, that switch would not have resulted in significant reductions of carbon dioxide emissions…. Worldwide, there is no level of investment in renewables that could prevent global warming.” [18]
10. Solar arrays impact farming. When we cover land with solar arrays and wind turbines, we lose plants that can feed us and sequester carbon. [19]
11. Solar PV systems’ inverters “chop” current and cause “dirty” power, which can impact residents’ health. [20]
12. At the end of their usable life, PV panels are hazardous waste. The toxic chemicals in solar panels include cadmium telluride, copper indium selenide, cadmium gallium (di)selenide, copper indium gallium (di)selenide, hexafluoroethane, lead, and polyvinyl fluoride. Silicon tetrachloride, a byproduct of producing crystalline silicon, is also highly toxic. In 2016, The International Renewable Energy Agency (IRENA) estimated that the world had 250,000 metric tons of solar panel waste that year; and by 2050, the amount could reach 78 million metric tons. The Electric Power Research Institute recommends not disposing of solar panels in regular landfills: if modules break, their toxic materials could leach into soil. [21] In short, solar panels do not biodegrade and are difficult to recycle.
To make solar cells more recyclable, Belgian researchers recommend replacing silver contacts with copper ones, reducing the silicon wafers’ (and panels’) thickness, and removing lead from the panels’ electrical connections. [22]
Aerial view of a solar farm. Photo credit: Dsink000
13. Solar farms warm the Earth’s atmosphere.
Only 15% of sunlight absorbed by solar panels becomes electricity; 85% returns to the environment as heat. Re-emitted heat from large-scale solar farms affects regional and global temperatures. Scientists’ modeling shows that covering 20% of the Sahara with solar farms (to power Europe) would raise local desert temperatures by 1.5°C (2.7°F). By covering 50% of the Sahara, the desert’s temperature would increase by 2.5°C (4.5°F). Global temperatures would increase as much as 0.39°C—with polar regions warming more than the tropics, increasing loss of Arctic Sea ice. [23] As governments create “green new deals,” how should they use this modeling?
Other areas need consideration here: dust and dirt that accumulate on panels decreases their efficiency; washing them uses water that might otherwise go to farming. Further, Saharan dust, transported by wind, provides vital nutrients to the Amazon’s plants and the Atlantic Ocean. Solar farms on the Sahara could have other global consequences. [24]
14. Solar PV users may believe that they generate “zero-emitting,” “clean” power without awareness of the GHGs, extractions, smelting, chemicals and cargo shipping involved in manufacturing such systems—or the impacts of their disposal. If our only hope is to live with much less human impact to ecosystems, then how could we decrease solar PVs’ impacts? Could we stop calling solar PV power systems “green” and “carbon-neutral?” If not, why not?
Katie Singer’s writing about nature and technology is available at www.OurWeb.tech/letters/. Her most recent book is An Electronic Silent Spring.
REFERENCES
1. Schwarzburger, Heiko, “The trouble with silicon,” PV Magazine, September 15, 2010.
3. Kato, Kazuhiko, et. al., “Energy Pay-back Time and Life-cycle CO2 Emission of Residential PV Power System with Silicon PV Module,” Progress in Photovoltaics: Research and Applications, John Wiley & Sons, 1998.
4. Gibbs, Jeff and Michael Moore, “Planet of the Humans,” 2019 documentary about the ecological impacts and money behind “renewable” power systems, including solar, wind and biomass. www.planetofthehumans.com
7. Rich, Nathaniel, “The Lawyer Who Became DuPont’s Worst Nightmare,” January 6, 2016. About attorney Robert Bilott’s twenty-year battle against DuPont for contaminating a West Virginia town with unregulated PFOAs. See also Todd Haynes film, “Dark Waters,” 2019.
9. Egri, Adam, Bruce A. Robertson, et al., “Reducing the Maladaptive Attractiveness of Solar Panels to Polarotactic Insects,” Conservation Biology, April, 2010.
10. “Exhibit E to Nevada Assembly Committee on Labor,” Submitted by Shawn M. Elicegui, May 20, 2025, on behalf of NV Energy.
15. Katwala, Amit, “The spiraling environmental cost of our lithium battery addiction,” 8.5.18; https://www.wired.co.uk/article/lithium-batteries-environment-impact. Choi, Hye-Bin, et al., “The impact of anthropogenic inputs on lithium content in river and tap water,” Nature Communications, 2019.