A Beginner’s Guide To Greenwashing

A Beginner’s Guide To Greenwashing

A beginner’s guide to greenwashing and four ways to avoid falling for it

Greenwashing
nito/Shutterstock, CC BY-NC-ND

Lala Rukh, University of Galway

Growing up in a Pakistani village in the 2000s, sustainability was embedded throughout my daily life. My family has always been cautious of wasting energy, gas or water because these resources are expensive. We grew most of our own vegetables and reared poultry for eggs. By just buying a few essential groceries from the nearby market, we produced very little household waste. Food scraps were fed to our cattle, and we’d save any plastic bags to reuse.

But now, living in Ireland, I feel anxious about society’s increasing plastic footprint and level of overconsumption.

The United Nations defines sustainability as “meeting the needs of the present without compromising the ability of future generations to meet their own needs.”. But so much complicated jargon makes it difficult to distinguish between environmentally ethical practices and mere feelgood marketing.

Some major brands and big corporations promote and package their products as more eco-friendly than they actually are. In 1986, American environmentalist Jay Westerveld coined the term “greenwash” to describe hotels that were promoting towel reuse as an environmentally conscious initiative, when it was really a cost-cutting measure.

Today, greenwashing encompasses a wide range of deceptive marketing tactics, but as consumers, we have the right to know the true environmental impact of our choices. Here are four ways to avoid being duped by greenwashing:

1. Look for marketing buzzwords

Look out for feelgood marketing and buzzwords such as “natural”, “eco-friendly”, “sustainable” and “green”. These labels can be open-ended, without a technical definition or any legal requirements. For example, the term “compostable” differs from “home compostable” – it requires industrial processing with high temperatures, even though it may sound eco-friendly.

There’s no legal time limit for calling something degradable – everything breaks up eventually, even plastic bags.

white background, six brown labels with eco images on eg footprint, recycling triangle, flower
Many terms on so-called eco-labels aren’t regulated.
MisterStock, CC BY-NC-ND

There is no such thing as a totally carbon-free product. Every process, every product, every supply chain has carbon emissions associated with it. So any marketing language should mirror the impact of that particular product or brand.

Some brands use cute-looking emojis and caricatures with buzzwords that look similar to some certifications, but in reality, they are meaningless. To address this, the European Commission recently proposed a directive, requiring companies to back up green claims with evidence, focusing on life-cycle and environmental footprint methods, setting minimum requirements for sustainability labels and logos.

2. Verify any claims

Pause before you purchase anything and demand evidence to back up any claims that a brand makes.

Either look for statistics that prove the claims on a company’s website, third-party certification or ask the brand and supplier for the evidence of their claims. If they are truly eco-conscious, they’ll proudly share the real numbers.

3. Look for certification

Legit third-party certifications like the EU-mandated energy labels provide valuable and true information about the energy efficiency of household electric appliances. Don’t fall for random stickers that give the impression of formal validation but don’t require any specific criteria to be met.

Greenwashing
The Mobius loop.
Askhat Gilyakhov / Alamy Stock Vector, CC BY-NC-ND

Plastic recycling labels can be confusing too. The triangle with three chasing arrows, called the Mobius Loop is a universal symbol that means “recyclable”. But, the Mobius Loop with a number in it indicates the type of plastic (there are seven different types) – not that the packaging is recyclable.

Even if technically recyclable, plastic needs to be dry, clean and separated before being recycled. One plastic water bottle may contain three or four different types of plastics, from the bottle itself to the cap and label. Together as a composite, some can be difficult to recycle.

Tthe new tethered bottle caps are mandated by the EU to prevent litter, but they still don’t make recycling any easier.

4. Take a big picture view

Some companies genuinely care. For 35 years, outdoor clothing company Patagonia has pledged 1% of sales to conservation. More than US$89 million (£69 million) has been donated to environmental groups globally through its 1% for the Planet initiative. Cosmetics retailer Lush is working hard to close the loop by limiting water consumption and preventing as much packaging waste as possible.

Investigate the brand’s overall effort to be transparent and environmentally friendly, rather than just looking at one product. If companies aren’t setting clear targets, sharing their progress and being open with their customers, switch to brands that do provide the evidence, listen to their customers and respond.

As paying customers, we have a right to know the environmental footprint of the products and services we’re buying.


Lala Rukh, Doctoral Researcher in Energy, University of Galway

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Photo by Brian Yurasits on Unsplash

Questioning Lithium-ion Batteries

Questioning Lithium-ion Batteries

Editor’s note: When a hurricane like Helene or Milton ravages coastal communities, already-strained first responders face a novel, and growing, threat: the lithium-ion batteries that power electric vehicles, store PV solar, e-bikes, and countless gadgets. When exposed to the salty water of a storm surge or extreme heat, they are at risk of bursting into flames — and taking an entire house with them.

“Anything that’s lithium-ion and exposed to salt water can have an issue,” said Bill Morelli, the fire chief in Seminole, Florida, and the bigger the battery, the greater the threat. That’s what makes EVs especially hazardous. “[The problem] has expanded as they continue to be more and more popular.”

Also petrochemical-based building materials and furnishings have replaced traditional wood, fabric and metal materials in homes worldwide. But plastics are more flammable and release persistent toxic chemicals when burned or exposed to high heat. Over the last 25 years, wildfires have multiplied and intensified due to global warming, and often now jump the wildland-urban interface, burning whole neighborhoods and leaving behind a dangerous toxic home legacy. After the Camp Fire razed Paradise, California, in 2018, water utilities found high levels of volatile organic compounds in drinking water. Similar issues have arisen in places like Boulder County, Colorado, where the Marshall Fire destroyed nearly 1,000 structures in 2021,

“The extreme heatwaves of 2023, which fueled huge wildfires, and severe droughts, also undermined the land’s capacity to soak up atmospheric carbon. This diminished carbon uptake drove atmospheric carbon dioxide levels to new highs, intensifying concerns about accelerating climate change. Widespread wildfires across Canada and droughts in the Amazon in 2023 released about the same amount of carbon to the atmosphere as North America’s total fossil fuel emissions, underscoring the severe impact of climate change on natural ecosystems.”

The multibillion-dollar chemicals company 3M told customers it sold its firefighting foams to as safe and biodegradable, while having knowledge that they contained toxic per- and polyfluoroalkyl substances (PFAS), according to newly uncovered documents, reported The Guardian. A team of academic researchers, lawyers and journalists from 16 European countries has exposed a huge lobbying campaign aimed at gutting a proposed EU-wide restriction on the use of “forever chemicals”.

The following story talks about the Moss Landing fire but there was also a fire that erupted in southeast Missouri at one of world’s largest lithium-ion battery recycling facilities and also in Madison County, Illinois.


 

By KATIE SINGER / Katie Singer’s Substack

While finishing this Substack, I learned about the explosive fire that started January 16, 2025 at Moss Landing, California’s Vistra Power Plant, the world’s largest battery energy storage facility, housing tens of thousands of lithium-ion batteries. By Friday, January 17, flames had consumed 75% of the facility’s batteries. Toxic fumes from the batteries’ chemicals forced evacuations and closed roads around Moss Landing. Because the highly-charged batteries can’t be extinguished—they must burn out—this fire and its toxins could burn for a long time.

Batteries’ toxic gases can cause respiratory, skin and eye problems. Toxic gases from burning lithium-ion batteries can contaminate wildlife such as Monterey Bay’s unique tidal wetland.

This is the fourth fire at the Moss Landing battery storage facility.

Referring to last week’s explosive fire, County Supervisor Glenn Church said, “This is a wake-up call for the industry. If we’re going to move ahead with sustainable energy, we need a safe battery system in place. State of the art safety protocols did not work.”

County officials lifted evacuation orders Friday evening after the U.S. Environmental Protection Agency found “no threat to human health.” Still, Highway 1 remains closed, and health officials in Monterey, San Venito and Santa Cruz counties advise residents to stay indoors, turn off ventilation systems and limit outdoor exposure. Www.ksbw.com provides live updates.

WILDFIRES AND URBAN FIRES

When the Los Angeles fires started January 7, I learned about the differences between wild and urban fires. Wildfires occur in forests or grasslands, fueled by trees or other vegetation. More than 80% of wildfires start by human activities like abandoned cigarettes, campfires and barbeques. Wildfire smoke can penetrate deep into peoples’ lungs and aggravate heart and lung diseases.

Urban fires—conflagrations—are fueled by combustible construction materials including wood framing, plastics, metals, furniture fabric and solar panels (hazardous waste). Because of houses’ flammable contents, urban fires burn extremely hot and generate toxic emissions. High winds and insufficient water supply intensify urban fires. Burning houses emit chemical toxins and generate more heat than burning trees (which, if alive, hold fire-resistant moisture).

While powerlines and transformers are designed to withstand wind speeds up to 56mph, some gusts in the LA fires exceeded 100mph.

INCLUDING LITHIUM-ION BATTERIES IN FIRE RISK ASSESSMENTS

Here’s a question: How do lithium-ion batteries contribute to urban fires?

Like much of the world, Southern California is now dotted with lithium batteries at every telecom cell site (for backup in the event of a power outage); in every electric vehicle, e-bike and hoverboard; in every EV charger; in laptops, tablets and smartphones—and their chargers; in smart utility meters on grid-connected houses and buildings; in off-grid rooftop solar PV systems’ batteries; in battery energy storage systems (BESS) for large-scale solar facilities and wind facilities.

That’s a lot of lithium-ion batteries.

If a lithium-ion battery’s chemicals heat up and can’t cool down, the battery can catch fire, explode and release toxic, flammable gases such as fluoride. Like trick birthday candles, EV batteries (holding energy to burn for as much as 24 hours) can re-ignite. Lithium-ion batteries’ temperature can quickly reach 932 degrees Fahrenheit (500 degrees Celsius). They can burn as high as 2200F (1100C). An EV fire burns at 5,000 degrees F (2,760 C). A gas-powered vehicle fire burns at 1,500 F (815C).

Because of the increase and severity of battery storage systems’ explosions and fires, The National Fire Protection Association is considering an update to its Battery Safety Code. These systems should be designed to prevent explosions—not just fires.

 

RECOGNIZING THE FIRE RISKS CAUSED BY DRY AND COVERED SOIL

LA has endured eight months without rain. Drought increases fire risk.

Do fire risks also increase when soil can’t absorb and hold water? Soil’s ability to absorb and hold water is one of the Earth’s main cooling mechanisms. How do we reconcile this when we’ve covered land with paved roads, houses, malls, parking lots, data centers and battery storage facilities?

How can we re-hydrate a dry region?

REBUILDING QUESTIONS

When rebuilding, what policies will ensure that fire’s toxic emissions (to air, soil and groundwater) will not affect future residents and farmers? Given that Governor Newsom has suspended environmental reviews to speed rebuilding in wildfire zones, what will protect residents in rebuilt areas from toxic exposures?

What materials and practices prevent new fires?

What measures would prevent lithium-ion batteries (at cell sites, in electric vehicles, smart meters, laptops, tablets, smartphones, rooftop solar system batteries, etc.) from catching fire and exploding? Could we prohibit lithium-ion batteries until they’re proven safe and ecologically sound from cradle-to-grave? New Hampshire legislators have introduced an ACT that would allow towns to decline 5G cell sites.

How could rebuilding Los Angeles respect the Earth? To reduce fire risk, support healthy water cycling and increase locally-produced food, could rebuilding policies encourage healthy soil structure?

For inspired building, see Mully (about a Kenyan who has fed, housed and educated 27,000+ orphans and turned dry dirt into an oasis); The Power of Community (about Cuba after the USSR quit supplying it with oil, overnight, in 1989); and Alpha Lo & Didi Pershouse speaking about rehydrating Los Angeles.

To provide much-needed affordable housing in LA and elsewhere, would any mansion-owners turn their homes into multiple-family units?

RECONSIDER “SUSTAINABILITY”

Many communities and corporations aim to sustain themselves by installing battery energy storage systems and solar facilities. According to the California Energy Commission, since 2020, battery storage in the state has increased sevenfold—from 1,474 megawatts in 2020 to 10,383 megawatts by mid-2024. One megawatt can power 750 homes.

In New Mexico, AES Corporation has proposed building a 96 MW, 700-acre solar facility with 45 MWs/39 battery containers in Santa Fe County. (Each battery is about 39’ x 10’ x 8’.) Santa Fe’s Green Chamber of Commerce, the Sierra Club’s Rio Grande Chapter, the Global Warming Express and 350 Santa Fe support AES’s project.

Opponents of AES’s facility include the San Marcos Association, the Clean Energy Coalition and Ashley Schannauer (formerly a hearing officer for the state’s Public Regulatory Commission).

I frequently hear people call battery storage, solar PVs, industrial wind and EVs “sustainable.” Looked at from their cradles to their graves, this is simply not true. Mining lithium ravages ecosystems. So does burning coal and trees to make solar panels’ silicon. Refining lithium and making silicon electrically-conductive takes millions of gallons of water, daily. At end-of-life, these technologies are hazardous waste.

Meanwhile, I have many friends with rooftop solar systems and EVs. I would welcome forums about reducing our overall use of energy, water, extractions and international supply chains. I would welcome learning how to live with less.

As survivors of the LA fires, battery fires, Hurricane Helene, Israel’s decimation of Gaza and other catastrophes rebuild, what would communities look like if we considered our technologies’ impacts to ecosystems and public health from their cradles to graves? What would our communities look like if we think, “Ecosystems and public health first?”

 

FOR MORE INFO:

Jeff Gibbs and Michael Moore’s documentary, “Planet of the Humans

Julia Barnes’ film, “Bright Green Lies

https://www.watchduty.org

alerts and monitors wildfires in the American West.

https//mutualaidla.org

lists mutual aid organizations.

Science and the California Wildfires with George Wuerthner

Sandoval County, NM, also faces a large-scale solar project with 220 MW of solar panels and 110 MW of battery storage.

New Mexicans for Responsible Renewables supports New Mexico’s avoiding unnecessary risks to our communities and further destruction to our environment.

THE POWER GRID

Discovering Power’s Traps: a primer for electricity users

Fire hazards at the battery storage system coming near you

SOS: San Onofre Syndrome: Nuclear Power’s Legacy Note: The documentary starts 2025 with screenings around California, Eugene, Madrid and on Amazon Prime. See also “Risks of geologic disposal of weapons plutonium.”

A Time-Sensitive Invitation to Protect New Mexico from Smart Meters’ Fire Hazards

SOLAR PVs

21 questions for solar PV explorers

Call Me a NIMBY

Do I report what I’ve learned about solar PVs—or live with it privately?

E-VEHICLES

How/can we protect the Earth when we need a car?

Who’s in charge of EV chargers?

When Land I Love Holds Lithium: Max Wilbert on Thacker Pass, Nevada

Banner Moss Landing battery plant fire, January 16-17, 2025.

MY MISTAKE While writing article I got help from a physicist of fire ignition, an electrical engineer, a forensic fire investigator and an electrician. I also went to the Internet, which informed me that in the event of an outage, cell sites’ power is backed up by lithium-ion batteries. This isn’t totally correct. While 5G small cells primarily use lithium ion batteries, larger cell towers usually backup with lead-acid batteries. I apologize for this error.

Renewables Won’t Save Us From Climate Catastrophe

Renewables Won’t Save Us From Climate Catastrophe

By GERRY MCGOVERN, SUE BRANFORD / Mongabay

In 2022, U.N. Secretary-General António Guterres declared that the “lifeline of renewable energy can steer [the] world out of climate crisis.” In saying so, he echoed a popular and tantalizing idea: that, if we hurry, we can erase the climate emergency with widespread adoption of renewables in the form of solar panels, wind farms, electric vehicles and more.

But things aren’t that simple, and analysts increasingly question the naïve assumption that renewables are a silver bullet.

That’s partly because the rapid transition to a global energy and transport system powered by “clean” energy brings with it a host of new (and old) environmental problems. To begin with, stepping up solar, wind and EV production requires many more minerals and materials in the short term than do their already well-established fossil fuel counterparts, while also creating a major carbon footprint.

Also, the quicker we transition away from fossil fuel tech to renewable tech, the greater the quantity of materials needed up front, and the higher the immediate carbon and numerous other environmental costs. But this shift is now happening extremely rapidly, as companies, governments and consumers try to turn away from oil, coal and natural gas.

“Renewables are moving faster than national governments can set targets,” declared International Energy Agency executive director Fatih Birol. In its “Renewables 2024” report, the IEA estimates the world will add more than 5,500 gigawatts of renewable energy capacity between 2024 and 2030 — almost three times the increase between 2017 and 2023.

But this triumph hasn’t brought with it a simultaneous slashing in global emissions, as hoped. In fact, 2023 saw humanity’s biggest annual carbon releases ever, totaling 37.4 billion metric tons, which has led experts to ask: What’s going on?

The introduction of coal in 19th century England — an innovative, efficient, cheap new source of energy — made some wealthy, produced an onslaught of consumer products, and was a public health and environmental disaster. Contemplating the coal boom, economist William Stanley Jevons developed the Jevons paradox. Image via Wikimedia Commons (Public domain).

Jevons paradox meets limits to growth

Some analysts suggest the source of this baffling contradiction regarding record modern energy consumption can be found in the clamor by businesses and consumers for more, better, cheaper technological innovations, an idea summed up by a 160-year-old economic theory: the Jevons paradox.

Postulated by 19th-century English economist William Stanley Jevons, it states that, “in the long term, an increase in efficiency in resource use [via a new technology] will generate an increase in resource consumption rather than a decrease.” Put simply, the more efficient (and hence cheaper) energy is, the greater society’s overall production and economic growth will be — with that increased production then requiring still more energy consumption.

Writing in 1865, Jevons argued that the energy transition from horses to coal decreased the amount of work for any given task (along with the cost), which led to soaring resource consumption. For proof, he pointed to the coal-powered explosion in technological innovation and use occurring in the 19th century.

Applied to our current predicament, the Jevons paradox challenges and undermines tech prognosticators’ rosy forecasts for sustainable development.

Here’s a look at the paradox in action: The fastest-expanding renewable energy sector today is solar photovoltaics (PVs), expected to account for 80% of renewables growth in the coming years.

In many parts of the world, large solar power plants are being built, while companies and households rapidly add rooftop solar panels. At the head of the pack is China, with its astounding solar installation rate (216.9 GW in 2023).

But paradoxically, as China cranks out cheap solar panels for domestic use and export, it is also building six times more coal power plants every year than the rest of the world combined, though it still expects almost half its electricity generation to come from renewables, mainly solar, by 2028.

This astronomical growth at first seems like proof of the Jevons paradox at work, but there’s an unexpected twist: Why is China (and much of the rest of the world) still voraciously consuming outmoded, less-efficient fossil fuel tech, while also gobbling up renewables?

One reason is that coal and oil are seen as reliable, not subject to the same problems that renewables can face during periods of intense drought or violent weather — problems caused by the very climate change that renewables are intended to mitigate.

Another major reason is that fossil fuels continue being relatively cheap. That’s because they’re supported by vast government subsidies (totaling more than $1 trillion annually). So in a sense, we are experiencing a quadruple Jevons paradox, with oil, coal, natural gas and renewables acting like four cost-efficient horses, all racing to produce more cheap stuff for an exploding world consumer economy. But this growth comes with terrible environmental and social harm.

Exponential growth with a horrific cost

Back to the solar example: China is selling its cheap solar installations all over the globe, and by 2030 could be responsible for half the new capacity of renewables installed planetwide. But the environmental cost of satisfying that escalating demand is rippling out across the world.

It has spurred a huge mining boom. Desperate to satisfy fast-rising demand, companies and nations are mining in ever more inaccessible areas, which costs more in dollars, carbon emissions, biodiversity losses, land-use change, freshwater use, ocean acidification, plus land, water and air pollution. So, just as with fossil fuels, the rush to renewables contributes to the destabilizing of the nine planetary boundaries, of which six are already in the red zone, threatening civilization, humanity and life as we know it.

Mining, it must be remembered, is also still heavily dependent on fossil fuels, so it generates large quantities of greenhouse gases as it provides minerals for the renewables revolution. A January 2023 article in the MIT Technology Review predicts that the mining alone needed to support renewables will produce 29 billion metric tons of CO2 emissions between now and 2050.

Carbon is far from the only problem. Renewables also require a wide range of often difficult-to-get-at minerals, including nickel, graphite, copper, rare earths, lithium and cobalt. This means “paradoxically, extracting this large amount of raw materials [for renewables] will require the development of new mines with a larger overall environmental footprint,” says the MIT article.

There are other problems too. Every year 14,000 football fields of forests are cut down in Myanmar to create cheap charcoal for China’s smelting industries to process silicon, a key component of solar panels and of computers.

This rapid development in rural places also comes with harsh human costs: Mongabay has reported extensively on how Indigenous people, traditional communities and fragile but biodiverse ecosystems are paying the price for the world’s mineral demand in the transition to renewable energy.

There is strong evidence that the Uighur minority is being used as slave labor to build solar panels in China. There are also reports that workers are dying in Chinese factories in Indonesia that are producing nickel, a key metal for solar panels and batteries.

The manufacture of smaller and faster electronic devices is leading to ever more e-waste, the fastest growing waste stream in the world and by far the most toxic. Image by Montgomery County Planning Commission via Flickr (CC BY-SA 2.0).

The search for solutions

“We really need to come up with solutions that get us the material that we need sustainably, and time is very short,” said Demetrios Papathanasiou, global director for energy and extractives at the World Bank.

One popularly touted solution argues that the impacts imposed by the rapid move to renewable energy can be greatly reduced with enhanced recycling. That argument goes this way: The minerals needed to make solar panels and build windfarms and electric vehicles only need to be sourced once. Unlike fossil fuels, renewables produce energy year after year. And the original materials used to make them can be recycled again and again.

But there are problems with this position.

First, while EV batteries, for example, may be relatively long lasting, they only provide the energy for new electric vehicles that still require steel, plastics, tires and much more to put people in the Global North and increasingly the Global South on the road. Those cars will wear out, with tires, electronics, plastics and batteries costly to recycle.

The solar energy industry says that “solar panels have an expected lifespan between 25-30 years,” and often much longer. But just because a product can last longer, does that mean people won’t clamor for newer, better ones?

In developed nations, for example, the speed at which technology is evolving mitigates against the use of panels for their full lifespan. A 2021 article in the Harvard Business Review found that, after 10 years or even sooner, consumers will likely dispose of their first solar panels, to install newer, more efficient ones. Again, the Jevons paradox rears its anti-utopian head.

Also, as solar proliferates in poorer nations, so too will the devices that solar can drive. As solar expands in the developing world, sales for cheap solar lanterns and small solar home electric systems are also expanding. An article in the journal Nature Energy calculates that in 2019 alone, more than 35 million solar products were sold, a huge rise from the 200,000 such products sold in 2010.

This expansion brings huge social benefits, as it means rural families can use their smartphones to study online at night, watch television, and access the market prices of their crops — all things people in the Global North take for granted.

But, as the article points out, many developing-world solar installations are poor quality and only last a few years: “Many, perhaps even the majority, of solar products sold in the Global South … only have working lives of a couple of years.” The problem is particularly acute in Africa. “Think of those solar panels that charge phones; a lot of them do not work, so people throw them away,” said Natalie Gwatirisa, founder of All For Climate Action, a Zimbabwean youth-led organization that strives to raise awareness on climate change. Gwatirisa calculates that, of the estimated 150 million solar products that have reached Africa since 2010, almost 75% have stopped working.

And as Americans familiar with designed obsolescence know, people will want replacements: That means more solar panels, cellphones, computers, TVs, and much more e-waste.

Another disturbing side to the solar boom is the unbridled growth of e-waste, much of it toxic. Gwatirisa cautions: “Africa should not just open its hand and receive [anything] from China because this is definitely going to lead to another landfill in Africa.”

The developed world also faces an e-waste glut. Solar panels require specialized labor to recycle and there is little financial incentive to do so. While panels contain small amounts of valuable minerals such as silver, they’re mostly made of glass, an extremely low-value material. While it costs $20-$30 to recycle a panel, it only costs $1-$2 to bury it in a landfill. And the PV industry itself admits that ‘the solar industry cannot claim to be a “clean” energy source if it leaves a trail of hazardous waste.’

renewables

Renewables are rapidly growing, producing a bigger share of global energy. But electricity demand is also soaring, as unforeseen new energy-guzzling innovations are introduced. For example, an artificial intelligence internet search is orders of magnitude more energy-intensive than a traditional Google search, and requires new power generation sources. Pictured is the Three Mile Island Nuclear Power Station, infamous for a 1979 partial meltdown. The facility is soon to reopen to support AI operations. Image courtesy of the U.S. Nuclear Regulatory Commission.

Solving the wrong problem

Ultimately, say some analysts, we may be trying to solve the wrong problem. Humanity is not experiencing an energy production problem, they say. Instead, we have an energy consumption problem. Thus, the key to reducing environmental harm is to radically reduce energy demand. But that can likely only be done through stationary — or, better still, decreased — consumption.

However, it’s hard to imagine modern consumers not rushing out to buy the next generation of consumer electronics including even smarter smartphones, which demand more and more energy and materials to operate (think global internet data centers). And it’s also hard to imagine industry not rushing to update its ever more innovative electronic product lines (think AI).

A decline in energy demand is far from happening. The U.S. government says it expects global energy consumption to increase by almost 50% by 2050, as compared with 2020. And much of that energy will be used to make new stuff, all of which increases resource demand and increases our likelihood of further overshooting already overshot planetary boundaries and crashing overstressed Earth systems.

One essential step toward sustainability is the circular economy, say renewable energy advocates. But, as with so much else, every year we somehow go in the opposite direction. Our current economic system is becoming more and more linear, built on a model of extracting more raw materials from nature, turning them into more innovative products, and then discarding it all as waste.

Currently, only 7.2% of used materials are cycled back into our economies after use. This puts an overwhelming burden on the environment and contributes to the climate, biodiversity and pollution crises.

If a circular economy could be developed by recycling all the materials used in renewables, it would significantly reduce the constant need to mine and source new ones. But, while efficient recycling will undoubtedly help, it also has limitations.

renewables

The 2023 planetary boundaries update shows six boundary safe limits transgressed: climate change (CO2 concentration and radiative forcing), biosphere integrity (genetic and functional), land-system change, freshwater change (blue water use and green water), biogeochemical flows (nitrogen and phosphorus), and novel entities pollution (including thousands of synthetic chemicals, heavy metals, radioactive materials, and more). The ocean acidification boundary is very near transgression. Only the atmospheric aerosol pollution and stratospheric ozone depletion boundaries are still well outside the red danger zone. Image courtesy of Azote for Stockholm Resilience Centre, based on analysis in Richardson et al. 2023 (CC BY-NC-ND 3.0).

The future

Tom Murphy, a professor emeritus of the departments of physics and astronomy and astrophysics at the University of California, San Diego, became so concerned about the world’s future, he shifted his career focus to energy.

While initially a big promoter of renewables, having built his own solar panels back in 2008, he has recently turned skeptical. Panels “need constant replacement every two or three decades ad infinitum,” he told Mongabay. “Recycling is not a magic wand. It doesn’t pull you out of the need for mining. This is because recycling is not 100% efficient and never will be. In the laboratory maybe, but not in the real world. You’re going to have this continual bleed of materials out of the system.”

Yet another renewables problem is that sustainable energy is often siloed: It is nearly always talked about only in the context of reducing greenhouse gas emissions. Rarely are the total long-term supply chain costs to the environment and society calculated.

Reducing CO2 is clearly a vital goal, but not the only critical one, says Earth system scientist Johan Rockström, joint director of the Potsdam Institute for Climate Impact Research in Germany, and who (with an international team of scientists), developed the planetary boundaries framework.

It is undeniably important to reduce greenhouse emissions by half over the next seven years in order to reach net zero by 2050, he says. But this will be difficult to achieve, for it means “cutting emissions by 7.5% a year, which is an exponential decline.”

And even if we achieve such radical reductions, it will not solve the environmental crisis, warns Rockström. That’s because radical emission reductions only tackle the climate change boundary. A recent scientific paper, to which he contributed, warns that “six of the nine boundaries are transgressed, suggesting that Earth is now well outside of the safe operating space for humanity.”

Rockström in an exclusive interview told Mongabay that, at the same time as we vigorously combat global warming, “We also need to come back into the safe space for pollutants, nitrogen, phosphorus, land, biodiversity,” and more. This means that our efforts to repair the climate must also relieve stresses on these other boundaries, not destabilize them further.

Murphy says he believes this can’t be achieved. He says that modernity — the term he uses to delineate the period of human domination of the biosphere — cannot be made compatible with the protection of the biological world.

To make his point, he emphasizes an obvious flaw in renewables: they are not renewable. “I can’t see how we can [protect the biosphere] and retain a flow of nonrenewable finite resources, which is what our economic system requires.” He continues: “We are many orders of magnitude, 4 or 5 orders of magnitude, away from being at a sustainable scale. I like Rockström’s idea that we have boundaries, but I think his assessment of how far we have exceeded those boundaries is completely wrong.”

Murphy says he believes modernity has unleashed a sixth mass extinction, and it is too late to stop it. Modernity, he says, was unsustainable from the beginning: “Our brains can’t conceive of the degree of interconnectedness in the living world we’re part of. So the activities we started carrying out, even agriculture, don’t have a sustainable foundation. The minerals and materials we use are foreign to the living world and we dig them up and spew them out. They end up all over the place, even in our bodies at this point, [we now have] microplastics. This is hurting not just us, but the whole living world on which we depend.”

Like Murphy, Rockström says he is pessimistic about the level of action now seen globally, but he doesn’t think we should give up. “We have the responsibility to continue even if we have a headwind.” What is extremely frustrating, he says, is that today we have the answers: “We know what we need to do. That’s quite remarkable. Years back I could not have said that. We have solutions to scale down our use of coal, oil and gas. We know how to feed humanity from sustainable food systems, that largely bring us back into the [safe zone for] planetary boundaries, the safe space for nitrogen, phosphorous, freshwater, land and biodiversity.”

One key to making such radical change would be a dramatic, drastic, wholesale shift by governments away from offering trillions of dollars in “perverse subsidies” to environment-destroying fossil fuel and mining technologies, to pumping those subsidies into renewables and the circular economy.

Murphy says he doesn’t believe we should give up either. But he also says he doesn’t believe modernity can be made sustainable. “I suspect that the deteriorating web of life will create cascading failures that end up pulling the power cord to the destructive machine. Only then will some people accept that ecological ignorance — paired with technological capability — has dire consequences.”

But, he adds, this does not mean the human race is doomed.

“The modernity project does not define humanity. Humanity is much older. It’s too late for modernity to succeed but it’s not too late for humanity to succeed.” Here he turns to Indigenous cultures: “For hundreds of thousands of years, they survived and did quite well without causing the sixth mass extinction.”

“There isn’t a single Indigenous package,” he says. “Each is tuned to its [particular local] environment, and they vary a lot. But they have common elements: humility, only taking what you need from the environment, and the belief that we can learn a lot from our ‘our brothers and sisters,’ that is, the other animals and plants who have been around for much longer than us.”

Perhaps surprisingly, Murphy remains cheerful: “Most people are extremely depressed by what I say. I’m not. Not at all. I think it’s exciting to imagine what the future can be. You’re only depressed if you’re in love with modernity. If you’re not, it’s not devastating to imagine it disappearing.”

Banner image: Installation of solar panels. Image by Trinh Trần via Pexels (Public domain).

Materials Used by Humans Weigh More than All Life on Earth

Materials Used by Humans Weigh More than All Life on Earth

By Nick King and Aled Jones / THE CONVERSATION

 

The extent of humanity’s influence on the planet has become increasingly clear in recent years. From the alarming accumulation of plastic waste in our oceans to the sprawling growth of urban areas, the size of our impact is undeniable.

The concept of the “technosphere” aims to reveal the immense scale of our collective impact. The concept was first introduced by US geologist Peter Haff in 2013, but paleobiologist Jan Zalasiewicz has since popularised the term through his work. The technosphere encompasses the vast global output of materials generated by human activities, as well as the associated energy consumption.

Since the agricultural revolution some 12,000 years ago (when we started building cities and accumulating goods), human enterprise has steadily grown. However, our impact has surged dramatically over the past couple of centuries. This surge has since transformed into exponential growth, particularly since 1950.

The technosphere is indicative of how humans are increasingly emerging as a global force on par with the natural systems that shape the world. The transformation that is needed to reduce our impact is therefore equally large. And yet, despite growing awareness, there has been a lack of concrete action to address humanity’s impact on the planet.

To comprehend the sheer magnitude of the technosphere, it is best visualised. So here are four graphs that capture how our collective addiction to “stuff” is progressively clogging up planet Earth.

1. Weighing the technosphere

In 2020, a group of Israeli academics presented a shocking fact: the combined mass of all materials currently utilised by humanity had surpassed the total mass of all living organisms on Earth.

According to their findings, the collective weight of all life on Earth (the biosphere) – ranging from microbes in the soil, to trees and animals on land – stands at 1.12 trillion tonnes. While the mass of materials actively used by humans, including concrete, plastic and asphalt, weighed in at 1.15 trillion tonnes.

The technosphere weighs more than all life on Earth (trillion tonnes):

A graph showing how the technosphere now weighs more than the biosphere.The relative weights of the active technosphere and biosphere. The active technosphere includes materials that are currently in use by human activities. The biosphere includes all living things.
Elhacham et al. (2020), CC BY-NC-ND

This graph offers a glimpse into the immense size of humanity’s footprint. But it likely only scratches the surface.

When accounting for the associated byproducts of the materials used by humans, including waste, ploughed soil and greenhouse gases, the geologist and palaeontologist, Jan Zalasiewicz, calculated that the technosphere expands to a staggering 30 trillion tonnes. This would include a mass of industrially emitted carbon dioxide equivalent to 150,000 Egyptian Pyramids.

2. Changing the Earth

Remarkably, human activity now dwarfs natural processes in changing the surface of our planet. The total global sediment load (erosion) that is transported naturally each year, primarily carried by rivers flowing into ocean basins, is estimated to be around 30 billion tonnes on average. However, this natural process has been overshadowed by the mass of material moved through human action like construction and mining activities.

In fact, the mass of material moved by humans surpassed the natural sediment load in the 1990s and has since grown rapidly. In 2015 alone, humans moved approximately 316 billion tonnes of material – more than ten times the natural sediment load.

Humans change the Earth’s surface more than natural processes (billion tonnes):

A graph showing how more materials are moved by mineral extraction and construction than by natural geological processes.Global movement of material: average annual natural sediment transport (blue), the total mass of things transported by humans in 1994 (purple) and in 2015 (orange).
Cooper at al. (2018) & ScienceDaily (2004), CC BY-NC-ND

3. Transporting ‘stuff’

Our ability to transport fuel and products worldwide has facilitated the trends shown in the preceding graphs. Humans now transport these materials over increasingly vast distances.

Shipping continues to be the primary mechanism for moving materials around the globe. Since 1990, the amount of materials that are shipped around the world has increased more than threefold – and is continuing to grow.

How shipping has grown since 1980 (million tonnes):

A graph showing the growth in shipping capacity from 1980 to 2022.Shipping capacity growth between 1980 and 2022.
World Ocean Review (2010) & UNCTAD (2022), CC BY-NC-ND

4. The growth of plastics

Plastic stands out as one of the main “wonder materials” of the modern world. Due to the sheer speed and scale of the growth in plastic manufacturing and use, plastic is perhaps the metric most representative of the technosphere.

The first forms of plastic emerged in the early 20th century. But its mass production began following the second world war, with an estimated quantity of 2 million tonnes produced in 1950. However, the global production of plastic had increased to approximately 460 million tonnes by 2019.

This surge in plastic manufacturing is a pressing concern. Plastic pollution now causes many negative impacts on both nature and humans. Ocean plastics, for example, can degrade into smaller pieces and be ingested by marine animals.

Plastic manufacturing (million tonnes) has grown exponentially since 1950:

A graph showing how plastic materials production has increased since 1950.Annual plastic production.
Geyer et al. (2017) and OECD (2023), CC BY-NC-ND

Humanity’s escalating impact on planet Earth poses a significant threat to the health and security of people and societies worldwide. But understanding the size of our impact is only one part of the story.

Equally important is the nature, form and location of the different materials that constitute the technosphere. Only then can we understand humanity’s true impact. For example, even the tiniest materials produced by humans, such as nanoplastics, can have significant and far-reaching consequences.

What is clear, though, is that our relentless pursuit of ever-increasing material output is overwhelming our planet.The Conversation

Aled Jones, Professor & Director, Global Sustainability Institute, Anglia Ruskin University and Nick King, Visiting Researcher, Anglia Ruskin University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

 

Banner by Michael Barera, CC BY-SA 4.0, via Wikimedia Commons

Three Summits Aim to Repair a Growing Rift with Nature

Three Summits Aim to Repair a Growing Rift with Nature

Editor’s note: Climate change can not be addressed without stopping the extinction and plastics crisis. Every day, an estimated 137 species of plants, animals and insects go extinct due to deforestation alone. Microplastics have been detected in more than 1,300 animal species, including fish, mammals, birds, and insects. A global plastic treaty will only work if it caps production. Bangladesh is about to implement its existing law regarding plastic usage by strictly banning single-use plastic and, gradually, all possible plastic uses.

Scientific models can never account for all of the interconnected relationships within planetary systems’ boundaries. That is one reason why catastrophe predictions are always being pushed ahead.

There is simply no way the current economic system can persist indefinitely on a finite planet. Unfortunately, COP16’s primary goal is critical to striking a sustainable balance between human civilization and the natural world. That is an impossibility.  We must tackle the underlying causes of biodiversity loss, including fossil fuel extraction, mining, industrial agriculture, intensive livestock farming, large-scale infrastructure projects, and monoculture tree plantations, basically civilization.

It is time to end civilization. Everything that claims existence must lose it; this is the eternal law. Power never gives up power willingly; it can only be broken with struggle. Nature is struggling to survive; we should help it.


 

Wildlife, climate and plastic: how three summits aim to repair a growing rift with nature

Jack Marley, The Conversation

By the end of 2024, nearly 200 nations will have met at three conferences to address three problems: biodiversity loss, climate change and plastic pollution.

Colombia will host talks next week to assess global progress in protecting 30% of all land and water by 2030. Hot on its heels is COP29 in Azerbaijan. Here, countries will revisit the pledge they made last year in Dubai to “transition away” from the fossil fuels driving climate breakdown. And in December, South Korea could see the first global agreement to tackle plastic waste.

Don’t let these separate events fool you, though.

“Climate change, biodiversity loss and resource depletion are not isolated problems,” says biologist Liette Vasseur (Brock University), political scientist Anders Hayden (Dalhousie University) and ecologist Mike Jones (Swedish University of Agricultural Sciences).

“They are part of an interconnected web of crises that demand urgent and comprehensive action.”

Let’s start with the climate.

Earth’s fraying parasol “How hot is it going to get? This is one of the most important and difficult remaining questions about our changing climate,” say two scientists who study climate change, Seth Wynes and H. Damon Matthews at the University of Waterloo and Concordia University respectively.

The answer depends on how sensitive the climate is to greenhouse gases like CO₂ and how much humanity ultimately emits, the pair say. When Wynes and Matthews asked 211 authors of past reports by the Intergovernmental Panel on Climate Change, their average best guess was 2.7°C by 2100.

“We’ve already seen devastating consequences like more flooding, hotter heatwaves and larger wildfires, and we’re only at 1.3°C above pre-industrial levels — less than halfway to 2.7°C,” they say.

There is a third variable that is harder to predict but no less important: the capacity of forests, wetlands and the ocean to continue to offset warming by absorbing the carbon and heat our furnaces and factories have released.

This blue and green carbon pump stalled in 2023, the hottest year on record, amid heatwaves, droughts and fires. The possibility of nature’s carbon storage suddenly collapsing is not priced into the computer models that simulate and project the future climate.

A forest clearing with wildfire smoke in the distance.

Parched forests can emit more carbon than they soak up. Matthew James Ferguson/Shutterstock

However, the ecosystems that buffer human-made warming are clearly struggling. A new report from the World Wildlife Fund (WWF) showed that the average size of monitored populations of vertebrate wildlife (animals with spinal columns – mammals, birds, fish, reptiles and amphibians) has shrunk by 73% since 1970.

Wildlife could become so scarce that ecosystems like the Amazon rainforest degenerate, according to the report.

“More than 90% of tropical trees and shrubs depend on animals to disperse their seeds, for example,” says biodiversity scientist Alexander Lees (Manchester Metropolitan University).

“These ‘biodiversity services’ are crucial.”

The result could be less biodiverse and, importantly for the climate, less carbon-rich habitats.

Plastic in a polar bear’s gut

Threats to wildlife are numerous. One that is growing fast and still poorly understood is plastic.

Bottles, bags, toothbrushes: a rising tide of plastic detritus is choking and snaring wild animals. These larger items eventually degrade into microplastics, tiny fragments that now suffuse the air, soil and water.

“In short, microplastics are widespread, accumulating in the remotest parts of our planet. There is evidence of their toxic effects at every level of biological organisation, from tiny insects at the bottom of the food chain to apex predators,” says Karen Raubenheimer, a senior lecturer in plastic pollution at the University of Wollongong.

Plastic is generally made from fossil fuels, the main agent of climate change. Activists and experts have seized on a similar demand to address both problems: turn off the taps.

In fact, the diagnosis of Costas Velis, an expert in ocean litter at the University of Leeds, sounds similar to what climate scientists say about unrestricted fossil fuel burning:

“Every year without production caps makes the necessary cut to plastic production in future steeper – and our need to use other measures to address the problem greater.”

A production cap hasn’t made it into the negotiating text for a plastic treaty (yet). And while governments pledged to transition away from coal, oil and gas last year, a new report on the world’s energy use shows fossil fuel use declining more slowly than in earlier forecasts – and much more slowly than would be necessary to halt warming at internationally agreed limits. The effort to protect a third of earth’s surface has barely begun.

Each of these summits is concerned with ameliorating the effects of modern societies on nature. Some experts argue for a more radical interpretation.

“Even if 30% of Earth was protected, how effectively would it halt biodiversity loss?” ask political ecologists Bram Büscher (Wageningen University) and Rosaleen Duffy (University of Sheffield).

“The proliferation of protected areas has happened at the same time as the extinction crisis has intensified. Perhaps, without these efforts, things could have been even worse for nature,” they say.

“But an equally valid argument would be that area-based conservation has blinded many to the causes of Earth’s diminishing biodiversity: an expanding economic system that squeezes ecosystems by turning ever more habitat into urban sprawl or farmland, polluting the air and water with ever more toxins and heating the atmosphere with ever more greenhouse gas.”The Conversation

Jack Marley, Environment + Energy Editor, The Conversation

This article is republished from The Conversation under a Creative Commons license. Read the original article.