Interview with award winning Canadian filmmaker Julia Barnes

Interview with award winning Canadian filmmaker Julia Barnes

Just in time for Earth Week, WLRN’s April Neault interviewed Julia Barnes, producer of the new film Bright Green Lies, documenting the fundamental problems with ‘green’ energy.

Award winning Canadian filmmaker Julia Barnes sat down with WLRN member, April Neault, on April 16th to discuss her newest documentary entitled Bright Green Lies, based on the recently released book of the same name. Julia talks about how and why she started making documentaries, her passion for environmentalism and the overlaps between environmentalism and feminism. Check out Julia’s vimeo page for links to watch her award winning documentary Sea of Life, released 5 years ago.

https://vimeo.com/juliabarnes

Also, check out the Bright Green Lies webpage to purchase a ticket to the live streaming of her upcoming documentary: https://www.brightgreenlies.com/

Power Propaganda

Power Propaganda

How Electricity was (and is) Sold to America

By Elisabeth Robson / RadFemBiophilia’s Newsletter

In 1915, General Electric released a silent promotional film titled The Home Electrical offering a glimpse into a gleaming, frictionless future. The film walks viewers through a model electric home: lights flicked on at the wall, meals cooked without fire, laundry cleaned without soap and muscle. A young wife smiles as she moves effortlessly through her day, assisted by gadgets that promised to eliminate drudgery and dirt. This was not a documentary—it was a vision, a fantasy, a sales pitch. At the time, only a small fraction of American households had electricity at all, and nearly 90% of rural families still relied on oil lamps, wood stoves, hand pumps, and washboards. But the message was clear: to be modern was to be electric—and anything less was a kind of failure.

At the dawn of the 20th century, electricity was still a symbol of wealth, not a tool of survival. Most urban households that had it used it only for lighting; refrigeration, electric stoves, or washing machines were luxuries among luxuries. In rural America, most farms and small towns remained off-grid through the 1920s. The electric grid simply didn’t go there. Private utilities, driven by profit, had no interest in building costly infrastructure where it wouldn’t quickly pay off.

And yet, propaganda told a different story. In magazines, World’s Fairs, and promotional pamphlets, electricity was shown as the cornerstone of health, cleanliness, efficiency, and modern womanhood. Electric appliances promised to save time, reduce labor, and lift families—especially women—into the new century. But this future was just out of reach for most people. A growing divide opened up: between those who lived by the rhythms of sun and fire, and those whose lives were quietly reshaped by the flick of a switch.

To live without electricity meant pumping water by hand, chopping and hauling wood for heat and cooking, cleaning clothes with a washboard, and preserving food with salt, smoke, or ice if you had it. It meant darkness after sundown unless you had oil or candles. These were difficult, time-consuming tasks—but also deeply embedded in older, place-based ways of life. People were less dependent on centralized systems. They mended clothes instead of buying new ones, and their food came from the land, not refrigerated trucks.

power

The Delco-Light Way, General Motors Media Archive via Powering American Farms

Yet the narrative of “progress” didn’t tolerate this complexity. By the 1920s and ‘30s, utilities and appliance manufacturers framed non-electric life as backward, dirty, and even unpatriotic. Their message: to be modern was to be electric.

This vision of electrified modernity wasn’t just implicit; it was relentlessly promoted through the dazzling spectacles of world’s fairs and the persuasive language of print advertising. Electricity was framed not only as a technological advance but as a moral and social imperative—a step toward cleanliness, order, and even national progress. At places like the 1904 St. Louis World’s Fair, entire palaces were built to glorify electricity, their glowing facades and futuristic interiors turning utility into fantasy. Meanwhile, companies like Western Electric and General Electric saturated early 20th-century magazines with ads that equated electric appliances with a better life—especially for women. These messages didn’t merely advertise products; they manufactured desire, anxiety, and aspiration. To remain in the dark was no longer quaint—it was backward.

power

At the 1904 St. Louis World’s Fair, the Palace of Electricity was more than an exhibit—it was theater. Illuminated by thousands of electric bulbs, the building itself was proof of concept: a monument to the power and promise of electrification. Inside, visitors encountered displays of the latest electric appliances and power systems, all framed as marvels of human ingenuity. Nearby, the Edison Storage Battery Company showcased innovations in energy storage, while massive dynamos hummed behind glass. The fair suggested not just that electricity was useful, but that it was destiny.

power

Louisiana purchase exposition, St. Louis, 1904. The Library of Congress, via Wikimedia Commons.

This theatrical framing of electricity as progress carried into everyday life through print advertisements. A 1910 issue of Popular Electricity magazine illustrated a physician using electric light in surgery, suggesting that even health depended on electrification. In a 1920 ad for the Hughes Electric Range, a beaming housewife is pictured relaxing while dinner “cooks itself,” thanks to the miracle of electricity. Likewise, a Western Electric ad from the same year explained how to build an “electrical housekeeping” system—one that offered freedom from drudgery, but only if the right appliances were purchased.

power

These messages targeted emotions as much as reason. They played on fears of being left behind, of being an inadequate housewife, of missing out on modernity. Electricity was no longer merely about illumination—it became a symbol of transformation. The more it was portrayed as essential to health, domestic happiness, and national strength, the more it took on the aura of inevitability. A home without electricity was not simply unequipped; it was a failure to progress. Through ads, exhibits, and films, electricity was sold not just as a convenience, but as a moral good.

And so the groundwork was laid—not only for mass electrification, but for the idea that to live well, one must live electrically.

Before the Toaster: Industry was the First Beneficiary of Electrification

 

While early 20th-century advertisements showed electricity as a miracle for housewives, the truth is that industry was the first and most powerful customer of the electric age. Long before homes had refrigerators or lightbulbs, factories were wiring up to electric motors, electric lighting, and eventually, entire assembly lines driven by centralized power. Electricity made manufacturing more flexible, more scalable, and less tied to water or steam—especially important in urban areas where land was tight and labor plentiful.

By the 1890s, industries like textiles, metalworking, paper mills, and mining were early adopters of electricity, replacing steam engines with electric motors that could power individual machines more efficiently. Instead of a single massive steam engine turning shafts and belts throughout a factory, electric motors allowed decentralized control and faster adaptation to different tasks. Electric lighting also extended working hours and improved productivity, particularly in winter months.

power

Electrification offered not just operational efficiency but competitive advantage—and companies knew it. By the 1910s and 1920s, large industrial users began lobbying both utilities and governments for better access to power, lower rates, and more reliable service. Their political and economic influence helped shape early utility regulation and infrastructure investment. Many state utility commissions were lobbied heavily by industrial users, who often negotiated bulk discounts and prioritized service reliability over residential expansion.

This dynamic led to a kind of two-tiered system: electrification for factories was seen as economically essential, while electrification for homes was framed as aspirational—or even optional. In rural areas especially, private utilities refused to extend lines unless they could first serve a profitable industrial customer nearby, like a lumber mill or mine.

Meanwhile, companies that produced electrical equipment—like General Electric, Westinghouse, and Allis-Chalmers—stood to gain enormously. They pushed for industrial electrification through trade shows, engineering conferences, and direct lobbying. Publications like Electrical World and Power magazine ran glowing stories about new industrial applications, highlighting speed, productivity, and cost savings. GE and Westinghouse didn’t just sell light bulbs and home gadgets—they also built turbines, dynamos, and entire systems for industrial-scale customers.

power

power

And industry didn’t just demand electricity—industry helped finance it. Many early power plants, particularly in the Midwest and Northeast, were built explicitly to serve one or more large factories, and only later expanded to provide residential service. These plants often operated on a model of “load factor optimization”: power usage by factories during the day and homes at night ensured a steady demand curve, which maximized profits.

By the 1920s, the logic was clear: industry came first, homes came second—but both served the larger vision of an electrified economy. And this industrial-first expansion became one of the justifications for public electrification programs in the 1930s. If electricity had become so essential to national productivity, how could it remain out of reach for most rural Americans?

Niagara Falls Power Plant: Built for Industry

 

In 1895, the Niagara Falls Power Company, led by industrialist Edward Dean Adams and with technological help from Westinghouse Electric and Nikola Tesla, completed the Adams Power Plant Transformer House—one of the first large-scale hydroelectric plants in the world.

power

Eight of the ten 1,875 kW transformers at the Adams Power Plant Transformer House, 1904, public domain

This plant didn’t exist to power homes. Its primary purpose was to serve nearby industries: electrochemical, electrometallurgical, and manufacturing firms that required vast amounts of energy. The ability to harness hydropower made Niagara Falls a magnet for energy-intensive factories.

Founded in 1891, Carborundum relocated to Niagara Falls in 1895 to take advantage of the abundant hydroelectric power. They manufactured silicon carbide abrasives, known as “carborundum,” using electric furnaces that operated at high heat. The company was the second to contract with the Niagara Falls Power Company, underscoring the plant’s role in attracting energy-intensive industries.

The promise of abundant cheap power made Niagara Falls the world capital of electro-chemical and electro-metallurgical industries, which included such companies as the Aluminum Company of America (ALCOA), Carborundum (which developed the world’s hardest abrasive as well as graphite), Union Carbide, American Cyanamid, Auto-Lite Battery, and Occidental Petroleum. These were enterprises that depended upon abundant cheap power. At its industrial peak, in 1929, Niagara Falls was the leading manufacturer in the world of products using abrasives, carbon, chlorine, and ferro-alloys.

Niagara National Heritage Area Study, 2005, U.S. Department of the Interior

In the late 19th and early 20th centuries, Niagara Falls became a hub for industrial activity, primarily due to its abundant hydroelectric power. The establishment of the Niagara Falls Power Company in 1895 marked the beginning of large-scale electricity generation in the area. This readily available power attracted energy-intensive industries, including aluminum production, electrochemical manufacturing, and abrasives. Companies like the Pittsburgh Reduction Company (later Alcoa) and the Carborundum Company set up operations to capitalize on the cheap and plentiful electricity.

Even food companies jumped on the opportunity for abundant electricity. The founder of the Shredded Wheat Company (maker of both Shredded Wheat and Triscuit), Henry Perky, built a large factory directly at Niagara Falls, choosing the site precisely because of its access to cheap, abundant hydroelectric power. When the Triscuit cracker was first produced in 1903, the factory was powered entirely by electricity—a key marketing point. Early ads bragged that Triscuits were “Baked by Electricity,” which was a novel and futuristic idea at the time.

However, this rapid industrial growth came at a significant environmental cost. The freedom afforded to early industry in Niagara Falls meant that area waterways became dumps for chemicals and other toxic substances. By the 1920s, Niagara Falls was home to a dynamic and thriving chemical sector that produced vast amounts of industrial-grade chemicals via hydroelectric power. This included the production of chlorines, degreasers, explosives, pesticides, plastics, and myriad other chemical agents.

The success at Niagara set a precedent: electricity could fuel industrial expansion, and factories began lobbying for access to centralized electric power. States and cities recognized that electrification attracted investment, jobs, and tax revenue. This created political pressure to expand grids and build new generation capacity—not to homes first, but to industrial parks and cities with manufacturing bases.

The environmental impact was profound. In 1986, Canadian researchers discoveredthat the mist from the falls contained cancer-causing chemicals, leading both the U.S. and Canada to promise cleanup efforts. Moreover, the Love Canal neighborhood in Niagara Falls became infamous for being the site of one of the worst environmental disasters involving chemical wastes in U.S. history. The area was used as a dumping ground for nearly 22,000 tons of chemical waste, leading to severe health issues for residents and eventual evacuation of the area.

This historical example underscores the complex legacy of electrification—while it spurred industrial advancement and economic growth, it also led to environmental degradation and public health crises.

The Salesman of the Grid: Samuel Insull and the Corporate Vision of a Public Good

 

Even as electricity was still being marketed as a lifestyle upgrade—offering clean kitchens, lighted parlors, and “freedom from drudgery”—Samuel Insull was reshaping the electrical industry behind the scenes in ways that would bring electricity to both homes and factories on an unprecedented scale. A former secretary to Thomas Edison, Insull became the president of Chicago Edison (later Commonwealth Edison) and transformed the electric utility into a regional power empire. He championed centralized generation, long-distance transmission, and, most importantly, load diversity: the idea that combining industrial and residential customers would create a steadier, more profitable demand curve.

Industry, after all, consumed massive amounts of electricity during the day, while households peaked in the evenings. By blending these demands, utilities could justify larger power plants that ran closer to capacity around the clock—making electricity cheaper to produce per unit and more profitable to sell.

Insull’s holding companies and financial structures helped finance this expansion, often using consumer payments to support new infrastructure. This helped expand the grid outward—to serve not just wealthy homes and big factories, but small towns and middle-class neighborhoods. Electrification became a virtuous cycle: the more customers (especially industrial ones) you had, the more power you could afford to generate, which brought in more customers. The industrial appetite for power and the domestic aspiration for comfort were two sides of the same system.

By the early 20th century, Insull had consolidated dozens of smaller electric companies into massive holding corporations, effectively inventing the modern utility monopoly. His genius wasn’t technical but financial: he pioneered the use of long-term bonds and ratepayer-backed financing to build expansive infrastructure, including coal-fired power plants and transmission lines that could serve entire cities and suburbs.

Insull also understood that to secure profits, electricity had to become not a luxury, but a public necessity. He lobbied for—and helped shape—state-level utility commissions that regulated rates but guaranteed companies a return on investment. He promoted a pricing model in which larger customers subsidized smaller residential ones, making electricity seem affordable while expanding the customer base. In speeches and newspaper campaigns, Insull insisted that electricity was a public service best delivered by private enterprise—so long as that enterprise was shielded from competition and supported by the state.

But Insull’s vision had limits. His business model was urban, corporate, and capital-intensive. It thrived in cities where growth and profits were assured—but left rural America behind. Even by the late 1920s, nearly 90% of rural households still had no electricity, and private utilities had little interest in changing that. When Insull’s financial empire collapsed during the Great Depression—leaving thousands of investors penniless—it triggered a wave of backlash and set the stage for Roosevelt’s 1930s public electrification programs.

The failure of Insull’s empire didn’t just expose the risks of private monopolies; it also reframed electricity as too essential to be left entirely in corporate hands. If the promise of electrification was to reach beyond city limits, it would take more than advertising. It would take state power.

Electricity as a Public “Good”

 

Franklin D. Roosevelt’s New Deal ushered in that power—both literally and figuratively. Federal programs like the Tennessee Valley Authority (TVA), the Rural Electrification Administration (REA), and the Works Progress Administration (WPA) tackled electrification as a national mission. The TVA aimed to transform one of the poorest regions in the country through public power and flood control. The REA extended loans to rural cooperatives to build distribution lines where private utilities refused to go. The WPA, though more broadly focused on employment and infrastructure, supported the building of roads, dams, and even electric grids that tied into the new public utilities.

But these were not just engineering projects—they were nation-building efforts, wrapped in the language and imagery of progress. Government-sponsored films, posters, and exhibits cast electrification as a patriotic duty and a moral good. In The TVA at Work (1935), a TVA propaganda film, darkness and floods give way to light as electricity reaches the rural South, promising flood control, education, health, and hope.

Posters issued by the REA featured glowing farmhouses surrounded by darkness, their light a beacon of the federal government’s benevolence. Electrification was no longer a luxury product to be sold—it was a public right to be delivered. And propaganda helped recast the electric switch as not just a convenience, but a symbol of democratic progress.

power

In the early decades of the 20th century, the business of providing electricity was largely in private hands, dominated by powerful industrialists who operated in a fragmented and often exploitative landscape. Rates varied wildly, service was inconsistent, and rural areas were left behind entirely. Out of this chaos emerged a slow, contested movement to treat electricity not as a luxury good for profit but as a regulated public utility—something closer to a right.

power

Roosevelt’s electrification programs—especially the TVA and the REA—aimed to provide public benefits rather than private profit. But in reality, most rural Americans didn’t vote on where dams and coal-fired power plants would go, how the landscape would be transformed, or who would manage the power. The decision-making remained highly centralized, and the voice of the people was filtered through federal agencies, engineers, and bureaucrats. If this was democracy, it was a technocratic form—focused on distributing benefits, not sharing power.

Still, for many rural communities, the arrival of electricity felt like democratic inclusion: a recognition by the federal government that their lives mattered too. New Deal propaganda leaned into this feeling. Posters, pamphlets, and films portrayed electrification as a patriotic triumph—uniting the country, modernizing the nation, and bringing light to all Americans, not just the urban elite.

FDR fiercely criticized utility companies for their opposition to these efforts. In one speech, he called out their “selfish purposes,” accusing them of spreading propaganda and corrupting public education to protect their profits. His administration’s Public Utility Holding Company Act of 1935 was designed to break up massive utility holding companies, increase transparency, and limit the abusive practices that had flourished under Insull’s system.

By the end of the 1930s, electricity had changed in the eyes of the law and the public. It was no longer a commodity like soap or phonographs. It was essential—a regulated utility, under public scrutiny, increasingly expected to reach all people regardless of profit margins.

How Rural Communities Organized for Electricity

 

Reaching everyone required more than federal mandates; it required rural people—many of whom had never flipped a light switch—to believe electricity was not just possible, but necessary. New Deal propaganda didn’t just promote electrification; it made it feel like a patriotic obligation. In posters, films, and traveling exhibits, electricity was depicted as a force of national renewal, radiating from power plants and wires like sunlight over a darkened land. Farmers who had once relied on kerosene lanterns saw glowing visions of electric barns, modern kitchens, and clean, running water. The message was clear: this wasn’t charity—it was justice.

power

The Rural Electrification Traveling Exhibit, Marathon County Historical Society (Wisconsin).

The REA offered low-interest loans to communities willing to organize themselves into cooperatives. But before wires could be strung, people had to organize—drawing maps, knocking on doors, pooling resources. That kind of coordination didn’t happen spontaneously. It was sparked, in large part, by persuasive media.

power

REA films like Power and the Land (1940) dramatized the transformation of farm life through electricity. Traveling REA agents brought these short films and illustrated pamphlets to town halls, church basements, and grange meetings, showing everyday people that their neighbors were already forming co-ops—and thriving. REA’s Rural Electrification News magazine featured testimonials from farm wives, who praised electric irons, cream separators, and the ability to read after sunset. Electrification wasn’t just about comfort; it was about dignity and opportunity.

power

A TVA poster from the period shows power lines bringing power for farm fields, homes, and factories. The subtext was unmistakable: electricity was the pulse of a modern democracy. You didn’t wait for it. You organized for it.

And people did. Between 1935 and 1940, rural electrification—driven by this blend of policy and persuasion—expanded rapidly. By 1940, more than 1.5 million rural homes had electricity, up from barely 300,000 just five years earlier. The wires came not just because the government built them, but because people demanded them, formed cooperatives, and rewired their lives around a new kind of infrastructure—one they now believed they deserved.

When FDR created the REA in 1935, fewer than 10% of rural homes had electricity. By 1953, just under two decades after the REA’s launch, over 90% of U.S. farms had electric service, much of it delivered through cooperatives that had become symbols of rural self-determination.

The Federal Power Act

 

In 1935, the same year Roosevelt signed executive orders establishing the Rural Electrification Administration, Congress passed the Federal Power Act—an often-overlooked but foundational shift in how electricity was governed in the United States. At the time, only about 60% of American homes had electricity, and the vast majority of rural households remained off the grid. Industry was rapidly becoming reliant on continuous, 24/7 electric power to run increasingly complex machinery and production lines, making reliable electricity essential not just for homes but for the nation’s economic engine.

The Act expanded the jurisdiction of the Federal Power Commission, granting it authority to regulate interstate transmission and wholesale sales of electricity. This marked a decisive move away from the era of laissez-faire monopolies toward public oversight. Industry players, eager for dependable and affordable power to sustain growth and competition, played a subtle but important role in pushing for federal regulation that would stabilize the market and ensure widespread, reliable access. The Act framed electricity not as a luxury commodity but as a vital service that required accountability and coordination. In tandem with the New Deal electrification programs, it laid the legal groundwork for treating electricity as a public good—setting the stage for how electricity would be mobilized, mythologized, and mass-produced during wartime.

Electricity as Patriotic Duty

 

By the end of the 1930s, electricity had changed in the eyes of the law and the public. It was no longer a commodity like soap or phonographs. It was essential—a regulated utility, under public scrutiny, increasingly expected to reach all people regardless of profit margins.

power

But as the nation edged closer to war, the story of electricity changed again. The gleaming kitchens and “eighth wonder of the world” dams of New Deal posters gave way to a new message: power meant patriotism. Electricity was no longer just a household convenience or symbol of rural uplift—it was fuel for victory.

Even before the U.S. formally entered World War II, government and industry launched campaigns urging Americans to think of their energy use as a form of service. Factories were electrified at full tilt to produce planes, tanks, and munitions. Wartime posters and advertisements called on citizens to “Do Your Part”—to conserve power at home so it could be redirected to the front. Lights left on unnecessarily weren’t just wasteful; they were unpatriotic.

power

One striking 1942 poster from the U.S. Office of War Information featured a light switch with the message: “Switch off that light! Less light—more planes.” Another encouraged energy conservation by asking people to switch lights off promptly because “coal is vital to victory” (at this time 56% total electricity on U.S. grids was generated by coal).

power

For women, especially, electricity was again positioned as a moral responsibility. Earlier ads had promised electric gadgets to free housewives from drudgery; now, propaganda reminded them that their efficient use of electric appliances was part of the national war strategy. The same infrastructure built by New Deal programs now helped turn the rural power grid into an engine of military supply.

power

Electricity had become inseparable from national identity and survival. To use it wisely was to serve the country. To waste it was to betray the war effort. This was no longer a story of gadgets and progress—it was a story of sacrifice, duty, and unity under the banner of light.

Nowhere was this message clearer than in the materials produced by the Bonneville Power Administration (BPA), which managed the massive hydroelectric output of the Columbia River dams in the Pacific Northwest. In the early 1940s, the BPA commissioned a series of posters to dramatize the link between public power and wartime production. One of the most iconic, “Bonneville Fights Time,” shows a welder in a protective mask, sparks flying, framed by dynamic lines of electricity and stylized clock hands. The message: electric power enabled faster, more precise welding—crucial for shipbuilding, aircraft, and munitions production.

power

The poster’s bold composition connected modernist design with national urgency. Bonneville’s electricity wasn’t just flowing to light bulbs—it was flowing to the war factories of the Pacific coast, to the shipyards of Portland and Seattle, and to the aluminum plants that turned hydroelectric power into lightweight warplanes. These images promoted more than technical efficiency; they sold a vision of democratized power mobilized for total war.

Through such propaganda, the promise of public power was reimagined—not just as a civic good, but as a weapon that could help win World War II.

power

Electrifying the American Dream

 

When the war ended, the messaging around electricity shifted again—from sacrifice to surplus. Wartime rationing gave way to a marketing explosion, and the same electrified infrastructure that had powered victory was now poised to power prosperity. With factories retooled for peace-time commerce, and veterans returning with GI Bill benefits and dreams of suburban life, the home became the new front line of American identity—and electric gadgets were its weaponry.

The postwar boom fused electricity with consumption, convenience, and class mobility. Advertisements no longer asked families to conserve power for the troops; they encouraged them to buy electric dishwashers, toasters, vacuum cleaners, televisions. Owning a full suite of appliances became a marker of success, a tangible reward for patriotism and patience. Electricity was no longer just a utility—it was the lifeblood of modern living, sold with the same glamour and intensity once reserved for luxury cars or perfumes.

power

Utilities and manufacturers teamed up to keep the vision alive. The Live Better Electrically campaign, launched in 1956 and endorsed by celebrities like Ronald Reagan, urged Americans to “go all-electric”—not just for lighting and appliances, but for heating, cooking, and even air conditioning. The campaign painted a glowing picture of total electrification, backed by images of smiling housewives, sparkling kitchens, and obedient gadgets. In one ad, a mother proudly paints a heart on her electric range as her children and husband laugh and smile. The future, once uncertain, had been domesticated.

power

Nowhere was the all-electric ideal more vividly branded than in the Gold Medallion Home, a product of The Live Better Electrically campaign. These homes were awarded a literal gold medallion by utilities if they met a full checklist: electric heat, electric water heater, electric kitchen appliances, and sufficient wiring to support a future of plugged-in living. Promoted through glossy ads and celebrity endorsements, the Medallion Home symbolized upward mobility, domestic modernity, and patriotic participation in a high-energy future. It was a propaganda campaign that blurred the line between consumer aspiration and infrastructure planning. Today’s “electrify everything” efforts—encouraging heat pumps, EVs, induction stoves, and smart panels—echo this strategy. Once again, homes are being refashioned as sites of technological virtue and national progress, marketed through a familiar mix of lifestyle promise and utility coordination. The medallion has changed shape, but the message remains: the future lives here.

power

This was propaganda of abundance. And behind it was an unspoken truth: electrification had won. What had once been sold as fantasy—glimpsed in world’s fair palaces or GE films—was now embedded in daily life. The flick of a switch no longer symbolized hope. It had become habit.

Ruralite

 

Ruralite magazine serves as the flagship publication of Pioneer Utility Resources, a not-for-profit communications cooperative to serve the rural electric cooperatives (or co-ops) across the western United States. It was—and remains—a shared publication platform for dozens of small, locally owned utility co-ops that formed in the wake of the REA.

Each electric co-op—often based in small towns or rural counties—can customize part of the magazine with local news, board updates, outage reports, and community features. But the bulk of the magazine is centrally produced, offering ready-made content: stories about electric living, energy efficiency, co-op values, new technologies, and the benefits of belonging to a cooperative utility system.

In this sense, Ruralite functions as a kind of regional PR organ: a hybrid of lifestyle magazine, customer newsletter, and soft-sell propaganda tool. It is funded by and distributed through electric co-ops themselves, landing monthly in the homes of hundreds of thousands of rural residents.

Though it debuted in 1954—well after the apex of New Deal electrification programs—Ruralite can be seen as a direct descendant of that era’s propaganda infrastructure, repackaged for peacetime and consumer prosperity. The TVA had its posters, the REA had its pamphlets, and Ruralite had glossy photo spreads of farm wives with gleaming electric ranges.

Where New Deal propaganda had rallied Americans to support rural electrification as a national project of fairness and modernity, Ruralite shifted the tone toward comfort, aspiration, and consumer loyalty. It picked up the baton of electrification as cultural transformation, reinforcing the idea that electric living wasn’t just a right—it was the new rural ideal.

Clipped from “For the Curious Ruralite,” tips to encourage electricity use from the December 1954 edition of Ruralite Magazine

Ruralite framed rural electrification not as catching up to the cities, but as leading the way in a new era—one where rural values, ingenuity, and resourcefulness would power the country forward. In this way, co-ops and their members became symbols of progress, not just beneficiaries of it.

This was propaganda not by posters or patriotic slogans, but through community storytelling. Ruralite grounded its messaging in local personalities, recipes, and relatable anecdotes, while embedding calls to adopt more appliances, update homes, and trust in the local co-op as a benevolent, forward-looking institution.

The first Ruralite recipe, for which you need an electric refrigerator, published in Ruralite Magazine, June 1954. Clipped from this June 1, 2024 article.

Today, Ruralite remains rooted in local storytelling, but its tone aligns more with contemporary consumer lifestyle media. Sustainability, renewables, and energy efficiency now appear alongside nostalgic rural features and recipes. Yet despite the modern packaging, the core narrative remains consistent: electricity is integral to the good life. That through-line—from a beacon of modernization to a pillar of local identity—demonstrates how the publication has adapted without abandoning its propagandistic roots.

In the current energy landscape, Ruralite plays a quiet but significant role in advancing the “electrify everything” agenda—the 21st-century push to decarbonize buildings, transportation, and infrastructure by transitioning away from fossil fuels to electric systems.

While Ruralite doesn’t use overtly political language, it steadily normalizes new electric technologies like heat pumps, EVs, induction stoves, and solar arrays. Features on homeowners who upgraded to electric water heaters, profiles of co-ops launching EV charging stations, or DIY guides for energy audits all reinforce the idea that the electric future is practical, responsible, and here. The message is aspirational but grounded in small-town pragmatism: this isn’t Silicon Valley hype—it’s your neighbor electrifying their barn or replacing a propane furnace or reminiscing about life without electricity.

Ruralite continues the legacy of New Deal-era propaganda by promoting ever-greater electricity use—now through electric vehicles and heat pumps instead of fridges and space heaters—reinforcing the idea that progress always means more power, more consumption, and more infrastructure. Its storytelling still serves a strategic function—ensuring electricity remains not just accepted, but desired, in every American home.

Postwar Peak and Decline of Electrification Propaganda

 

By the 1960s, most American homes—urban and rural—had been electrified. The major battle to electrify the country was won. As a result, the overt electrification-as-progress propaganda that had dominated the New Deal era and postwar boom faded. Electricity became mundane: a background utility, no longer something that needed to be sold as revolutionary.

During the 1970s and early 1980s, the focus of public discourse shifted toward energy crises and conservation. Rather than expanding electrification, the government and utilities started encouraging Americans to use less, not more—a notable, if temporary, reversal. The 1973 oil shock, Three Mile Island (1979), and rising distrust in institutions tempered the earlier utopian energy messaging.

power

1970’s energy conservation poster, via Low Carbon Institute, in the personal collection of Russell Davies.

However, electrification propaganda never vanished entirely. It just narrowed. Publications like Ruralite and utility co-ops continued localized campaigns, pushing upgrades (like electric water heaters or electric stoves) in rural areas and maintaining a cultural narrative of electric life as modern and efficient.

The Renewables-Era Revival of Electrification Propaganda

 

In the late 1990s and especially the 2000s, a new wave of electrification propaganda began to emerge, but this time under the banner of climate action. Instead of promoting electricity as luxury or convenience, the new message was: electrify everything to save the planet.

This “green” electrification push encourages:

  • Electric vehicles (EVs) to replace gasoline cars
  • Heat pumps to replace fossil fuel heating systems
  • Induction stoves over gas ranges
  • Grid modernization and massive renewable build-outs (wind, solar, batteries)

power

Glossy, optimistic, uncritical propaganda pushing electricity from Ruralite Magazine, December 2023.

The messaging echoes earlier propaganda in tone—glossy, optimistic, often uncritical—but reframes the moral purpose: not modernization for its own sake, but decarbonization. The tools remain similar: media campaigns, federal incentives, public-private partnerships, and co-op publications like Ruralite, which has evolved to reflect this new narrative.

power

Typical imagery promoting “clean energy.” This image is used on a League of Conservation Voters initiative, Clean Energy for All.

Modern utility outreach events like co-op utility Orcas Power and Light Cooperative’s (OPALCO) EV Jamboree—where electric vehicles are showcased, test drives offered, and electrification is framed as exciting and inevitable—echo the strategies of the REA’s mid-century traveling circuses. Just as the REA brought portable demonstrations of electric appliances and farm equipment to rural fairs to sell the promise of a brighter, cleaner, more efficient life, today’s utilities stage events to generate enthusiasm for electric vehicles, heat pumps, and smart appliances. In both cases, the goal is not just education but persuasion—selling a future tied to deeper dependence on the electric grid.

power

Advertisement for an EV Jamboree, propaganda for electric vehicles, boats, bikes, etc.

One of the most striking revivals is the push for nuclear power, long dormant after public backlash in the 1980s. Once considered politically radioactive and dangerous, nuclear is now rebranded as a clean energy savior. The Biden administration has supported small modular reactor (SMR) development and extended funding for existing nuclear plants. More recently, President Donald Trump announced plans to reinvest in nuclear infrastructure, positioning it as a strategic national asset and imperative for national security and industry. The messaging is clear: nuclear is back, and it’s being sold not just as a technology, but as a patriotic imperative.

The Green Delusion and the Digital Demand: Modern Propaganda for an Electrified Future

 

In the 21st century, electrification propaganda has been reborn—not as a tool to bring light to rural homes or sell refrigerators, but as a moral and technological mandate. This time, it’s cloaked in the language of sustainability, innovation, and decarbonization. Utilities, tech giants, and government agencies now present an electrified future as inevitable and ethical. But beneath the rhetoric lies a powerful continuity with the past: electricity must still be sold to the public, and propaganda remains the vehicle of persuasion.

power

Screenshot of YaleEnvironment360 article about “electrify everything” program.

The contemporary campaign is driven by a potent mix of actors. Investor-owned utilities plaster their websites with wind turbines and solar panels, promoting the idea that they are leading the charge toward a cleaner future. Federal and state governments offer rebates and incentives for EVs, solar panels, heat pumps, and induction stoves, framing these changes not only as personal upgrades, but as civic duties. Corporate giants like Google, Microsoft, and Amazon amplify the message, touting their commitment to “100% renewable” operations—while quietly brokering deals for bespoke gas and nuclear plants to keep their operations online, and selling their digital services to fossil fuels companies.

Deceptive practices are proliferating alongside the expansion of renewable energy infrastructure. Companies developing utility-scale solar projects often mislead communities about the scale, impact, and permanence of proposed developments—if they engage with them at all. Local residents frequently report being excluded from the planning process, receiving vague or misleading information, or being outright lied to about how the projects will alter their environment. As Dunlap et al. document in their paper ‘A Dead Sea of Solar Panels:” Solar Enclosure, Extractivism and the Progressive Degradation of the California Desert, such tactics are not anomalies but part of a systemic pattern:

[W]e would flat out ask them [the company] questions and their answers were not honest … [it] led me to believe they really didn’t care about us. They had charts of where lines were going to be, and later, we found out that it wasn’t necessarily the truthful proposal. And you’re thinking: ‘why do you have to deceive us?’

— Desert Center resident, quoted in ‘A Dead Sea of Solar Panels:’ solar enclosure, extractivism and the progressive degradation of the California desert, by Dunlap et. al.

These projects, framed publicly as green progress, often mask an extractive logic—one that mirrors the practices of fossil fuel development, only cloaked in the language of sustainability.

At the heart of this new energy push lies a paradox: the renewable future requires more electricity than ever before. Electrifying transportation, heating, and industry demands a massive expansion of grid infrastructure—new transmission lines, more generation, and more raw materials. But increasingly, the driver of this expansion is data.

Artificial intelligence, cloud computing, and cryptocurrency mining are extraordinarily power-hungry. Modern AI models require vast data centers, each consuming megawatts of electricity—often 24/7. In his May 2025 Executive Order promoting nuclear energy, President Donald Trump made this explicit: “Advanced nuclear reactors will power data centers, AI infrastructure, and critical defense operations.” Here, electricity isn’t just framed as a public good—it’s a strategic asset. The demand for clean, constant energy is now justified not by light bulbs or quality of life, but by national security and economic dominance in the digital age.

This shift has profound implications. The public is once again being asked to accept massive infrastructure projects—new power generation plants and transmission corridors, subsidies for private companies, and increased energy bills—as the price of progress. Utilities and politicians assure us that this growth is green, even as the material and ecological costs of building out renewables and data infrastructure are hidden from view. The new propaganda is sleeker, data-driven, and more morally charged—but at its core, it performs the same function as its 20th-century predecessors: to justify a massive increase in power use.

A particularly insidious thread in this new wave of propaganda is the claim that artificial intelligence will “solve” climate change. This narrative, repeated by CEOs, media outlets, and government officials, frames AI as a kind of techno-savior: capable of optimizing energy use, designing better renewables, and fixing broken supply chains. But while these applications are technically possible, they are marginal compared to the staggering energy footprint of building and running large-scale AI systems. Training a single frontier model can consume as much power as a small town.Once operational, the server farms that host these models run 24/7, devouring electricity and water—often in drought-prone areas—and prompting utilities to fire up old coal and gas plants to meet projected demand.

Green AI: The Yin-Yang of a Breakthrough, Forbes Magazine, Dec 16, 2024—just one of many examples of propaganda for AI, grid expansion, and renewable energy.

Under the guise of “solving” the climate crisis, the AI boom is accelerating it. And just like earlier propaganda campaigns, the messaging is carefully crafted: press releases about “green AI” and “green-by-AI” along with glossy reports touting efficiency gains distract from the physical realities of extraction, combustion, and carbon emissions. The promise of virtual solutions is being used to justify real-world expansion of energy-intensive infrastructure. If previous generations were sold the dream of electrified domestic bliss, today’s consumers are being sold a dream of digital salvation—packaged in clean fonts and cloud metaphors, but grounded in the same old logic of growth at all costs.

The Material Reality of “Electrify Everything”

 

While the language of “smart grids,” “clean energy,” and “electrify everything” suggests a sleek, seamless transition to a more sustainable future, the material realities tell a very different story. Every CPU chip, electric vehicle, solar panel, wind turbine, and smart meter is built from a global chain of extractive processes—mined lithium, cobalt, copper, rare earth elements, steel, silicon, and more—often sourced under environmentally destructive and socially exploitative conditions. Expanding the grid to support these technologies requires not just energy but immense physical infrastructure: transmission lines slicing through forests and deserts, substations and data centers devouring land and power, and constant maintenance of an aging, overstretched network.

Yet this reality is largely absent from public-facing narratives. Instead, we’re fed slogans like “energy humanism” and “clean electrification”—terms that obscure the industrial scale and catastrophic impacts of what’s being proposed. Like the early electrification propaganda that portrayed hydropower as endlessly abundant and benevolent (salmon and rivers be damned), today’s messaging continues to erase the costs of extraction, land use, and energy consumption, promoting technological salvation without acknowledging the planetary toll.

Propaganda for “green minerals” extraction in Zambia

The scale of extraction required to electrify everything is staggering. According to the International Energy Agency (IEA), reaching global climate goals by 2040 could require a massive increase in demand for minerals like lithium, cobalt, and nickel. For lithium alone, the World Bank estimates production must at least quadruple by 2040 to meet EV and battery storage needs. Copper—essential for wiring and grid infrastructure—faces a predicted shortfall of 6 million metric tons per year by 2031, even as global demand continues to surge with data centers, EVs, and electrification programs.

power

If you just paint your mining equipment green and use more electricity to mine, somehow that will make mining “sustainable”? Illustration from the paper Advancing toward sustainability: The emergence of green mining technologies and practices published in Green and Smart Mining Engineering

Mining companies have seized the moment to rebrand themselves as climate heroes. Lithium Americas, which plans to operate the massive Thacker Pass lithium mine in Nevada, is described as “a cornerstone for the clean energy transition” and touts itself as a boon for local employment, even while the company destroys thousands of acres of critical habitat. The company promises jobs, school funding, and tax revenue—classic propaganda borrowed from 20th-century industrial playbooks. But local resistance, including from communities like the Fort McDermitt Paiute and Shoshone Tribe, underscores the deeper truth: these projects degrade ecosystems, threaten sacred sites, and deplete water resources in arid regions.

Another mining giant, Rio Tinto, has aggressively marketed its “green” copper and lithium projects in Serbia, Australia, and the U.S. as “supporting the green energy revolution,” while downplaying community opposition, pollution risks, and the company’s long history of environmental destruction. Their PR materials highlight “sustainable mining,” “low-carbon futures,” and “partnering with communities,” despite persistent local protests and growing global awareness of mining’s high environmental costs.

Screenshot from the Minerals Make Life mining industry group. Propaganda selling more mining via the promise of jobs.

What’s missing from these narratives is any serious reckoning with the energy required to mine, transport, refine, and manufacture these materials, along with the energy needed to power the growing web of electrified infrastructure. As the demand for data centers, EV fleets, AI training clusters, and smart grids accelerates, we are rapidly expanding industrialization in the name of sustainability, substituting fossil extractivism with mineral extractivism rather than questioning the ever-increasing energy and material throughput of modern society.

Across the U.S., utilities are aggressively promoting electric vehicles, heat pumps, and “smart” appliances as part of their electrification campaigns—often framed as climate solutions. Pacific Gas & Electric (PG&E) in California, for example, offers rebates on EVs and encourages members to electrify their homes and transportation. Yet at the very same time, utilities like PG&E also warn that the electric grid is under strain and must expand dramatically to meet rising demand. This contradiction is rarely acknowledged. Instead, utilities position grid expansion as inevitable and green, framing it as “modernization” or “resilience.” What’s omitted is that electrifying everything doesn’t reduce energy use—it shifts and increases it, requiring vast new infrastructure, more centralized control, and continued extractivism.

The public is told that using more electricity will save the planet, while being asked to accept more pollution and destroyed environments along with new transmission lines, substations, and higher rates to pay for it all.

From Luxury to Necessity: Total Dependence on a Fragile Grid

 

The stability of the electricity grid requires electricity supply to constantly meet electricity demand, which in turn, requires numerous entities that operate different components of the grid to coordinate with each other.

— U.S. Energy Information Administration

Over the last century, electricity has shifted from a shimmering novelty to an unspoken necessity—so deeply embedded in daily life that its absence feels like a crisis. This transformation did not happen organically; it was engineered through decades of propaganda, from World’s Fairs and government-backed campaigns to glossy co-op magazines and modern “electrify everything” initiatives. What began as a promise of convenience became a system of total dependence.

power

OPALCO pushes EVs, electric appliances and heat pumps, while at the same time publishing articles about how the grid is under strain.

Today, every layer of modern life—communication, healthcare, finance, water delivery, food preservation, transportation, and farming—relies on a constant, invisible stream of electrons. Yet the grid that supplies them is increasingly strained and precarious. As utilities push electric vehicles, heat pumps, and AI-fueled growth, and states (like Washington State) offer tax incentives to electricity-hungry industries, they simultaneously warn that the grid must expand rapidly to avoid collapse. The public is told this expansion is progress. But the more electrified our lives become, the more vulnerable we are to its failures.

This was laid bare in March 2024, when a massive blackout in Spain left over two million people without power and seven dead. Train systems halted. ATMs stopped working. Hospitals ran on limited backup power. Food spoiled, water systems faltered, and thousands were stranded in elevators and subways. The cause? A chain of technical failures made worse by infrastructure stretched thin by new demands and the rapid expansion of renewables. Spanish officials called it a “wake-up call.” But for many, it was a terrifying glimpse into just how brittle the electric scaffolding of modern life has become.

Contrast that with life just 130 years ago, when the vast majority of Americans lived without electricity. Homes were lit by kerosene and heated by wood. Water was drawn from wells. Food was preserved with salt or root cellars. Communities were far more self-reliant, and daily life, while harder in some ways, was not exposed to the singular point of failure that defines today’s electrified society.

Before widespread electrification, communities were more tightly knit by necessity. Without the conveniences of refrigeration, electric heating, or instant communication, people relied on one another. Neighbors shared food, labor, stories, and tools. Social life centered around common spaces—markets, churches, schools, porches. Mutual aid was not a political slogan but a basic survival strategy. Electricity helped alleviate certain physical burdens, but it also enabled a more atomized existence: private appliances replace shared labor, television and now Netflix replace neighborhood gatherings, and online connection supplants physical community.

The electrification of everything, sold as liberation, has created a new form of total dependence. We have not simply added electricity to our lives—we have rewired life itself to require it. And as the grid stretches to accommodate AI servers, data centers, electric fleets, and “smart” everything, the question we must ask is no longer how much we can electrify—but how much failure we can endure.

It’s hard to imagine life today without electricity—yet just 130 years ago, almost no one had it, and communities thrived in very different ways. Our deepening dependence on the grid is not simply our choice; technologies like AI and massive data centers are being imposed upon us, often without real consent or public debate.

As we barrel toward ecological collapse—pervasive pollution, climate chaos, biodiversity loss, and the sixth mass extinction—our blind faith in endless electrification risks bringing us back to a state not unlike that distant past, but under far more desperate circumstances. Now more than ever, we must question the costs we ignore and face the difficult truth: the future we’re building may demand everything we take for granted, and then some.

power

 

References

 

America & the World: The Legacy of the 1904 St. Louis World’s Fair

Gains from factory electrification: Evidence from North Carolina, 1905–1926

Powering American Farms: The Overlooked Origins of Rural Electrification

Niagara National Heritage Area Study, 2005, U.S. Department of the Interior

From Insull to Enron: Corporate (Re)Regulation After the Rise and Fall of Two Energy Icons

Samuel Insull and the Movement for State Utility Regulatory Commissions

Franklin D. Roosevelt’s Campaign Address in Portland, Oregon on Public Utilities and Development of Hydro-Electric Power, 1932

Live Better Electrically: The Gold Medallion Electric Home Campaign

The Mouth of the Kenai: Almanac: Electrifying news you can use

‘A Dead Sea of Solar Panels:’ solar enclosure, extractivism and the progressive degradation of the California desert, by Dunlap et. al, The Journal of Peasant Studies, 2024.

 

Banner:
Public Works Administration Project, U.S. Army Corps of Engineers, Bonneville Power and Navigation Dam in Oregon, Columbia River, 40 miles East of Portland, “Downstream side of Blocks 7 and 8 of North Half of Spillway Dam and Piers 9 to 12. Inclusive of South Half of Dam”. Oct 24, 1936. National Archives and Records Administration.
Unite the Climate Movement

Unite the Climate Movement

In response government officials labeled Earth Uprisings “eco-terrorists” — continuing a worldwide strategy of criminalizing protest.

 

In France, One Group Seeks to Do the Unthinkable: Unite the Climate Movement

 

This story is a joint production of The Revelator and Drilled. Read more from Drilled’s series on the criminalization of protests and activism.

In France the unthinkable has happened: The working-class Yellow Vest movement, racial equity movements, and progressive climate activists have joined forces in a multiracial, cross-class coalition called Earth Uprisings. In uniting the climate movement with broader social justice causes, “Les Soulèvements de la Terre” is not just making history in France; it’s offering a blueprint for global environmental resistance. But the response has been shockingly violent and extreme.

1. The Start

On an icy day in January 2021, French climate activists gather in a wetland area in Notre-Dame-des-Landes around one depressing observation: None of their efforts have succeeded in making a real dent in the current environmental collapse.

That’s why they’re meeting. Like many other movements, they feel like they’re out of options. “The first wave of the ‘climate movement’ confronted us with this powerlessness,” some of the activists will later write in a collective book titled Premières Secousses (First Shockwaves). “From COP meetings to massive marches, from climate action camps to IPCC reports, we have not managed to significantly curb the ongoing devastation.”

So here they are, 200 of the foremost climate activists in the country. There are anti-nuclear activists; unions of smallholder farmers; and members of newer movements such as Youth for Climate or Extinction Rebellion. The room is full. Many have been holed up at home for weeks, waiting for the second Covid lockdown to lift. There are still curfews and restrictions in place, but they decide this meeting is too important.

“It’s been a year of one lockdown after the next,” an anonymous participant writes. “Residents of [Notre-Dame-des-Landes] decide to issue an invitation to an assembly called to ‘move heaven and earth’ with some concrete proposals. Little notes are sent to long-time comrades as well as to people just met… It is still forbidden to meet, but impossible not to get organized.”

They’re exhausted and desperate. They have no idea that they’re about to form the most feared climate movement of the 2020s in this country — a movement that both the government and polluting industries will dread. And a movement that could offer a blueprint for global climate resistance.

They get to work. After two days of discussions, and sometimes heated debates, they land on something new: a sort of loose coalition of local struggles across France, with a variety of actors and tactics, all acting under one banner, Les Soulèvements de la Terre. The Earth Uprisings.

Their slogan: We are the Earth defending itself.

The initial round of brainstorming produces ambitious ideas: “We must besiege Monsanto in Lyon,” “make the biggest intrusion ever carried out on a concrete plant,” “block the Yara synthetic fertilizer production terminal in the bay of Saint-Nazaire.”

Then the reality kicks in: They’ve just created a new movement, they have no idea whether it’s going to take, and actions in the past have yielded little result. They decide to test it out for six months, then come back and reassess.

But politically, their ambition is clear in the first call to action they publish a few weeks after the meeting. The focus is on three goals: taking back the land from polluting industries and intensive agriculture; ramping up tactics to include occupation and sabotage; and uniting all actors who have an interest in curbing the climate emergency. In the founding text, one of the things they emphasize is that they want to get rid of the class divide that has plagued the climate movement — not just in France but all over the world. They write: “We do not believe in a two-tiered climate activism in which a minority prides itself on eating organic and driving a hybrid SUV while the majority is stuck in jobs they don’t want to do, long daily commutes, and low-cost food. We will not accept to watch the end of the world, powerless, isolated, and locked in our homes.”

So they call to target, block, and dismantle three key industries: concrete, pesticides, and synthetic fertilizers.

2. The Basins

After months of localized struggles to save natural land from urban development projects, one issue emerges and quickly gains traction: the fight for water.

In France, to counter more and more frequent droughts partly caused by climate change, the government is helping build “mega-basins” — large aboveground pools used to pump water in groundwater tables in the winter and irrigate large-scale farms in the summer.

But pumping water makes droughts worse. And the reservoirs can only be used by a handful of large agribusinesses, which are mainly focused on cornfields and other irrigation crops for export. Activists argue that mega-basins effectively privatize water resources, sidelining small-scale, eco-friendly farmers.

“I guess it became a real realization for a lot of people, what the fight for water meant and access to water,” recounts Lea Hobson, a former Extinction Rebellion activist who now organizes with the Earth Uprisings. “I think that resonated for a lot of people. And it meant that a lot of people came from all over France.”

The campaign they launch to stop the construction of these mega-basins will radically reshape their future and the future of the French climate movement.

It will also unleash state violence against environmental activists on an unprecedented scale.

The first big protest takes place in October 2022, at the site of one of the basins in Sainte-Soline, a small village of about 600 people in western France. Thousands of activists turn up. So do hundreds of police officers, who use tear gas grenades to disperse protesters peacefully occupying the empty reservoir. Dozens are injured, and six people are arrested.

In the coming days, the public narrative of the events in Sainte-Soline becomes its own battle. Local officials say “very violent activists” wreaked havoc at the protest. Gerald Darmanin, the French minister of interior, calls the activists “eco-terrorists” — a rare term for a French government official discussing climate activists — and promises to fight them.

“This is an extremely strong word for a country which suffered deadly terror attacks in 2015, which left a lot of families in mourning,” points out Alexis Vrignon, a professor at the University of Orléans who specializes in the history of environmental conflict. “The tactics of the water protesters can be discussed in terms of ethics or effectiveness, but they are totally different” from those of terrorist groups, he adds.

According to Michel Forst, the United Nations special rapporteur on environmental defenders, the “campaigns of vilification by public officials also have a great impact, which is very unfortunate, on public opinion. When you have a minister … and members of parliament calling those people eco-terrorists or simply terrorists or comparing them to the Taliban, then it’s not only the people who are under pressure, but the cause they’re fighting for, which is also being debated.”

Despite these attacks in the media, activists reconvene in Sainte-Soline five months later. This protest is set to be bigger, more ambitious. The protesters — farmers’ unions, working-class Yellow Vests, and many other unlikely allies — arrive from all corners of France and even beyond. In a field a few miles away from the reservoirs, hundreds of brightly colored tents pop up around the protest camp.

There are also 3,000 officers on site, waiting for protesters.

“You had a lot of people who were not essentially in climate movements but heard of what was going on and so would come there … as their first big mass action,” Lea Hobson, the activist, remembers. “The diversity of people — I’ve never seen that in any actions that we’ve had in Extinction Rebellion, for example.”

On the morning of the protest, thousands start marching to one of the basins. Their goal is to stop construction, take apart some of the pipes that have already been installed, and get a moratorium on any new reservoirs being built with public funds. The march is joyous. There are families with kids, people playing accordions, dancing in their blue workers’ outfits, and huge mascots representing local species that are threatened with extinction: an eel, an otter and a type of bird called a bustard.

Then, in the space of a few minutes, the peaceful march descends into chaos. “You had police that kind of started to arrive from everywhere,” Hobson recalls. Tear gas grenades and rubber pellets start falling from the sky nonstop — almost one explosion per second for two hours. The only sound that cuts through the explosions is that of protesters screaming for street medics whenever a new person gets hit.

By late afternoon 200 protesters are injured, including dozens with severe injuries. Two people are in a coma, fighting for their lives. But on the news that evening, journalists describe violent protesters who caused altercations with the police. Even the president, Emmanuel Macron, says protesters were out to kill security forces.

In this violence against protesters, France is an outlier in the region. “France is the country where we have the most violent response by the police compared to other countries in Europe,” explains Forst, from the UN.

Hobson adds that “more people have been involved — organizations, collectives, charities, political movements — so the more diverse the movement has grown, the more repression there has been. The more massive the movement has become, the more repression there has been.”

Just days after the protest, activists are scrambling to care for the injured and the traumatized, and two men are still fighting for their lives. But as public opinion turns against the protesters, Darmanin, the minister of interior, takes advantage of the opportunity and announces the legal dissolution of the Earth Uprisings. To do this he uses a 1936 law initially passed to combat the violent far-right groups that were proliferating at the time, which has since been used against Muslim groups and activist movements.

3. The Trial

Ironically Earth Uprisings never had anything official to dissolve. It never had legal organizational status, it didn’t establish itself as a nonprofit, and under French law it was simply a “de facto gathering of people.” But dissolution would mean that anyone organizing events using the name and logo of Earth Uprisings risked being fined or imprisoned.

Darmanin’s announcement is a huge blow to activists and marks the start of a lengthy legal battle that will question the methods of the Earth Uprisings and the legitimacy of sabotage itself as a form of protest in the current climate emergency — a question that’s moving through climate movements around the world.

The accusations of violence don’t come as a surprise to the organizers. From the get-go, written in the invitations to the January meeting, was a call to discuss stronger modes of action — in particular, civil disobedience. The coalition openly leans on three tactics: occupation, blockages and sabotage (which the activists call disarmament).

“Disarming is the promise of appeasement. It is not a violent term,” the group’s lawyer, Antoine Lyon-Caen, argued at the trial. Echoing these sentiments, Stéphen Kerckhove, the president of Agir pour l’Environnement (Act for the Environment), explains the rise of Earth Uprisings as “an admission of failure of our legal [climate] nonprofits.” Despite efforts ranging from petitions to legal actions, change has been elusive, he says. “All the work we do never leads to anything. We shouldn’t be surprised that there are people advocating for disarmament.”

After each of the two protests at  Sainte-Soline, the minister of interior, Gerald Darmanin — a highly controversial figure who has been accused by human-rights advocates of orchestrating an increase in violence against protesters, and whom several women have sued for sexual abuse — says that dozens of police officers have been injured. The Revelator and Drilled could not independently verify those claims. After the March protest, the public prosecutor announced that 47 officers had been injured. But 18 of those were included in the count as a result of suffering “acoustic trauma,” most likely as a result of the hundreds of explosions the police itself caused.

There is, however, abundant evidence of protesters being injured, sometimes nearly fatally, by security forces, documented in detail by human rights observers and journalists and corroborated by our sources.

The dissolution case rises through several courts before ending up at the Council of State, the highest court in France, which finally rejects the push for dissolution on Nov. 9, 2023. It also concludes that members of Earth Uprisings engaged in material degradation, but the movement was not responsible for any violence perpetrated against people.

“The targets of our actions are always material,” confirms Lena Lazare, a spokesperson for the movement. “We never target people. But often, when we are asked these questions, it is also a way to draw a line between ‘bad demonstrators’ and ‘good demonstrators.’ And we don’t think there are any bad demonstrators. We also think that the violence of the demonstrators is created by the police repression.”

The police brutality at Sainte-Soline was never addressed by the government. And the demonstrators are clear: Their actions are only legitimate in the context of the current environmental collapse, which sees tens of thousands of people die every year from heatwaves in Europe alone.

4. The Future

The months of court dates and appeals help drudge up public support for the group. Within days of Darmanin’s dissolution announcement, nearly 200 new Earth Uprisings committees sprout up across France. Thousands of people join. Actors, scientists, and politicians join the rallying cry: “You can’t disband a movement.”

“What that created was a massive outburst of support, and the creation of local groups all over France,” says organizer Lea Hobson.” And that’s something that’s quite new. You had people coming from loads of different backgrounds who started to be like, wait, we can’t let this happen.”

Its radical approach has also intensified conversations about environmental activism, nudging even the most traditional climate groups in France to reconsider their tactics. Earth Uprisings has made inroads into mainstream discourse, influencing political agendas and policy development. Most French people had not heard of a mega-basin before October 2022. Now the issue of water use is abundantly covered in mainstream media. Several of the mega-basin projects have been abandoned.

Most importantly, Earth Uprisings has created an unprecedented alliance among progressive groups across France, and built a blueprint for an agile, fluid, and ever-evolving movement structure that has, so far, eluded governmental and legal threats.

“There wasn’t much collaboration [among progressive groups],” says Hobson. “But when you start having a movement that collaborates and that accepts and uses different forms of tactics, how do you stop that? I think that’s going to be impossible to repress.”

And for the people who have come out of Sainte-Soline intact, she says, “the rage and the willingness to do things” has only grown. “It’s weird because you have a feeling of exhaustion and you feel that what is coming next” — both the climate threats and the crackdowns — “is probably going to be 10 times worse. Yet the fact that more and more people and groups are coming together, when they wouldn’t even speak together a few years ago, is a sign that things are changing really quickly.”

This article first appeared on The Revelator and is republished here under a Creative Commons license.

Photo by Lisa on Unsplash

Questioning Lithium-ion Batteries

Questioning Lithium-ion Batteries

Editor’s note: When a hurricane like Helene or Milton ravages coastal communities, already-strained first responders face a novel, and growing, threat: the lithium-ion batteries that power electric vehicles, store PV solar, e-bikes, and countless gadgets. When exposed to the salty water of a storm surge or extreme heat, they are at risk of bursting into flames — and taking an entire house with them.

“Anything that’s lithium-ion and exposed to salt water can have an issue,” said Bill Morelli, the fire chief in Seminole, Florida, and the bigger the battery, the greater the threat. That’s what makes EVs especially hazardous. “[The problem] has expanded as they continue to be more and more popular.”

Also petrochemical-based building materials and furnishings have replaced traditional wood, fabric and metal materials in homes worldwide. But plastics are more flammable and release persistent toxic chemicals when burned or exposed to high heat. Over the last 25 years, wildfires have multiplied and intensified due to global warming, and often now jump the wildland-urban interface, burning whole neighborhoods and leaving behind a dangerous toxic home legacy. After the Camp Fire razed Paradise, California, in 2018, water utilities found high levels of volatile organic compounds in drinking water. Similar issues have arisen in places like Boulder County, Colorado, where the Marshall Fire destroyed nearly 1,000 structures in 2021,

“The extreme heatwaves of 2023, which fueled huge wildfires, and severe droughts, also undermined the land’s capacity to soak up atmospheric carbon. This diminished carbon uptake drove atmospheric carbon dioxide levels to new highs, intensifying concerns about accelerating climate change. Widespread wildfires across Canada and droughts in the Amazon in 2023 released about the same amount of carbon to the atmosphere as North America’s total fossil fuel emissions, underscoring the severe impact of climate change on natural ecosystems.”

The multibillion-dollar chemicals company 3M told customers it sold its firefighting foams to as safe and biodegradable, while having knowledge that they contained toxic per- and polyfluoroalkyl substances (PFAS), according to newly uncovered documents, reported The Guardian. A team of academic researchers, lawyers and journalists from 16 European countries has exposed a huge lobbying campaign aimed at gutting a proposed EU-wide restriction on the use of “forever chemicals”.

The following story talks about the Moss Landing fire but there was also a fire that erupted in southeast Missouri at one of world’s largest lithium-ion battery recycling facilities and also in Madison County, Illinois.


 

By KATIE SINGER / Katie Singer’s Substack

While finishing this Substack, I learned about the explosive fire that started January 16, 2025 at Moss Landing, California’s Vistra Power Plant, the world’s largest battery energy storage facility, housing tens of thousands of lithium-ion batteries. By Friday, January 17, flames had consumed 75% of the facility’s batteries. Toxic fumes from the batteries’ chemicals forced evacuations and closed roads around Moss Landing. Because the highly-charged batteries can’t be extinguished—they must burn out—this fire and its toxins could burn for a long time.

Batteries’ toxic gases can cause respiratory, skin and eye problems. Toxic gases from burning lithium-ion batteries can contaminate wildlife such as Monterey Bay’s unique tidal wetland.

This is the fourth fire at the Moss Landing battery storage facility.

Referring to last week’s explosive fire, County Supervisor Glenn Church said, “This is a wake-up call for the industry. If we’re going to move ahead with sustainable energy, we need a safe battery system in place. State of the art safety protocols did not work.”

County officials lifted evacuation orders Friday evening after the U.S. Environmental Protection Agency found “no threat to human health.” Still, Highway 1 remains closed, and health officials in Monterey, San Venito and Santa Cruz counties advise residents to stay indoors, turn off ventilation systems and limit outdoor exposure. Www.ksbw.com provides live updates.

WILDFIRES AND URBAN FIRES

When the Los Angeles fires started January 7, I learned about the differences between wild and urban fires. Wildfires occur in forests or grasslands, fueled by trees or other vegetation. More than 80% of wildfires start by human activities like abandoned cigarettes, campfires and barbeques. Wildfire smoke can penetrate deep into peoples’ lungs and aggravate heart and lung diseases.

Urban fires—conflagrations—are fueled by combustible construction materials including wood framing, plastics, metals, furniture fabric and solar panels (hazardous waste). Because of houses’ flammable contents, urban fires burn extremely hot and generate toxic emissions. High winds and insufficient water supply intensify urban fires. Burning houses emit chemical toxins and generate more heat than burning trees (which, if alive, hold fire-resistant moisture).

While powerlines and transformers are designed to withstand wind speeds up to 56mph, some gusts in the LA fires exceeded 100mph.

INCLUDING LITHIUM-ION BATTERIES IN FIRE RISK ASSESSMENTS

Here’s a question: How do lithium-ion batteries contribute to urban fires?

Like much of the world, Southern California is now dotted with lithium batteries at every telecom cell site (for backup in the event of a power outage); in every electric vehicle, e-bike and hoverboard; in every EV charger; in laptops, tablets and smartphones—and their chargers; in smart utility meters on grid-connected houses and buildings; in off-grid rooftop solar PV systems’ batteries; in battery energy storage systems (BESS) for large-scale solar facilities and wind facilities.

That’s a lot of lithium-ion batteries.

If a lithium-ion battery’s chemicals heat up and can’t cool down, the battery can catch fire, explode and release toxic, flammable gases such as fluoride. Like trick birthday candles, EV batteries (holding energy to burn for as much as 24 hours) can re-ignite. Lithium-ion batteries’ temperature can quickly reach 932 degrees Fahrenheit (500 degrees Celsius). They can burn as high as 2200F (1100C). An EV fire burns at 5,000 degrees F (2,760 C). A gas-powered vehicle fire burns at 1,500 F (815C).

Because of the increase and severity of battery storage systems’ explosions and fires, The National Fire Protection Association is considering an update to its Battery Safety Code. These systems should be designed to prevent explosions—not just fires.

 

RECOGNIZING THE FIRE RISKS CAUSED BY DRY AND COVERED SOIL

LA has endured eight months without rain. Drought increases fire risk.

Do fire risks also increase when soil can’t absorb and hold water? Soil’s ability to absorb and hold water is one of the Earth’s main cooling mechanisms. How do we reconcile this when we’ve covered land with paved roads, houses, malls, parking lots, data centers and battery storage facilities?

How can we re-hydrate a dry region?

REBUILDING QUESTIONS

When rebuilding, what policies will ensure that fire’s toxic emissions (to air, soil and groundwater) will not affect future residents and farmers? Given that Governor Newsom has suspended environmental reviews to speed rebuilding in wildfire zones, what will protect residents in rebuilt areas from toxic exposures?

What materials and practices prevent new fires?

What measures would prevent lithium-ion batteries (at cell sites, in electric vehicles, smart meters, laptops, tablets, smartphones, rooftop solar system batteries, etc.) from catching fire and exploding? Could we prohibit lithium-ion batteries until they’re proven safe and ecologically sound from cradle-to-grave? New Hampshire legislators have introduced an ACT that would allow towns to decline 5G cell sites.

How could rebuilding Los Angeles respect the Earth? To reduce fire risk, support healthy water cycling and increase locally-produced food, could rebuilding policies encourage healthy soil structure?

For inspired building, see Mully (about a Kenyan who has fed, housed and educated 27,000+ orphans and turned dry dirt into an oasis); The Power of Community (about Cuba after the USSR quit supplying it with oil, overnight, in 1989); and Alpha Lo & Didi Pershouse speaking about rehydrating Los Angeles.

To provide much-needed affordable housing in LA and elsewhere, would any mansion-owners turn their homes into multiple-family units?

RECONSIDER “SUSTAINABILITY”

Many communities and corporations aim to sustain themselves by installing battery energy storage systems and solar facilities. According to the California Energy Commission, since 2020, battery storage in the state has increased sevenfold—from 1,474 megawatts in 2020 to 10,383 megawatts by mid-2024. One megawatt can power 750 homes.

In New Mexico, AES Corporation has proposed building a 96 MW, 700-acre solar facility with 45 MWs/39 battery containers in Santa Fe County. (Each battery is about 39’ x 10’ x 8’.) Santa Fe’s Green Chamber of Commerce, the Sierra Club’s Rio Grande Chapter, the Global Warming Express and 350 Santa Fe support AES’s project.

Opponents of AES’s facility include the San Marcos Association, the Clean Energy Coalition and Ashley Schannauer (formerly a hearing officer for the state’s Public Regulatory Commission).

I frequently hear people call battery storage, solar PVs, industrial wind and EVs “sustainable.” Looked at from their cradles to their graves, this is simply not true. Mining lithium ravages ecosystems. So does burning coal and trees to make solar panels’ silicon. Refining lithium and making silicon electrically-conductive takes millions of gallons of water, daily. At end-of-life, these technologies are hazardous waste.

Meanwhile, I have many friends with rooftop solar systems and EVs. I would welcome forums about reducing our overall use of energy, water, extractions and international supply chains. I would welcome learning how to live with less.

As survivors of the LA fires, battery fires, Hurricane Helene, Israel’s decimation of Gaza and other catastrophes rebuild, what would communities look like if we considered our technologies’ impacts to ecosystems and public health from their cradles to graves? What would our communities look like if we think, “Ecosystems and public health first?”

 

FOR MORE INFO:

Jeff Gibbs and Michael Moore’s documentary, “Planet of the Humans

Julia Barnes’ film, “Bright Green Lies

https://www.watchduty.org

alerts and monitors wildfires in the American West.

https//mutualaidla.org

lists mutual aid organizations.

Science and the California Wildfires with George Wuerthner

Sandoval County, NM, also faces a large-scale solar project with 220 MW of solar panels and 110 MW of battery storage.

New Mexicans for Responsible Renewables supports New Mexico’s avoiding unnecessary risks to our communities and further destruction to our environment.

THE POWER GRID

Discovering Power’s Traps: a primer for electricity users

Fire hazards at the battery storage system coming near you

SOS: San Onofre Syndrome: Nuclear Power’s Legacy Note: The documentary starts 2025 with screenings around California, Eugene, Madrid and on Amazon Prime. See also “Risks of geologic disposal of weapons plutonium.”

A Time-Sensitive Invitation to Protect New Mexico from Smart Meters’ Fire Hazards

SOLAR PVs

21 questions for solar PV explorers

Call Me a NIMBY

Do I report what I’ve learned about solar PVs—or live with it privately?

E-VEHICLES

How/can we protect the Earth when we need a car?

Who’s in charge of EV chargers?

When Land I Love Holds Lithium: Max Wilbert on Thacker Pass, Nevada

Banner Moss Landing battery plant fire, January 16-17, 2025.

MY MISTAKE While writing article I got help from a physicist of fire ignition, an electrical engineer, a forensic fire investigator and an electrician. I also went to the Internet, which informed me that in the event of an outage, cell sites’ power is backed up by lithium-ion batteries. This isn’t totally correct. While 5G small cells primarily use lithium ion batteries, larger cell towers usually backup with lead-acid batteries. I apologize for this error.

For the Wild This Holiday Season

For the Wild This Holiday Season

Image

Join Us During the New Moon For A DGR New Year’s Eve! 🌑

No matter how dark the night, the sun will return.

Join DGR on Facebook for some New Year’s Eve tidings of comfort and joy . . . and bears and lions, cave paintings and bison, hope and resistance.

We have a live hour-long program, featuring Derrick Jensen, Lierre Keith, and Deanna Meyer–and you! There’s time at the end for your questions.

So bring your hopeful heart and join the party!

Tuesday, December 31, 3 PM PST/4 MST/5 CST/6 EST.

For nearly 15 years, DGR has been advocating for biocentric strategies to address our collective ecological crises. Our analysis is unique; we name industrial civilization as the root of the problem.

We rely on grassroots donors like you to keep us going.

As 2024 draws to a close, please consider donating to Deep Green Resistance. We are one of the only environmental organizations in the world who will never accept corporate funding and the heartbreaking compromises we’ve all witnessed time and time again.

As DGR co-founder Derrick Jensen remarks in the book Bright Green Lies: “Mainstream environmentalists now prioritize saving industrial civilization over saving the planet.” At Deep Green Resistance, we pledge to remain Biocentric and to never, ever follow the mainstream playbook.

This holiday season, your tax-deductible donation will help us continue to Elevate and Amplify the needs of the Natural World. Monthly donations are especially helpful for budgeting and planning. Thank you for all that you do to protect wild beings and their critical habitat.

Please join our discussion about:

🦈 Protecting Keystone Species
🐺 Protecting Apex Predators
🌲 Protecting Forests
🌱 Protecting Grasslands
🌎 Promoting Biocentrism

Please Consider Supporting Deep Green Resistance!

Not all of us can be on the front lines. But we can all contribute. We need your help for this. Your financial support makes our work possible. Every donation makes a big difference!

Monthly donors are the backbone of our fundraising because they provide us with reliable, steady income. This allows us to plan ahead. Becoming a monthly donor, or increasing your contribution amount, is the single most important thing we can do to boost our financial base.

If you would like to send a check for a tax-deductible donation, make it out to “Deep Green Resistance” and mail it to:

Deep Green Resistance
PO Box 903
Crescent City, California 95531

contact@deepgreenresistance.org

Thank you for your considering an end of the year donation for Deep Green Resistance!

Here is the recording of this event on YouTube.