Renewable Energy Isn’t Replacing Fossil Fuel Energy

Renewable Energy Isn’t Replacing Fossil Fuel Energy

Editor’s note: It is true that wind and heat from the sun are renewable but the devices used to capture that energy are not. Creating such devices only adds on to a non-existing carbon budget. Richard Heinberg, the author of the following article, is an advocate for “renewable” energy as a part of the “transition” to a post carbon civilization. However, the following article demonstrates that the so-called transition is not happening in real life. In reality, civilization and a “post-carbon” future is an oxymoron. Civilization cannot survive in a post-carbon future. It is highly unlikely that humanity will willingly transition out of civilization, so it must be brought down “by any means possible”. The best way to accomplish that is through organizing. The sooner it is brought down, the better for the planet.

For more on the impracticality of renewables, read Bright Green Lies.


By Richard Heinberg / CounterPunch

Despite all the renewable energy investments and installations, actual global greenhouse gas emissions keep increasing. That’s largely due to economic growth: While renewable energy supplies have expanded in recent years, world energy usage has ballooned even more—with the difference being supplied by fossil fuels. The more the world economy grows, the harder it is for additions of renewable energy to turn the tide by actually replacing energy from fossil fuels, rather than just adding to it.

The notion of voluntarily reining in economic growth in order to minimize climate change and make it easier to replace fossil fuels is political anathema not just in the rich countries, whose people have gotten used to consuming at extraordinarily high rates, but even more so in poorer countries, which have been promised the opportunity to “develop.”

After all, it is the rich countries that have been responsible for the great majority of past emissions (which are driving climate change presently); indeed, these countries got rich largely by the industrial activity of which carbon emissions were a byproduct. Now it is the world’s poorest nations that are experiencing the brunt of the impacts of climate change caused by the world’s richest. It’s neither sustainable nor just to perpetuate the exploitation of land, resources, and labor in the less industrialized countries, as well as historically exploited communities in the rich countries, to maintain both the lifestyles and expectations of further growth of the wealthy minority.

From the perspective of people in less-industrialized nations, it’s natural to want to consume more, which only seems fair. But that translates to more global economic growth, and a harder time replacing fossil fuels with renewables globally. China is the exemplar of this conundrum: Over the past three decades, the world’s most populous nation lifted hundreds of millions of its people out of poverty, but in the process became the world’s biggest producer and consumer of coal.

The Materials Dilemma

Also posing an enormous difficulty for a societal switch from fossil fuels to renewable energy sources is our increasing need for minerals and metals. The World Bank, the IEA, the IMF, and McKinsey and Company have all issued reports in the last couple of years warning of this growing problem. Vast quantities of minerals and metals will be required not just for making solar panels and wind turbines, but also for batteries, electric vehicles, and new industrial equipment that runs on electricity rather than carbon-based fuels.

Some of these materials are already showing signs of increasing scarcity: According to the World Economic Forum, the average cost of producing copper has risen by over 300 percent in recent years, while copper ore grade has dropped by 30 percent.

Optimistic assessments of the materials challenge suggest there are enough global reserves for a one-time build-out of all the new devices and infrastructure needed (assuming some substitutions, with, for example, lithium for batteries eventually being replaced by more abundant elements like iron). But what is society to do as that first generation of devices and infrastructure ages and requires replacement?

Circular Economy: A Mirage?

Hence the rather sudden and widespread interest in the creation of a circular economy in which everything is recycled endlessly. Unfortunately, as economist Nicholas Georgescu-Roegen discovered in his pioneering work on entropy, recycling is always incomplete and always costs energy. Materials typically degrade during each cycle of use, and some material is wasted in the recycling process.

A French preliminary analysis of the energy transition that assumed maximum possible recycling found that a materials supply crisis could be delayed by up to three centuries. But will the circular economy (itself an enormous undertaking and a distant goal) arrive in time to buy industrial civilization those extra 300 years? Or will we run out of critical materials in just the next few decades in our frantic effort to build as many renewable energy devices as we can in as short a time as possible?

The latter outcome seems more likely if pessimistic resource estimates turn out to be accurate. Simon Michaux of the Finnish Geological Survey finds that “[g]lobal reserves are not large enough to supply enough metals to build the renewable non-fossil fuels industrial system … Mineral deposit discovery has been declining for many metals. The grade of processed ore for many of the industrial metals has been decreasing over time, resulting in declining mineral processing yield. This has the implication of the increase in mining energy consumption per unit of metal.”

Steel prices are already trending higher, and lithium supplies may prove to be a bottleneck to rapidly increasing battery production. Even sand is getting scarce: Only certain grades of the stuff are useful in making concrete (which anchors wind turbines) or silicon (which is essential for solar panels). More sand is consumed yearly than any other material besides water, and some climate scientists have identified it as a key sustainability challenge this century. Predictably, as deposits are depleted, sand is becoming more of a geopolitical flashpoint, with China recently embargoing sand shipments to Taiwan with the intention of crippling Taiwan’s ability to manufacture semiconductor devices such as cell phones.

To Reduce Risk, Reduce Scale

During the fossil fuel era, the global economy depended on ever-increasing rates of extracting and burning coal, oil, and natural gas. The renewables era (if it indeed comes into being) will be founded upon the large-scale extraction of minerals and metals for panels, turbines, batteries, and other infrastructure, which will require periodic replacement.

These two economic eras imply different risks: The fossil fuel regime risked depletion and pollution (notably atmospheric carbon pollution leading to climate change); the renewables regime will likewise risk depletion (from mining minerals and metals) and pollution (from dumping old panels, turbines, and batteries, and from various manufacturing processes), but with diminished vulnerability to climate change. The only way to lessen risk altogether would be to reduce substantially society’s scale of energy and materials usage—but very few policymakers or climate advocacy organizations are exploring that possibility.

Climate Change Hobbles Efforts to Combat Climate Change

As daunting as they are, the financial, political, and material challenges to the energy transition don’t exhaust the list of potential barriers. Climate change itself is also hampering the energy transition—which, of course, is being undertaken to avert climate change.

During the summer of 2022, China experienced its most intense heat wave in six decades. It impacted a wide region, from central Sichuan Province to coastal Jiangsu, with temperatures often topping 40 degrees Celsius, or 104 degrees Fahrenheit, and reaching a record 113 degrees in Chongqing on August 18. At the same time, a drought-induced power crisis forced Contemporary Amperex Technology Co., the world’s top battery maker, to close manufacturing plants in China’s Sichuan province. Supplies of crucial parts to Tesla and Toyota were temporarily cut off.

Meanwhile, a similarly grim story unfolded in Germany, as a record drought reduced the water flow in the Rhine River to levels that crippled European trade, halting shipments of diesel and coal, and threatening the operations of both hydroelectric and nuclear power plants.

A study published in February 2022 in the journal Water found that droughts (which are becoming more frequent and severe with climate change) could create challenges for U.S. hydropower in Montana, Nevada, Texas, Arizona, California, Arkansas, and Oklahoma.

Meanwhile, French nuclear plants that rely on the Rhône River for cooling water have had to shut down repeatedly. If reactors expel water downstream that’s too hot, aquatic life is wiped out as a result. So, during the sweltering 2022 summer, Électricité de France (EDF) powered down reactors not only along the Rhône but also on a second major river in the south, the Garonne. Altogether, France’s nuclear power output has been cut by nearly 50 percent during the summer of 2022. Similar drought- and heat-related shutdowns happened in 2018 and 2019.

Heavy rain and flooding can also pose risks for both hydro and nuclear power—which together currently provide roughly four times as much low-carbon electricity globally as wind and solar combined. In March 2019, severe flooding in southern and western Africa, following Cyclone Idai, damaged two major hydro plants in Malawi, cutting off power to parts of the country for several days.

Wind turbines and solar panels also rely on the weather and are therefore also vulnerable to extremes. Cold, cloudy days with virtually no wind spell trouble for regions heavily reliant on renewable energy. Freak storms can damage solar panels, and high temperatures reduce panels’ efficiency. Hurricanes and storm surges can cripple offshore wind farms.

The transition from fossil fuel to renewables faces an uphill battle. Still, this switch is an essential stopgap strategy to keep electricity grids up and running, at least on a minimal scale, as civilization inevitably turns away from a depleting store of oil and gas. The world has become so dependent on grid power for communications, finance, and the preservation of technical, scientific, and cultural knowledge that, if the grids were to go down permanently and soon, it is likely that billions of people would die, and the survivors would be culturally destitute. In essence, we need renewables for a controlled soft landing. But the harsh reality is that, for now, and in the foreseeable future, the energy transition is not going well and has poor overall prospects.

We need a realistic plan for energy descent, instead of foolish dreams of eternal consumer abundance by means other than fossil fuels. Currently, politically rooted insistence on continued economic growth is discouraging truth-telling and serious planning for how to live well with less.


Richard Heinberg is Senior Fellow of Post Carbon Institute, and is regarded as one of the world’s foremost advocates for a shift away from our current reliance on fossil fuels. He is the author of fourteen books, including some of the seminal works on society’s current energy and environmental sustainability crisis.

Featured image by American Public Power Association on Unsplash

Declaring Climate Emergency – What Does It Really Mean?

Declaring Climate Emergency – What Does It Really Mean?

Editor’s note: Mainstream environmentalists have been demanding that countries across the world declare a “climate emergency.” But what does a climate emergency mean? What will the consequences be? Is there a possibility that it will be more detrimental to the environment? In this piece, Elisabeth Robson argues how declaring a climate emergency can be worse for the environment.


By Elisabeth Robson/Protect Thacker Pass

“Climate emergency”. We hear these words regularly these days, whenever there is a wild fire, a flood, or an extreme weather event of any kind. We hear these words at the annual Conference of Parties (COPs) on climate change held by the United Nations Framework Convention on Climate Change (UNFCCC), including at the COP27 meeting happening right now in Egypt. And we hear these words regularly from organizations petitioning the U.S. government to “declare a climate emergency”, and from Senators requesting the same.

Most recently, here in the U.S., we heard these words on October 4, 2022 when a group of US Senators led by Senator Jeff Merkley (D-OR) urged President Biden to “build on the inflation reduction act” and “declare a climate emergency”, writing: “Declaring a climate emergency could unlock the broad powers of the International Emergency Economic Powers Act and the Stafford Act*, allowing you to immediately pursue an array of regulatory and administrative actions to slash emissions, protect public health, support national and energy security, and improve our air and water quality.”

The requests by these Senators include two related specifically to electric vehicles:

* Maximize the adoption of electric vehicles, push states to reduce their transportation-related greenhouse gas emissions, and support the electrification of our mass transit;

* Transition the Department of Defense non-tactical vehicle fleet to electric and zero-emission vehicles, install solar panels on military housing, and take other aggressive steps to decrease its environmental impact.

The Senators continue, “The climate crisis is one of the biggest emergencies that our country has ever faced and time is running out. We need to build off the momentum from the IRA and make sure that we achieve the ambition this crisis requires, and what we have promised the world.  We urge you to act boldly, declare this crisis the national emergency that it is, and embark upon significant regulatory and administrative action.”

What the Senators are requesting is that President Biden invoke the National Emergencies Act (NEA) to go above and beyond what the Biden Administration has already done to take action in this “climate emergency” by invoking the Defense Production Act and passing the Inflation Reduction Act. This is not the first time a US president has been asked to declare a climate emergency by members of Congress, but it is the most recent.

Invoking the Defense Production Act, as the administration did in April, 2022, allows the administration to support domestic mining for critical minerals (including lithium, cobalt, nickel, and manganese, which readers of this blog will recognize as essential ingredients in batteries for EVs and energy storage) with federal funding and incentives in the name of national security.

The Inflation Reduction Act, passed in August, 2022, codified into law support for domestic mining of 50 “critical minerals” to supply renewables and battery manufacturing. This law directly supports EV manufacturing by offering tax credits to car companies that use domestic supplies of metals and minerals above a certain threshold (40% to start).

We’ve already seen how the Biden Administration is using its powers under these two acts (the Defense Production Act (DPA) and the Inflation Reduction Act (IRA)) to encourage more domestic mining for “critical minerals” and the expansion of electric vehicles and charging stations. Mining companies are “celebrating”, as one journalist wrote, including Lithium Americas Corporation (LAC) whose CEO said of the IRA “We’re delighted with it.” Car companies getting support from the government to expand manufacturing, companies getting support for building out the EV charging networks, battery-making companies, and the Department of Defense must also be celebrating the infusion of government cash and the tax incentives coming their way.

The administration would have even more power to fund and incentivize mining, manufacturing, development and industry with the National Emergencies Act, or NEA. The NEA empowers the President to activate special powers during a crisis. These powers could include loan guarantees, fast tracking permits, and even suspending existing laws that protect the environment, such as the Clean Air Act, if the administration believes these laws get in the way of mining, manufacturing, and other industrial development required for addressing the climate emergency.

As described in the Brennan Center’s Guide to Emergency Powers and Their Use, in the event a national emergency is declared, such as a climate emergency, the “President may authorize an agency to guarantee loans by private institutions in order to finance products and services essential to the national defense without regard to normal procedural and substantive requirements for such loan guarantees” [emphasis added]. This authorization could occur, as stated in the NEA, “during a period of national emergency declared by Congress or the President” or “upon a determination by the President, on a nondelegable basis, that a specific guarantee is necessary to avert an industrial resource or critical technology item shortfall that would severely impair national defense capability.”

Included in the long list of requirements for a Department of Energy (DoE) loan guarantee, the loan applicant must supply “A report containing an analysis of the potential environmental impacts of the proposed project that will enable DoE to:

(i) Assess whether the proposed project will comply with all applicable environmental requirements; and

(ii) Undertake and complete any necessary reviews under the National Environmental Policy Act (NEPA) of 1969.”

In the event a climate emergency is declared, could the administration then be able to “authorize an agency to guarantee loans” to a corporation “without regard” for these requirements? If so, then a corporation could potentially skip the NEPA process currently required for a new mining project, and not bother to do an assessment about whether their project would comply with all applicable environmental requirements (e.g. requirements under the Endangered Species Act, the Clean Air Act, and the Clean Water Act).

In other words, a corporation could proceed with their project, such as a lithium mine, with little to no environmental oversight if the Administration believes the resulting products are “essential to national defense.”

We already know that the Biden Administration believes that lithium production is essential to national defense: they have explicitly stated this in their invocation of the Defense Production Act and in the Inflation Reduction Act.

Declaring a “climate emergency” would give the administration free rein to allow corporations to sidestep environmental procedures that are normally required during the process of permitting a project like a mine, resulting in more harm to the environment.

Aside from these technical details about the implications of declaring a climate emergency, we know that most organizations, including those participating in COP27 and the 1,100 organizations that signed a February 2022 letter to President Biden urging him to declare a climate emergency, are demanding actions that would further harm the environment, such as “maximiz[ing] the adoption of electric vehicles” and “transition[ing] the Department of Defense…to electric and zero-emission vehicles” as demanded in the Senators’ October 4 letter to President Biden.

While these actions may reduce some greenhouse gas emissions, neither of these actions will reduce other harms to the environment, because these actions require more extraction and more development. And neither of these actions will reduce greenhouse gas emissions at a scope large enough to solve the climate crisis. What the activists, organizations, and Senators crying out for the President to declare a climate emergency seemingly fail to understand is that the climate emergency isn’t the only emergency we face.

Industrial development, and more specifically, industrial agriculture, has caused a 70% reduction in wildlife numbers just since 1970. This is an emergency inextricably linked with and just as dire as the climate crisis, yet the Senators and organizations calling for a climate emergency don’t demand a reduction in overall industrial development, only a reduction in fossil fuels development.

Each year, 24 billion tons of topsoil are lost, due primarily to industrial agriculture practices and deforestation. In 2014, the UN estimated that if current degradation rates continue, all the world’s top soil could be gone within 60 years. This too is an emergency inextricably linked with and just as dire as the climate crisis, yet again, the Senators and organizations calling for a climate emergency don’t demand actions to rebuild and restore soil.

Industry, including the military-industrial complex, has polluted the entire planet with toxic levels of mercury, lead, PCBs, dioxins, forever chemicals such as PFAS chemicals, and micro- and nano-plastics. These toxics are in the water we drink, the food we eat, and the air we breathe—“we” being, of course, not just humans but all wildlife on the planet. Again, this is an emergency just as dire as the climate emergency.

More than 50 million gallons of wastewater contaminated with arsenic, lead, and other toxic metals flows daily from some of the most contaminated mining sites in the U.S. into groundwater, rivers, and ponds. Mining waste that is captured must be stored and/or treated indefinitely “for perhaps thousands of years,” as the Associated Press wrote memorably in a 2019 article on mining waste. Replicate this kind of mining waste pollution around the world, and obviously, this too is an emergency just as dire as the climate emergency.

There are many such emergencies. Humans, our industry, and our developments have destroyed half of the land on Earth, and one third of all Earth’s forests. 60% of all mammals on Earth are now human livestock, mostly cattle and pigs, and 70% of all birds are now farmed poultry. This along with the staggering loss of wild beings due to human development and the destruction of habitat has resulted in the sixth mass extinction of life in Earth’s history—the only one caused by us.

All of these emergencies are related to climate change, of course. The more our societies develop, the more harm we do to the natural world, including the atmosphere.

“Development” is really global technological escalation by industry to extract more materials more efficiently, destroying more of the planet in its relentless theft of “resources.” The more our societies develop, the less habitat for life is left, and the more we overshoot the ability of the Earth to sustain us and the rest of the species on Earth.

We ignore these other emergencies at our peril. Indeed, ignoring them in favor of the climate emergency often exacerbates these emergencies. When the organizations mentioned above demand increases in electric vehicles, increases in batteries, increases in renewables, and increases in climate mitigation and adaptation (building sea walls, retrofitting and improving roads and bridges, moving entire cities), what they are demanding is more development, not less, which means more harm, not less, to the natural world. For instance, we know that the materials required to supply the projected battery demand in 2035 will require 384 new mines. That’s to supply the materials just for batteries.

Ultimately, what most organizations that support declaring a climate emergency want is not to protect life on this planet, but rather, to protect this way of life: the one we’re living now, the one that’s killing the planet. These organizations believe that we can simply replace CO2-emitting fossil fuels with EVs and so-called renewables, and keep living these ecocidal lifestyles we have become accustomed to.

We know this to be true, because we can see it directly in the actions already taken by the Biden administration, actions that will dramatically increase mining in the U.S. Mining increases the destruction of the natural world, meaning MORE habitat loss, not less. Mining increases toxic pollution. Mining increases deforestation. Mining increases top soil loss. In other words, these actions will significantly worsen all the emergencies we, and all life on the planet, face.

Rather than demand governments around the world declare a “climate emergency,” we could instead demand governments around the world declare an “ecological overshoot emergency.” In place of demands to increase industry, increase mining, and build new cars and new energy infrastructure, we could instead demand governments reduce industry, end mining, help wean us completely away from cars, and dramatically reduce energy extraction, production, and consumption. In place of demands to continue a way of life that cannot possibly continue much longer, with its relentless destruction of the natural world, we could instead demand that all societies around the world center what makes life possible on this planet: flourishing and fecund natural communities, of which we could be a thriving part, rather than dominate and destroy.

Join us and help Protect Thacker Pass, or work to defend the wild places you love. We can’t save the planet by destroying the planet in the name of a “climate emergency.”

~~~

* In their October 4 letter to President Biden, the Senators mention how invoking the NEA could “unlock the broad powers of the International Emergency Economic Powers Act and the Stafford Act.” The International Emergency Economic Powers Act (IEEPA) authorizes the president to regulate international commerce after declaring a national emergency, for instance by blocking transactions with corporations based in foreign countries, or by limiting trade with those foreign countries. This would, like the IRA, incentivize building domestic supply chains and manufacturing capabilities. The Stafford Disaster Relief and Emergency Assistance Act encourages states to develop disaster preparedness plans, and provides federal assistance programs in the event of disaster. In the event of an emergency, such as a declared climate emergency, the President could direct any federal agency (e.g. FEMA) to use its resources to aid a state or local government in emergency assistance efforts, and to help states prepare for anticipated hazards. In the event of a declared climate emergency, this would unleash federal funds and other incentive programs to states to build and harden infrastructure that is vulnerable to wildfire, floods, severe storms, ocean acidification, and other effects of climate change.


Featured Image: Climate emergency – Melbourne #MarchforScience on #Earthday by Takver from Australia. Via Wikemedia Commons (CC BY 2.0)

 

What does it take to make an electric car?Are Electric Cars a Solution?

Ban Deep Sea Mining: More Nations Join the Call for a Moratorium

Ban Deep Sea Mining: More Nations Join the Call for a Moratorium

Editor’s note: Deep sea mining could begin in about a year. But opponents of deep sea mining are taking their arguments onto the world stage at the U.N. Ocean Conference in Portugal and increasing numbers of Pacific leaders have added their voice to deep sea mining. Palau, Fiji, and Samoa are the latest to call for a moratorium on the emerging industry, in the first governmental alliance of its kind. Also French President Emmanuel Macron says we have to create the legal framework to stop mining in the high seas and not allow activities that put in danger the ecosystems that depend on them. France joins the global call for a ban on deep sea mining. 

The tide has turned.


By Elizabeth Claire AlbertsMONGABAY

  • At the U.N. Ocean Conference taking place this week in Lisbon, momentum has been building in support of a moratorium on deep sea mining, an activity projected to have far-reaching consequences for marine ecosystems, biodiversity, and global fisheries.
  • The Pacific island nation of Palau launched an alliance of countries that support a moratorium, which Fiji and Samoa subsequently joined.
  • A global network of parliamentarians has also banded together to support a moratorium and to look for a legal way to enforce it.
  • As things stand, deep sea mining could begin a year from now, with the International Seabed Authority, the body tasked with regulating the activity, drawing up the rules that would allow mining to commence.

LISBON — Should we mine the seabed, a part of the world rich in resources, but less mapped than the surface of the moon? A growing number of politicians, scientists and conservationists are saying that we shouldn’t — at least, not until we fully understand the consequences of doing so.

At an event on June 27 at the U.N. Ocean Conference (UNOC) in Lisbon, Surangel Whipps Jr., the president of the Pacific island nation of Palau, took to the podium to announce that his nation was launching an alliance of countries pushing for a moratorium on deep-sea mining.

“Palau believes that in this instance, deep sea mining should be discouraged to the greatest extent possible,” Whipps said to a packed room. “Deep sea mining compromises the integrity of our ocean habitat that supports marine biodiversity and contributes to mitigating the impacts of climate change.”

Whipps was joined on stage by famous oceanographer Sylvia Earle, who said the risks of deep sea mining should be the “headline issue … of our time.”

“There is no way that we should be going forward now, or maybe ever, with tearing up these systems that we don’t know how to put back together again,” Earle said. “The greatest discovery perhaps of the 20th century about the ocean was discovering the magnitude of our ignorance.”

At the launch of the new alliance, the Pacific island nations of Fiji and Samoa also announced they would also be joining the coalition. The following day, Tuvalu and Guam expressed their support, although they have yet to formally join the alliance.

alliance of countries
The Pacific island nation of Palau launched an alliance of countries that support a moratorium, which Fiji and Samoa subsequently joined. Image by Comms Inc.

‘Different voices of concern’

Experts say they’re hopeful that others will come forward, if not this week at the UNOC, then in the weeks that follow.

Chile, for instance, recently called for a 15-year moratorium on deep-sea mining at the annual meeting of state parties to the United Nations Convention on the Law of the Sea (UNCLOS) at the U.N. headquarters in New York, citing concerns about environmental damage and the lack of scientific data. However, Chile hasn’t yet joined the alliance either.

“There are different voices of concern who express their concern a little bit differently, but they’re all about slowing down because there’s no rush,” Jessica Battle, the lead on WWF’s deep-sea mining initiative, told Mongabay in an interview in Lisbon. “There really isn’t any rush.”

Sian Owen, the global coordinator for the Deep Sea Conservation Coalition (DSCC), a consortium of 90 international organizations working to protect the deep sea, said that while the alliance itself has no authority to force the International Seabed Authority (ISA) — the U.N.-linked agency charged with regulating deep-sea mining — to impose a moratorium, it does have the “authority of persuasion.”

“What this does, for the first time, is create a space where states and governments can come together and say, ‘Actually, we have some concerns about this idea of opening up a vast new extractive frontier in one of the last wildernesses on our planet,” Owen told Mongabay.

At a separate event at the UNOC on June 28, members of parliament and other leaders appealed to the global network of parliamentarians to sign a declaration that also calls for a moratorium. At the time of writing, the declaration had been signed by more than 70 individuals from 35 countries.

“On this issue of moratorium, we don’t see things moving fast enough,” Marie Toussaint, a member of the European Parliament who launched the declaration, told Mongabay in Lisbon. “But we also have to acknowledge the fact that it’s been only one year since the requests for exploiting the seabed [have been] presented.”

Toussaint added that she and other allies are currently working on a legal framework that would oblige the ISA to carry out the moratorium that many are calling for.

A jellyfish in deep sea
A jellyfish in deep sea. Deep-sea mining compromises the integrity of our ocean habitat that supports marine biodiversity and contributes to mitigating the impacts of climate change, said Surangel Whipps Jr. Image by NOAA Office of Ocean Exploration and Research, 2015 Hohonu Moana via Flickr.

‘Potential sources of metal supply’

Interest in deep-sea mining began in the 1970s, then picked up again in the last two decades as nations explored the possibility of mining the seabed in their own coastal waters as well as the high seas, the areas of the ocean to which no country can claim jurisdiction. Then, in June 2021, the Pacific island nation of Nauru triggered an obscure rule embedded in the UNCLOS that requests the ISA to approve a plan for exploitation with whatever rules are currently in place within two years. That means that deep-sea mining could be set into motion in about a year’s time from now.

The company positioned to benefit the most from this early start is Nauru Ocean Resources Inc. (NORI), a subsidiary of the Canadian-owned The Metals Company (TMC), formerly known Deep Green. TMC, which is a publicly traded company listed on the NASDAQ exchange, has long argued that it is necessary to mine the deep sea to procure minerals like cobalt, nickel, copper and manganese to help the world transition to electric cars and other renewable technologies. These minerals can be found in abundance in the ocean’s abyssal plains in the form of potato-sized rock concretions known as polymetallic nodules. TMC and other companies have their eyes on a part of the ocean known as the Clarion Clipperton Zone in the Pacific Ocean, roughly between Hawai‘i and Mexico, which harbors vast quantities of these nodules.

“Expected metal shortages will derail the energy transition,” Gerard Barron, TMC’s chairman and CEO, who was not at the UNOC, told Mongabay in an email. “We owe it to the planet and people living on it, to stay calm, consider all potential sources of metal supply and compare the lifecycle impacts of our options on a project-by-project basis. Indeed, as the world’s largest source of battery metals, it would be unethical not to fully explore nodules as a solution.”

Many industrialized nations are working toward a swift transition to electric vehicles. For instance, the European Union has just approved a plan to end the sale of combustion-engine vehicles by 2035 in a bid to lower its carbon emissions. In the U.S., the Biden administration also announced in 2021 a plan for half of all new vehicles sold to be electric by 2030.

While there is increased demand for electric cars, WWF’s Battle said renewable technologies are quickly evolving to not require minerals sourced from the deep sea, with many innovators preferring to source metals from the circulator economy — that is, recycling it from electronic waste.

“This move to stop this industry from happening … will also accelerate the move to go circular because of the fact that there will be less new minerals coming into circulation, and then the economy is forced to go circular,” Battle said. “If you put more new resources in, there’s less incentive to think about how you can use existing resources.”

Several large car companies, including BMW, Renault, Volkswagen, and Volvo Group, have already pledged not to use any metals from the seabed.

Critics of deep sea mining also say that sourcing metals from the deep sea could destroy ecosystems that have taken millions of years to form, irreversibly harm marine biodiversity, and disrupt global fisheries.

‘An uphill battle’

The ISA, the body mandated to both protect the seabed and ensure equal access to its resources, seems to support the launch of deep-sea mining. When Nauru triggered the two-year rule, the ISA scheduled a series of meetings to help finalize the mining code that would allow exploitation to begin, despite a slew of warnings from scientists and other experts about the dangers associated with mining.

Critics of the ISA also say the body is skewed toward mining rather than conservation, and for that reason, they say the ISA is “not fit for purpose.” Concerns have also been raised about the lack of transparency of the ISA’s activities and decision-making processes.

“The ISA is an institution that is very biased towards mining,” Owen said. “So it’s an uphill battle.”

Yet the ISA presents a position of environmental stewardship. Michael Lodge, the ISA’s secretary-general, speaking at an interactive dialogue at an official event at the U.N. Ocean Conference on June 29, said the ISA would “regulate all related activities and in doing so applying the highest possible environmental standards using the best scientific evidence to create global standards which will form a benchmark for the rest of the world.”

Another speaker at the dialogue, Alex Herman, the seabed minerals commissioner of the Cook Islands Seabed Minerals Authority, the group overseeing mining in that territory’s waters, said seabed mining offers many “untapped possibilities.” She also appealed to other Pacific nations to unite in support of this activity.

“Our Pacific leaders have long held our commitment to working together,” Herman said. “Moving forward as a collective has proven time and again that we can resolve the most complex issues through open and frank discussions.”

‘A flood of support’

While deep sea mining has not yet begun, the ISA is proceeding with its plans to approve a set of rules that would allow it to begin. At the same time, conservationists say support for a moratorium is gaining strength.

“I’m very hopeful,” Owen said. “I feel like we’ve got a momentum, it’s picking up speed, and there’s this collective sense of urgency of learning from the past, of not making the same mistakes, of taking nature for granted, and of actually evaluating the ecosystem functions and valuing what the ocean in a healthy state brings to us.”

Phil McCabe, the Pacific liaison for the DSCC, said he believes there’s been a “seismic shift in the political landscape” in terms of support for a moratorium at the UNOC.

“We are in dialogue with a number of other states [and] it’s all tracking towards a flood of support behind this moratorium, not only from the Pacific [but from] Latin American countries, European countries,” McCabe told Mongabay in Lisbon.

He added: “We all know what the right thing is here.”

 

Elizabeth Claire Alberts is a staff writer for Mongabay. Follow her on Twitter @ECAlberts.


 

 

 

Banner image: Photo by Tavis Beck on Unsplash

Electric Vehicles: Back to the Future? [Part 1/2]

Electric Vehicles: Back to the Future? [Part 1/2]

By Frédéric Moreau

In memory of Stuart Scott

Each year while winter is coming, my compatriots, whom have already been told to turn off the tap when brushing their teeth, receive a letter from their electricity supplier urging them to turn down the heat and turn off unnecessary lights in case of a cold snap in order to prevent an overload of the grid and a possible blackout. At the same time the French government, appropriately taking on the role of advertiser for the national car manufacturers in which it holds shares¹, is promoting electric cars more and more actively. Even though electric vehicles (EV) have existed since the end of the 19th century (the very first EV prototype dates back to 1834).

They also plan to ban the sale of internal combustion engine cars as early as 2035, in accordance with European directives. Electric cars will, of course, have to be recharged, especially if you want to be able to turn on a very energy-consuming heater during cold spells.

The electric car, much-vaunted to be the solution to the limitation of CO2 emissions responsible for climate change, usually feeds debate and controversie focusing mainly on its autonomy. It depends on the on-board batteries and their recharging capacity, as well as the origin of the lithium in the batteries and the origin of their manufacture. But curiosity led me to be interested in all of the other aspects largely forgotten, very likely on purpose. Because the major problem, as we will see, is not so much the nature of the energy as it is the vehicle itself.

The technological changes that this change of energy implies are mainly motivated by a drop in conventional oil production which peaked in 2008 according to the IEA². Not by a recent awareness and sensitization to the protection of the environment that would suddenly make decision-makers righteous, altruistic and selfless. A drop that has so far been compensated for by oil from tar sands and hydraulic fracturing (shale oil). Indeed, the greenhouse effect has been known since 1820³, the role of CO2 in its amplification since 1856⁴ and the emission of this gas into the atmosphere by the combustion of petroleum-based fuels since the beginning of the automobile. As is the case with most of the pollutions of the environment, against which the populations have in fact never stopped fighting⁵, the public’s wishes are not often followed by the public authorities. The invention of the catalytic converter dates from 1898, but we had to wait for almost a century before seeing it adopted and generalized.

There are more than one billion private cars in the world (1.41 billion exactly when we include commercial vehicles and corporate SUV⁶), compared to 400 million in 1980. They are replaced after an average of 15 years. As far as electric cars are concerned, batteries still account for 30% of their cost. Battery lifespan, in terms of alteration of their charging capacity, which must not fall below a certain threshold, is on average 10 years⁷. However, this longevity can be severely compromised by intermittent use of the vehicle, systematic use of fast charging, heating, air conditioning and the driving style of the driver. It is therefore likely that at the end of this period owners might choose to replace the entire vehicle, which is at this stage highly depreciated, rather than just the batteries at the end of their life. This could cut the current replacement cycle by a third, much to the delight of manufacturers.

Of course, they are already promising much cheaper batteries with a life expectancy of 20 years or even more, fitted to vehicles designed to travel a million kilometers (actually just like some old models of thermal cars). In other words, the end of obsolescence, whether planned or not. But should we really take the word of these manufacturers, who are often the same ones who did not hesitate to falsify the real emissions of their vehicles as revealed by the dieselgate scandal⁸? One has the right to be seriously skeptical. In any case, the emergence of India and China (28 million new cars sold in 2016 in the Middle Kingdom) is contributing to a steady increase in the number of cars on the road. In Beijing alone, there were 1,500 new registrations per day in 2009. And now with the introduction of quotas the wait for a car registration can be up to eight years.

For the moment, while billions of potential drivers are still waiting impatiently, it is a question of building more than one billion private cars every fifteen years, each weighing between 800 kilos and 2.5 tons. The European average being around 1.4 tons or 2 tons in the United States. This means that at the beginning of the supply chain, about 15 tons of raw materials are needed for each car⁹. Though it is certainly much more if we include the ores needed to extract rare earths. In 2050, at the current rate of increase, we should see more than twice as many cars. These would then be replaced perhaps every ten years, compared with fifteen today. The raw materials must first be extracted before being transformed. Excavators, dumpers (mining trucks weighing more than 600 tons when loaded for the CAT 797F) and other construction equipment, which also had to be built first, run on diesel or even heavy oil (bunker) fuel. Then the ores have to be crushed and purified, using at least 200 m³ of water per ton in the case of rare earths¹⁰.  An electric car contains between 9 and 11 kilos of rare earths, depending on the metal and its processing. Between 8 and 1,200 tons of raw ore must be extracted and refined to finally obtain a single kilo¹¹. The various ores, spread around the world by the vagaries of geology, must also be transported to other processing sites. First by trucks running on diesel, then by bulk carriers (cargo ships) running on bunker fuel, step up from coal, which 100% of commercial maritime transport uses, then also include heavy port infrastructures.

A car is an assembly of tens of thousands of parts, including a body and many other metal parts. It is therefore not possible, after the necessary mining, to bypass the steel industry. Steel production requires twice as much coal because part of it is first transformed into coke in furnaces heated from 1,000°C to 1,250°C for 12 to 36 hours, for the ton of iron ore required. The coke is then mixed with a flux (chalk) in blast furnaces heated from 1800 to 2000°C¹². Since car makers use sophisticated alloys it is often not possible to recover the initial qualities and properties after remelting. Nor to separate the constituent elements, except sometimes at the cost of an energy expenditure so prohibitive as to make the operation totally unjustified. For this reason the alloyed steels (a good dozen different alloys) that make up a car are most often recycled into concrete reinforcing bars¹³,  rather than into new bodies as we would like to believe, in a virtuous recycling, that would also be energy expenditure free.

To use an analogy, it is not possible to “de-cook” a cake to recover the ingredients (eggs, flour, sugar, butter, milk, etc.) in their original state. Around 1950, “the energy consumption of motorized mobility consumed […] more than half of the world’s oil production and a quarter of that of coal¹⁴”. As for aluminum, if it is much more expensive than steel, it is mainly because it is also much more energy-intensive. The manufacturing process from bauxite, in addition to being infinitely more polluting, requires three times more energy than steel¹⁵. It is therefore a major emitter of CO2. Glass is also energy-intensive, melting at between 1,400°C and 1,600°C and a car contains about 40 kg of it¹⁶.

Top: Coal mine children workers, Pennsylvania, USA, 1911. Photo: Lewis WICKES HINE, CORBIS
Middle left to right: Datong coal mine, China, 2015. Photo: Greg BAKER, AFP. Graphite miner, China.
Bottom: Benxi steelmaking factory, China.

A car also uses metals for paints (pigments) and varnishes. Which again means mining upstream and chemical industry downstream. Plastics and composites, for which 375 liters of oil are required to manufacture the 250kg incorporated on average in each car, are difficult if not impossible to recycle. Just like wind turbine blades, another production of petrochemicals, which are sometimes simply buried in some countries when they are dismantled¹⁷. Some plastics can only be recycled once, such as PET bottles turned into lawn chairs or sweaters, which are then turned into… nothing¹⁸. Oil is also used for tires. Each of which, including the spare, requires 27 liters for a typical city car, over 100 liters for a truck tire.

Copper is needed for wiring and windings, as an electric car consumes four times as much copper as a combustion engine car. Copper extraction is not only polluting, especially since it is often combined with other toxic metals such as cadmium, lead, arsenic and so on, it is also particularly destructive. It is in terms of mountain top removal mining, for instance, as well as being extremely demanding in terms of water. Chile’s Chuquicamata open-pit mine provided 27.5% of the world’s copper production and consumed 516 million m³ of water for this purpose in 2018¹⁹. Water that had to be pumped, and above all transported, in situ in an incessant traffic of tanker trucks, while the aquifer beneath the Atacama desert is being depleted. The local populations are often deprived of water, which is monopolized by the mining industry (or, in some places, by Coca-Cola). They discharge it, contaminated by the chemicals used during refining operations, to poisoned tailings or to evaporate in settling ponds²⁰. The inhumane conditions of extraction and refining, as in the case of graphite in China²¹, where depletion now causes it to be imported from Mozambique, or of cobalt and coltan in Congo, have been regularly denounced by organizations such as UNICEF and Amnesty International²².

Dumper and Chuquicamata open-pit copper mine, Chile – Photo: Cristóbal Olivares/Bloomberg

And, of course, lithium is used for the batteries of electric cars, up to 70% of which is concentrated in the Andean highlands (Bolivia, Chile and Argentina), and in Australia and China. The latter produces 90% of the rare earths, thus causing a strategic dependence which limits the possibility of claims concerning human rights. China is now eyeing up the rare earths in Afghanistan, a country not particularly renowned for its rainfall, which favors refining them without impacting the population. China probably doesn’t mind negotiating with the Taliban, who are taking over after the departure of American troops. The issue of battery recycling has already been addressed many times. Not only is it still much cheaper to manufacture new ones, with the price of lithium currently representing less than 1% of the final price of the battery²³, but recycling them can be a new source of pollution, as well as being a major energy consumer²⁴.

This is a broad outline of what is behind the construction of cars. Each of which generates 12-20 tons of CO2 according to various studies, regardless of the energy — oil, electricity, cow dung or even plain water — with which they are supposed to be built. They are dependent on huge mining and oil extraction industries, including oil sands and fracking as well as the steel and chemical industries, countless related secondary industries (i.e. equipment manufacturers) and many unlisted externalities (insurers, bankers, etc.). This requires a continuous international flow of materials via land and sea transport, even air freight for certain semi-finished products, plus all the infrastructures and equipment that this implies and their production. All this is closely interwoven and interdependent, so that they finally take the final form that we know in the factories of car manufacturers, some of whom do not hesitate to relocate this final phase in order to increase their profit margin. It should be remembered here that all these industries are above all “profit-making companies”. We can see this legal and administrative defining of their raison d’être and their motivation. We too often forget that even if they sometimes express ideas that seem to meet the environmental concerns of a part of the general public, the environment is a “promising niche”, into which many startups are also rushing. They only do so if they are in one way or another furthering their economic interests.

Once they leave the factories all these cars, which are supposed to be “clean” electric models, must have roads to drive on. There is no shortage of them in France, a country with one of the densest road networks in the world, with more than one million kilometers of roads covering 1.2% of the country²⁵. This makes it possible to understand why this fragmentation of the territory, a natural habitat for animal species other than our own, is a major contributor to the dramatic drop in biodiversity, which is so much to be deplored.

Top: Construction of a several lanes highway bridge.
Bottom left: Los Angeles, USA. Bottom right: Huangjuewan interchange, China.

At the global level, there are 36 million kilometers of roads and nearly 700,000 additional kilometers built every year ²⁶. Roads on which 100 million tons of bitumen (a petroleum product) are spread²⁷, as well as part of the 4.1 billion tons of cement produced annually²⁸. This contributes up to 8% of the carbon dioxide emitted, at a rate of one ton of this gas per ton of cement produced in the world on average²⁹, even if some people in France pride themselves on making “clean” cement³⁰, which is mixed with sand in order to make concrete. Michèle Constantini, from the magazine Le Point, reminds us in an article dated September 16, 2019, that 40-50 billion tons of marine and river sand (i.e. a cube of about 3 km on a side for an average density of 1.6 tons/m3) are extracted each year³¹.

This material is becoming increasingly scarce, as land-based sand eroded by winds is unsuitable for this purpose. A far from negligible part of these billions of tons of concrete, a destructive material if ever there was one³², is used not only for the construction of roads and freeways, but also for all other related infrastructures: bridges, tunnels, interchanges, freeway service areas, parking lots, garages, technical control centers, service stations and car washes, and all those more or less directly linked to motorized mobility. In France, this means that the surface area covered by the road network as a whole soars to 3%, or 16,500 km². The current pace of development, all uses combined, is equivalent to the surface area of one and a half departments per decade. While metropolitan France is already artificialized at between 5.6% and 9.3% depending on the methodologies used (the European CORINE Land Cover (CLC), or the French Teruti-Lucas 2014)³³, i.e. between 30,800 km² and 51,150 km², respectively, the latter figure which can be represented on this map of France by a square with a side of 226 km. Producing a sterilized soil surface making it very difficult to return it later to other uses. Land from which the wild fauna is of course irremediably driven out and the flora destroyed.

 

In terms of micro-particle pollution, the electric car also does much less well than the internal combustion engine car because, as we have seen, it is much heavier. This puts even more strain on the brake pads and increases tire wear. Here again, the supporters of the electric car will invoke the undeniable efficiency of its engine brake. Whereas city driving, the preferred domain of the electric car in view of its limited autonomy which makes it shun the main roads for long distances, hardly favors the necessary anticipation of its use. An engine brake could be widely used for thermal vehicles, especially diesel, but this is obviously not the case except for some rare drivers.

A recent study published in March 2020 by Emissions Analytics³⁴ shows that micro-particle pollution is up to a thousand times worse than the one caused by exhaust gases, which is now much better controlled. This wear and tear, combined with the wear and tear of the road surface itself, generates 850,000 tons of micro-particles, many of which end up in the oceans³⁵. This quantity will rise to 1.3 million tons by 2030 if traffic continues to increase³⁶. The false good idea of the hybrid car, which is supposed to ensure the transition from thermal to electric power by combining the two engines, is making vehicles even heavier. A weight reaching two tons or more in Europe, and the craze for SUVs will further aggravate the problem.

When we talk about motorized mobility, we need to talk about the energy that makes it possible, on which everyone focuses almost exclusively. A comparison between the two sources of energy, fossil fuels and electricity, is necessary. French electricity production was 537 TWh in 2018³⁷. And it can be compared to the amount that would be needed to run all the vehicles on the road in 2050. By then, the last combustion engine car sold at the end of 2034 will have exhaled its last CO2-laden breath. Once we convert the amount of road fuels consumed annually, a little over 50 billion liters in 2018, into their electrical energy equivalent (each liter of fuel is able to produce 10 kWh), we realize that road fuels have about the same energy potential as that provided by our current electrical production. It is higher than national consumption, with the 12% surplus being exported to neighboring countries. This means a priori that it would be necessary to double this production (in reality to increase it “only” by 50%) to substitute electricity for oil in the entire road fleet… while claiming to reduce by 50% the electricity provided by nuclear power plants³⁸.

Obviously, proponents of the electric car, at this stage still supposed to be clean if they have not paid attention while reading the above, will be indignant by recalling, with good reason, that its theoretical efficiency, i.e. the part of consumed energy actually transformed into mechanical energy driving the wheels, is much higher than that of a car with a combustion engine: 70% (once we have subtracted, from the 90% generally claimed, the losses, far from negligible, caused by charging the batteries and upstream all along the network between the power station that produces the electricity and the recharging station) against 40%. But this is forgetting a little too quickly that the energy required that the mass of a car loaded with batteries, which weigh 300-800 kg depending on the model, is at equal performance and comfort, a good third higher than that of a thermal car.

Let’s go back to our calculator with the firm intention of not violating with impunity the laws of physics which state that the more massive an object is and the faster we want it to move, the more energy we will have to provide to reach this objective. Let’s apply the kinetic energy formula³⁹ to compare a 1200 kg vehicle with a combustion engine and a 1600 kg electric vehicle, both moving at 80km/h. Once the respective efficiencies of the two engines are applied to the results previously obtained by this formula, we see that the final gain in terms of initial energy would be only about 24%, since some of it is dissipated to move the extra weight. Since cars have become increasingly overweight over the decades⁴⁰ (+47% in 40 years for European cars), we can also apply this calculation by comparing the kinetic energy of a Citroën 2CV weighing 480 kg travelling at 80km/h with a Renault ZOE electric car weighing 1,500 kg travelling on the freeway at 130km/h.

The judgment is without appeal since in terms of raw energy, and before any other consideration (such as the respective efficiency of the two engines, inertia, aerodynamics, friction reduction, etc.) and polemics that would aim at drowning the fish to cling to one’s conviction even if it violates the physical laws (in other words, a cognitive dissonance), the kinetic energy of the ZOE is eight times higher than the 2CV! This tends first of all to confirm that the Deuche (nickname for 2CV standing for deux-chevaux, two fiscal horse-power), as much for its construction, its maintenance, its longevity as for its consumption, was probably, as some people claim, the most “ecological” car in history⁴¹.

But above all more ecological as far as energy saving is concerned, all the while failing to promote walking, cycling, public transport, and above all, sobriety in one’s travels. And losing this deplorable habit of sometimes driving up to several hundred kilometers just to go for a stroll or to kill time, therefore promoting antigrowth (an abominable obscenity for our politicians, and most of the classical economists they listen to so religiously). So it would be necessary to go back to making the lightest possible models and to limit their maximum speed. Because even if the formula for calculating kinetic energy is a crude physical constant, that obviously cannot be used as it is to calculate the real consumption of a vehicle. For the initial energy needed to reach the desired velocity, it nevertheless serves as a reliable marker to establish a comparison. To confirm to those for whom it did not seem so obvious until now that the heavier you are, the faster you go the more energy you consume, whatever the nature of that energy is. The pilots of the Rafale, the French fighter aircraft which consumes up to 8,000 liters of kerosene per hour at full power, know this very well.

Having made this brief comparison, we must now look a little more closely at the source of the electricity, because it is an energy perceived as clean. Almost dematerialized, because it simply comes out of the wall (the initial magic of “the electric fairy” has been somewhat eroded over time). Its generation is not necessarily so clean, far from it. In my country, which can thus boast of limiting its carbon footprint, 71% of electricity is generated by nuclear power plants. When it comes to the worldwide average, 64-70% of electricity is generated by fossil fuels – 38 -42%  by coal-fired power plants⁴² (nearly half of which are in China that turns a new one on each week). Apart from Donald Trump, few people would dare to assert, with the aplomb that he is known for, that coal is clean. 22-25% is generated by gas-fired power plants and 3-5% by oil-fired plants. Moreover, electricity generation is responsible for 41% (14.94 GT) of CO2 emissions⁴³ from fossil fuel burning, ahead of transport. And our leaders are often inclined to forget that when it comes to air pollution and greenhouse gases, what goes out the door, or the curtain of the voting booth, has the unfortunate tendency to systematically come back in through the window. We can therefore conclude that the French who drive electric cars are in fact driving a “nuke car” for two-thirds of their consumption. And across the world, drivers of electric cars are actually driving two-thirds of their cars on fossil fuels, while often unaware of this.

[Part II will be published tomorrow]

1 The French Government is the primary shareholder for Renault, with 15%, and a major one for PSA (Citroën and other car makers), with 6.2%.

2 https://en.wikipedia.org/wiki/Peak_oil

3 First described by the French physicist Joseph Fourier.

4 https://www.climate.gov/news-features/features/happy-200th-birthday-eunice-foote-hidden-climate-science-pioneer

5 Jean-Baptiste Fressoz, L’Apocalypse joyeuse. Une histoire du risque technologique, Seuil, 2012 & François Jarrige et Thomas Le Roux, La contamination du monde Seuil, 2017 (The Contamination of the Earth: A History of Pollutions in the Industrial Age, The MIT Press).

6 https://hedgescompany.com/blog/2021/06/how-many-cars-are-there-in-the-world/

7 https://www.transportenvironment.org/sites/te/files/publications/2021_05_05_Electric_vehicle_price_parity_and_adoption_in_Europe_Final.pdf

8 https://corporateeurope.org/en/dieselgate-its-tremors-and-role-car-industry-lobbying

9 https://notre-environnement.gouv.fr/IMG/pdf/focus_ressources_naturelles_version_complete.pdf (page 167)

10 Guillaume Pitron, La guerre des métaux rares. La face cachée de la transition énergétique et numérique, Les liens qui libèrent, 2018, p. 44.

11 Ibid.

12 Laurent Castaignède, Airvore ou la face obscure des transports, Écosociétés, 2018, p. 39.

13 Philippe Bihouix et Benoît de Guillebon, Quel futur pour les métaux ? Raréfaction des métaux : un nouveau défi pour la société, EDP Sciences, 2010, p. 47.

14 Laurent Castaignède, op. cit., p. 75.

15 Ibid., p. 194.

16 https://www.statista.com/statistics/882616/us-canadian-built-light-vehicles-average-glass-weight/

17 https://www.latimes.com/business/story/2020-02-06/wind-turbine-blades

18 But here we have to salute as it deserves the courageous political decision to have banned cotton buds and stirring sticks.

19 https://www.fineprint.global/wp-content/uploads/2020/01/fineprint_brief_no_9.pdf & https://www.equaltimes.org/the-pressure-on-water-an?lang=fr#.YPzxq_k6_IU

20 https://chinawaterrisk.org/wp-content/uploads/2016/08/China-Water-Risk-Report-Rare-Earths-Shades-Of-Grey-2016-Eng.pdf

21 https://www.washingtonpost.com/graphics/business/batteries/graphite-mining-pollution-in-china/

22 https://www.amnesty.org/en/documents/afr62/3183/2016/en/

23 https://web.archive.org/web/20211221082924/https://www.ademe.fr/sites/default/files/assets/documents/90511_acv-comparative-ve-vt-rapport.pdf (page 238)

24 https://www.nature.com/articles/s41586-019-1682-5 & https://www.sciencedirect.com/science/article/abs/pii/S0304389420303605

25 https://www.statistiques.developpement-durable.gouv.fr/sites/default/files/2018-10/de114.pdf

26 www.planetoscope.com-mobilité-1838-construction-de-routes-dans-le-monde.html

27 En 2013. https://web.archive.org/web/20230120162448/https://www.routesdefrance.com/wp-content/uploads/USIRF_BITUME_Sept2013.pdf

28 https://www.iea.org/reports/cement

29 https://psci.princeton.edu/tips/2020/11/3/cement-and-concrete-the-environmental-impact

30 https://www.lemoniteur.fr/article/quelle-realite-se-cache-derriere-les-betons-dits-bas-carbone.2123604 & https://elioth.com/le-vrai-du-faux-beton-bas-carbone/

31 https://www.seetao.com/details/70499.html

32 https://www.theguardian.com/cities/2019/feb/25/concrete-the-most-destructive-material-on-earth

33 Summary of the joined scientific assessment, INRA – IFFSTAR, December 2017.

34 https://www.emissionsanalytics.com

35 https://www.nature.com/articles/s41467-020-17201-9

36 http://www.oecd.org/newsroom/measures-needed-to-curb-particulate-matter-emitted-by-wear-of-car-parts-and-road-surfaces.htm

37 https://www.rte-france.com/actualites/bilan-electrique-francais-2019-une-consommation-en-baisse-depuis-10-ans-une-production

38 The Energy Transition Law, voted in 2015, has programmed this reduction by 2035.

39 Ek = ½.m.v², Ek is the energy in joules (1 watt = 3600 joules), m the mass in pounds, and v the velocity in feet per second.

40 https://thecorrespondent.com/310/your-car-has-a-weight-problem-and-we-need-to-regulate-it/41009665950-d1c675d3 & https://www.transportenvironment.org/sites/te/files/publications/2018_04_CO2_emissions_cars_The_facts_report_final_0_0.pdf (page 32)

41 https://car-use.org/la-2cv-citroen-de-loutil-utile-au-loisir-ecologique/

 

‘Antithetical to science’: When deep-sea research meets mining interests

‘Antithetical to science’: When deep-sea research meets mining interests

This article originally appeared in Mongabay.

Editor’s note: We know less about the bottom of the sea than we know about outer space. We really require no scientific evidence to know that mining is bad for the environment wherever it occures. It should not be done on land, under the sea or on other planets. The ISA needs to reject the deep sea mining industry’s claims that mining for metals on the ocean floor is a partial solution to the climate crisis. As Upton Sinclair said, “it’s difficult to get a man to understand something when his salary depends on his not understanding it.” We can see this with the archeologist working for Lithium America in Thacker Pass. An interesting film to watch on the twisted relationship between science and industry is The Last Winter.

by Elham Shabahat

  • The high cost of studying deep-sea ecosystems means that many scientists have to rely on funding and access provided by companies seeking to exploit resources on the ocean floor.
  • More than half of the scientists in the small, highly specialized deep-sea biology community have worked with governments and mining companies to do baseline research, according to one biologist.
  • But as with the case of industries like tobacco and pharmaceuticals underwriting scientific research into their own products, the funding of deep-sea research by mining companies poses an ethical hazard.
  • Critics say the nascent industry is already far from transparent, with much of the data from baseline research available only to the scientists involved, the companies, and U.N.-affiliated body that approves deep-sea mining applications.

When Cindy Van Dover started working with Nautilus Minerals, a deep-sea mining company, she received hate mail from other marine scientists. Van Dover is a prolific deep-sea biologist, an oceanographer who has logged hundreds of dives to the seafloor. In 2004, Nautilus invited Van Dover and her students to characterize ecosystems in the Manus Basin off Papua New Guinea, a potential mining site with ephemeral hydrothermal vents teeming with life in the deep ocean.

Van Dover was the first academic deep-sea biologist to conduct baseline studies funded by a mining company, an act considered a “Faustian pact” by some at the time. Since then, more deep-sea biologists and early-career scientists aboard research vessels funded by these firms have conducted such studies. But partnering with mining companies raises some thorny ethical issues for the scientists involved. Is working with the mining industry advancing knowledge of the deep sea, or is it enabling this nascent industry? While there are efforts to disclose this scientific data, are they enough to ensure the protection of deep-sea ecosystems?

“I don’t think it’s sensible or right to not try to contribute scientific knowledge that might inform policy,” Van Dover said. With deep-sea mining, she added, “we can’t just stick our heads in the sand and complain when it goes wrong.”

More than half of the scientists in the small, highly specialized deep-sea biology community have worked with governments and mining companies to do baseline research, according to Lisa Levin, professor of biological oceanography at the Scripps Institution of Oceanography. Collecting biological samples in the deep sea is expensive: a 30-day cruise can cost more than $1 million. The U.S. National Science Foundation, the European Union and the National Science Foundation of China have emerged as top public funders of deep-sea research, but billionairesfoundations and biotech companies are getting in on the act, too.

Governments and mining companies already hold exploration licenses from the U.N.-affiliated International Seabed Authority (ISA) for vast swaths of the seafloor. Although still in an early stage, the deep-sea mining industry is on the verge of large-scale extraction. Mining companies are scouring the seabed for polymetallic nodules: potato-shaped rocks that take a millennium to form and contain cobalt, nickel and copper as well as manganese. Nauru, a small island in the South Pacific, earlier this year gave the ISA a two-year deadline to finalize regulations — a major step toward the onset of commercial deep-sea mining. The ISA is charged with both encouraging the development of the deep-sea mining industry and ensuring the protection of the marine environment, a conflict of interest in the eyes of its critics.

The Metals Company, a mining company based in Vancouver, Canada, formerly known as DeepGreen, recently said that it spent $75 million on ocean science research in the Clarion Clipperton Zone (CCZ) in the Pacific. The company has established partnerships with “independent scientific institutions” for its environmental and social impact assessments. Kris Van Nijen, managing director of Global Sea Mineral Resources said, “It is time, unambiguously and unanimously, to back research missions … Support the science. Let the research continue.” UK Seabed Resources, another deep-sea mining firm, lists significant scientific research that uses data from its research cruises in the CCZ.

The ISA requires mining companies to conduct baseline research as part of their exploration contracts. Such research looks to answer basic questions about deep-sea ecosystems, such as: what is the diversity of life in the deep sea? How will mining affect animals and their habitats? This scientific data, often the first time these deep-sea ecosystems have been characterized, is essential to assessing the impacts of mining and developing strategies to manage these impacts. Companies partner with scientific institutions across the United States, Europe and Canada to conduct these studies. But independence when it comes to alliances with industry is fraught with ethical challenges.

“If deep-sea science has been funded by interest groups such as mining companies, are we then really in a position to make the decision that is genuinely in the best interest of deep ocean ecosystems?” asks Aline Jaeckel, senior lecturer of law at the University of New South Wales in Australia. “Or are we heading towards mining, just by the very fact that mining companies have invested so heavily?”

The ethics of independent science

There’s a risk of potential conflicts of interest when scientists are funded by industry. While mining companies often tout working with independent scientists, in company-sponsored research vessels, “having somebody independent on board would be somebody who has presumably no financial affiliation in any way shape or form,” says Levin of the Scripps Institution of Oceanography.

When working with mining companies to collect baseline data, scientists are compensated through funding, which can be as high as $2.9 million, for their research labs. Many go on to publish journal articles based on data gathered on company-sponsored ships, advancing science in a relatively unknown realm where access is expensive and sparse.

While knowledge of the deep sea has advanced in recent decades, scientists are still trying to learn how these ecosystems are connected and the impact of mining over longer periods of time. The deep pelagic ocean — mid-water habitats away from the coasts and the seabed — is the least studied and chronically undersampled. There is also a dearth of deep-sea data for the Pacific, South Atlantic and Indian Oceans, where researchers (and mining companies) are increasingly focusing their attention.

For mining companies, science adds legitimacy, argues Diva Amon, a deep-sea biologist and director of SpeSeas, Trinidad and Tobago. “I think they recognize the value of science in appealing to consumers … and stakeholders as well.”

While it is common for scientific research to be funded by public agencies, when such funding dries up, scientists may be compelled to seek funding from or collaborate with interest groups. In other scientific endeavors like tobacco researchpublic health, climate science and clinical drug trials, there are policies to manage conflicts of interest, because history is rife with examples of industry influencing the designoutcome and communication of research in their favor. Some argue that even if industry-funded scientists publish research that is methodologically sound, industry influence on a broad scale can bias research results in imperceptible ways that erode trust in science.

Being funded by industry is not an issue if scientists are able to publish their research without restrictions, even if results are negative for the contractor, says Matthias Haeckel, a deep-sea biologist who is coordinating a mining impact project in the CCZ, funded by the European Union. “The question is if it’s up to this degree of independency, and that’s difficult to know from the outside … for me it’s sometimes a transparency issue. It’s not clear what the contracts with the scientists are.”

Deep-sea biologists have published research that does not work in the industry’s favor. A survey of megafauna diversity on the seafloor of the CCZ found that of the 170 identified animals, nearly half were found only on polymetallic nodules that are of interest to mining contractors. The study suggests that the nodules are an important habitat for species diversity. Biodiversity loss associated with mining is likely to last forever on human time scales, due to the slow rate of recovery in deep-sea ecosystems.

For some scientists, the key difference between being funded by an entity like the National Science Foundation versus the industry is control. Mining companies can ask scientists to sign nondisclosure agreements because companies in competition are concerned about the details of their sampling programs being made public, says Jeff Drazen, a deep-sea scientist at the University of Hawai‘i who is conducting research funded by The Metals Company. While there is a general understanding that scientists are free to publish their research, there can be embargos on when the research is released and requirements for consultation with the contractors.

“Many of them want you to sign an NDA before you can even talk to them. With the current contract we have with The Metals Company, none of our people have signed NDAs, and that was one of the reasons we decided to work with them,” Drazen says. “This is a common part of the business world to sign these NDAs — and that is antithetical to science, so that’s a cultural shift for most of us academics.”

The ISA has issued guidelines for baseline studies, but the decision of what and how much to sample rests on the company and scientists involved. “Scientists have to be careful not to necessarily be driven entirely by what the person funding the research wants,” says Malcolm Clark, a deep-sea biologist at New Zealand’s National Institute of Water and Atmospheric Research. “We’ve got to be very objective and make it very clear what’s required for a robust scientific project, and not just respond to the perceived needs of the client. Easy to say — very, very difficult to actually put into practice.” Clark also sits on the Legal and Technical Commission, a body within the ISA tasked with assessing mining applications.

‘Damned if you do, damned if you don’t’

Scientists are still trying to fathom the depths of our oceans, both to understand the sensitive ecosystems that thrive there, and the minerals that can be extracted from polymetallic nodules that have formed over millennia. Less than 1% of the deep sea has been explored. The interest in exploiting ocean minerals is coupled with advancements in scientific research. A study published earlier this year found that deep-sea research languished when this interest in exploitation waned in the 1980s and ’90s.

For baseline research, “if this fundamental first-time characterization of these ecosystems is going to be done, it should be done by experts, so there’s quality assurance,” Levin said in a lecture in 2018 on the ethical challenges of seabed mining. “You’re damned if you do and damned if you don’t at some level.”

There’s also the perceived conflict of interest: the intangible effects of working closely with industry representatives, where collecting data means going out together on a research vessel for several weeks at a time.

“We’re humans, we’re building relationships, and going to sea is a particularly bonding experience because you’re out there isolated and working together. I cannot imagine how that kind of relationship will not at some point interfere with scientific judgment,” says Anna Metaxas, a deep-sea biologist at the Dalhousie University in Canada, whose research has not been funded by mining companies. It’s not the collection of data that Metaxas is concerned about, “it’s what you do with the data and how you end up communicating to whom and when.”

“What I’m noticing with many PIs [primary investigators] working with mining contractors is that they don’t want to bite the hand that feeds them,” says Amon. “As a result, they are less willing to speak to the public and the press, which is really unfortunate.”

The Wall Street Journal reported that according to two people familiar with the matter, Jeff Drazen was facing the possibility of having his funding revoked after publicly criticizing seabed mining. In an interview with Mongabay, Drazen declined to comment on the matter.

Other prominent scientists who work with mining contractors did not respond to interview requests for this article.

The trouble with DeepData

Since the ISA started giving out exploration contracts, the data that contractors collected was kept in a “black box” for more than 18 years, hidden from the world with the key in the hands of the contractors, the scientists who conducted this research, and a few people within the ISA. Because academics are involved, some of this data and analysis would eventually become available as peer-reviewed scientific literature.

In 2019, the ISA developed DeepData, a public database where contractors are required to submit the baseline data they collect. But the only data available to the public is environmental data. Resource data, particularly related to polymetallic nodules that are of interest to mining contractors, is off-limits and remains proprietary. The distinction between environmental and resource data is a “gray area,” according to Clark. What is deemed confidential is up to the mining contractors and the secretary-general of the ISA.

The nodules, rich in metals such as cobalt and nickel, are a breeding ground for deep-sea octopuses, and home to new species of deep-sea spongesdiverse animals and microbes not found in surrounding waters or sediments. The communities of organisms that rely on these nodules and sediment vary with the abundance of the nodules.

“Miners are going after the components of the habitat,” says Craig Smith, a deep-sea scientist at the University of Hawai‘i. “But we can’t really assess the abundance of that habitat without knowing the abundance of the nodules.” In fisheries, for example, industry-sensitive data is aggregated to help with management decisions, but such data is considered proprietary for the nodules.

The metallic content of these nodules is also a trade secret, though the information could be relevant for environmental assessments. Toxicity from broken-down ores could be created in the sediment plumes or wastewater that’s reinjected in the water column as a byproduct of the mining process, potentially affecting fish and other biodiversity. Where exactly in the water column mining companies will discharge the wastewater is also confidential.

Drazen, whose research (funded by The Metals Company) is looking at mining impacts on the midwater column, says the mining process will discharge mud and chemicals. “There’s a whole suite of potential effects on a completely different ecosystem above the seafloor. We depend upon the water column ecosystem … a lot of animals we like to eat … forage on deep-sea animals,” he says. The discharge of metals and toxins over potentially large areas could contaminate seafood. A recent study suggests that elements in discharge waters could spread further than mining areas, affecting tuna’s food, distribution, and migration corridors. There is increasing evidence that tuna, swordfish, marine mammals and seabirds rely on deep-sea fish, and foraging beaked whales could also be diving down to the seafloor in search of food.

DeepData is experiencing teething problems. A workshop to assess biodiversity for the CCZ in 2019 found inconsistencies in the data, making it difficult to synthesize across the CCZ. Different sampling methods can make it difficult to provide a cohesive picture.

“There’s still a bit of work in progress with DeepData. But certainly, the willingness is there to have it serving people with appropriate needs,” Clark says. “We do still need to be careful of the commercial confidentiality as it relates to the geochemical information in particular.”

The ISA did not respond to requests for comment.

An opaque decision-making body

The structure of the ISA, particularly its de facto decision-making body, the Legal and Technical Commission, is also fraught with transparency challenges. The Legal and Technical Commission assesses mining applications, which currently involve exploration contracts for the deep sea, but all of its meetings are held behind closed doors. The commission is composed of 30 experts nominated by their countries — some by governments that also hold exploration contracts — with only three deep-sea biologists on board.

“Even if some mining companies might genuinely fund what might be considered independent science, we still end up with a problem that the decision about whether or not to mine and the decision around environmental management of seabed mining rests entirely on data that is provided by the mining companies,” says Jaeckel of the University of New South Wales. “There is a lot of trust placed on mining companies.” There is no way to independently verify this data either, because deep-sea science is expensive, she adds. The degree to which companies are accurately reporting the baseline data to the ISA is not clear.

The commission is the only body within the ISA that sees the content of contractor’s applications, so the baseline data that contractors submit to be able to monitor impacts are only visible to the commission. There is an audit of the scientific data by the commission which reviews a contractor’s confidential annual reports. And then there’s public scrutiny of environmental impact assessments by NGOs.

Nauru Ocean Resources Inc., a wholly-owned subsidiary of The Metals Company, is “going to have to produce something really good,” says Clark of the company’s upcoming environmental impact assessment. Clark is a deep-sea biologist who was nominated to sit on the commission by New Zealand, which does not hold an exploration contract with the ISA. “Otherwise, the whole industry’s potential will be affected because it will taint the view of public and NGOs as to what contractors are doing — are they doing a serious and good job at the underlying research or are they trying to cut corners and push the ISA into making hasty decisions?”

In 2017, the commission approved an exploration contract for the Lost City, a metropolis of hydrothermal vents in the Atlantic Ocean that the Convention of Biological Diversity has recognized as an ecologically or biologically significant marine area that should be conserved. Marine scientists issued an open letter to the ISA to turn to independent scientists when evaluating requests for mineral exploration, and some have long called for open meetings and an independent scientific committee to advise the commission. Scientists are now petitioning for a pause on deep-sea exploitation out of concern about impacts on the marine environment.

That baseline research with industry might enable mining is “a very naïve perspective,” adds Smith of the University of Hawai‘i. “My gut feeling is that mining will go forward. It would be really wise to just permit one operation to go forward initially and monitor the heck out of it for 10 years. That would make a lot more sense than permitting multiple operations without even knowing what the real footprint will be in terms of disturbance.”