Whales Will Save the World’s Climate—Unless the Military Destroys Them First

Whales Will Save the World’s Climate—Unless the Military Destroys Them First

This article was produced by Local Peace Economy, a project of the Independent Media Institute.

By Koohan Paik-Mander

The U.S. military is famous for being the single largest consumer of petroleum products in the world and the largest emitter of greenhouse gases. Its carbon emissions exceed those released by “more than 100 countries combined.”

Now, with the Biden administration’s mandate to slash carbon emissions “at least in half by the end of the decade,” the Pentagon has committed to using all-electric vehicles and transitioning to biofuels for all its trucks, ships and aircraft. But is only addressing emissions enough to mitigate the current climate crisis?

What does not figure into the climate calculus of the new emission-halving plan is that the Pentagon can still continue to destroy Earth’s natural systems that help sequester carbon and generate oxygen. For example, the plan ignores the Pentagon’s continuing role in the annihilation of whales, in spite of the miraculous role that large cetaceans have played in delaying climate catastrophe and “maintaining healthy marine ecosystems,” according to a report by Whale and Dolphin Conservation. This fact has mostly gone unnoticed until only recently.

There are countless ways in which the Pentagon hobbles Earth’s inherent abilities to regenerate itself. Yet, it has been the decimation of populations of whales and dolphins over the last decade—resulting from the year-round, full-spectrum military practices carried out in the oceans—that has fast-tracked us toward a cataclysmic environmental tipping point.

The other imminent danger that whales and dolphins face is from the installation of space-war infrastructure, which is taking place currently. This new infrastructure comprises the development of the so-called “smart ocean,” rocket launchpads, missile tracking stations and other components of satellite-based battle. If the billions of dollars being plowed into the 2022 defense budget for space-war technology are any indication of what’s in store, the destruction to marine life caused by the use of these technologies will only accelerate in the future, hurtling Earth’s creatures to an even quicker demise than already forecast.

Whale Health: The Easiest and Most Effective Way to Sequester Carbon

It’s first important to understand how whales are indispensable to mitigating climate catastrophe, and why reviving their numbers is crucial to slowing down damage and even repairing the marine ecosystem. The importance of whales in fighting the climate crisis has also been highlighted in an article that appeared in the International Monetary Fund’s Finance and Development magazine, which calls for the restoration of global whale populations. “Protecting whales could add significantly to carbon capture,” states the article, showing how the global financial institution also recognizes whale health to be one of the most economical and effective solutions to the climate crisis.

Throughout their lives, whales enable the oceans to sequester a whopping 2 billion metric tons of carbon dioxide per year. That astonishing amount in a single year is nearly double the 1.2 billion metric tons of carbon that was emitted by the U.S. military in the entire 16-year span between 2001 and 2017, according to an article in Grist, which relied on a paper from the Costs of War Project at Brown University’s Watson Institute.

The profound role of whales in keeping the world alive is generally unrecognized. Much of how whales sequester carbon is due to their symbiotic relationship with phytoplankton, the organisms that are the base of all marine food chains.

The way the sequestering of carbon by whales works is through the piston-like movements of the marine mammals as they dive to the depths to feed and then come up to the surface to breathe. This “whale pump” propels their own feces in giant plumes up to the surface of the water. This helps bring essential nutrients from the ocean depths to the surface areas where sunlight enables phytoplankton to flourish and reproduce, and where photosynthesis promotes the sequestration of carbon and the generation of oxygen. More than half the oxygen in the atmosphere comes from phytoplankton. Because of these infinitesimal marine organisms, our oceans truly are the lungs of the planet.

More whales mean more phytoplankton, which means more oxygen and more carbon capture. According to the authors of the article in the IMF’s Finance and Development magazine—Ralph Chami and Sena Oztosun, from the IMF’s Institute for Capacity Development, and two professors, Thomas Cosimano from the University of Notre Dame and Connel Fullenkamp from Duke University—if the world could increase “phytoplankton productivity” via “whale activity” by only 1 percent, it “would capture hundreds of millions of tons of additional CO2 a year, equivalent to the sudden appearance of 2 billion mature trees.”

Even after death, whale carcasses function as carbon sinks. Every year, it is estimated that whale carcasses transport 190,000 tons of carbon, locked within their bodies, to the bottom of the sea. That’s the same amount of carbon produced by 80,000 cars per year, according to Sri Lankan marine biologist Asha de Vos, who appeared on TED Radio Hour on NPR. On the seafloor, this carbon supports deep-sea ecosystems and is integrated into marine sediments.

Vacuuming CO2 From the Skya False Solution

Meanwhile, giant concrete-and-metal “direct air carbon capture” plants are being planned by the private sector for construction in natural landscapes all over the world. The largest one began operation in 2021 in Iceland. The plant is named “Orca,” which not only happens to be a type of cetacean but is also derived from the Icelandic word for “energy” (orka).

Orca captures a mere 10 metric tons of CO2 per day—compared to about 5.5 million metric tons per day of that currently sequestered by our oceans, due, in large part, to whales. And yet, the minuscule comparative success by Orca is being celebrated, while the effectiveness of whales goes largely unnoticed. In fact, President Joe Biden’s $1 trillion infrastructure bill contains $3.5 billion for building four gigantic direct air capture facilities around the country. Nothing was allocated to protect and regenerate the real orcas of the sea.

If ever there were “superheroes” who could save us from the climate crisis, they would be the whales and the phytoplankton, not the direct air capture plants, and certainly not the U.S. military. Clearly, a key path forward toward a livable planet is to make whale and ocean conservation a top priority.

‘We Have to Destroy the Village in Order to Save It’

Unfortunately, the U.S. budget priorities never fail to put the Pentagon above all else—even a breathable atmosphere. At a December 2021 hearing on “How Operational Energy Can Help Us Address Logistics Challenges” by the Readiness Subcommittee of the U.S. House Armed Services Committee, Representative Austin Scott (R-GA) said, “I know we’re concerned about emissions and other things, and we should be. We can and should do a better job of taking care of the environment. But ultimately, when we’re in a fight, we have to win that fight.”

This logic that “we have to destroy the village in order to save it” prevails at the Pentagon. For example, hundreds of naval exercises conducted year-round in the Indo-Pacific region damage and kill tens of thousands of whales annually. And every year, the number of war games, encouraged by the U.S. Department of Defense, increases.

They’re called “war games,” but for creatures of the sea, it’s not a game at all.

Pentagon documents estimate that 13,744 whales and dolphins are legally allowed to be killed as “incidental takes” during any given year due to military exercises in the Gulf of Alaska.

In waters surrounding the Mariana Islands in the Pacific Ocean alone, the violence is more dire. More than 400,000 cetaceans comprising 26 species were allowed to have been sacrificed as “takes” during military practice between 2015 and 2020.

These are only two examples of a myriad of routine naval exercises. Needless to say, these ecocidal activities dramatically decrease the ocean’s abilities to mitigate climate catastrophe.

The Perils of Sonar

The most lethal component to whales is sonar, used to detect submarines. Whales will go to great lengths to get away from the deadly rolls of sonar waves. They “will swim hundreds of miles… and even beach themselves” in groups in order to escape sonar, according to an article in Scientific American. Necropsies have revealed bleeding from the eyes and ears, caused by too-rapid changes in depths as whales try to flee the sonar, revealed the article.

Low levels of sonar that may not directly damage whales could still harm them by triggering behavioral changes. According to an article in Nature, a 2006 UK military study used an array of hydrophones to listen for whale sounds during marine maneuvers. Over the period of the exercise, “the number of whale recordings dropped from over 200 to less than 50,” Nature reported.

“Beaked whale species… appear to cease vocalising and foraging for food in the area around active sonar transmissions,” concluded a 2007 unpublished UK report, which referred to the study.

The report further noted, “Since these animals feed at depth, this could have the effect of preventing a beaked whale from feeding over the course of the trial and could lead to second or third order effects on the animal and population as a whole.”

The report extrapolated that these second- and third-order effects could include starvation and then death.

The ‘Smart Ocean’ and the JADC2

Until now, sonar in the oceans has been exclusively used for military purposes. This is about to change. There is a “subsea data network” being developed that would use sonar as a component of undersea Wi-Fi for mixed civilian and military use. Scientists from member nations of the Institute of Electrical and Electronics Engineers (IEEE), including, but not limited to Australia, China, the UK, South Korea and Saudi Arabia, are creating what is called the “Internet of Underwater Things,” or IoUT. They are busy at the drawing board, designing data networks consisting of sonar and laser transmitters to be installed across vast undersea expanses. These transmitters would send sonar signals to a network of transponders on the ocean surface, which would then send 5G signals to satellites.

Utilized by both industry and military, the data network would saturate the ocean with sonar waves. This does not bode well for whale wellness or the climate. And yet, promoters are calling this development the “smart ocean.”

The military is orchestrating a similar overhaul on land and in space. Known as the Joint All-Domain Command and Control (JADC2), it would interface with the subsea sonar data network. It would require a grid of satellites that could control every coordinate on the planet and in the atmosphere, rendering a real-life, 3D chessboard, ready for high-tech battle.

In service to the JADC2, thousands more satellites are being launched into space. Reefs are being dredged and forests are being razed throughout Asia and the Pacific as an ambitious system of “mini-bases” is being erected on as many islands as possible—missile deployment stations, satellite launch pads, radar tracking stations, aircraft carrier ports, live-fire training areas and other facilities—all for satellite-controlled war. The system of mini-bases, in communication with the satellites, and with aircraft, ships and undersea submarines (via sonar), will be replacing the bulky brick-and-mortar bases of the 20th century.

Its data-storage cloud, called JEDI (Joint Enterprise Defense Infrastructure), will be co-developed at a cost of tens of billions of dollars. The Pentagon has requested bids on the herculean project from companies like Microsoft, Amazon, Oracle and Google.

Save the Whales, Save Ourselves

Viewed from a climate perspective, the Department of Defense is flagrantly barreling away from its stated mission, to “ensure our nation’s security.” The ongoing atrocities of the U.S. military against whales and marine ecosystems make a mockery of any of its climate initiatives.

While the slogan “Save the Whales” has been bandied about for decades, they’re the ones actually saving us. In destroying them, we destroy ourselves.


Koohan Paik-Mander, ​​who grew up in postwar Korea and in the U.S. colony of Guam, is a Hawaii-based journalist and media educator. She is a board member of the Global Network Against Weapons and Nuclear Power in Space, a member of the CODEPINK working group China Is Not Our Enemy, and an advisory committee member for the Global Just Transition project at Foreign Policy in Focus. She formerly served as campaign director of the Asia-Pacific program at the International Forum on Globalization. She is the co-author of The Superferry Chronicles: Hawaii’s Uprising Against Militarism, Commercialism and the Desecration of the Earth and has written on militarism in the Asia-Pacific for the Nation, the Progressive, Foreign Policy in Focus and other publications.

Banner image: flickr (CC BY-NC-ND 2.0)

Highlights of new Infrastructure Bill just passed in the US

Highlights of new Infrastructure Bill just passed in the US

By Max Wilbert

– Section 11318: Exempts oil and gas pipelines on most federal lands from environmental analysis.

– Sections 40301-40333 (“Fuels and Technology Infrastructure Investments”): These sections propose nearly $15 billion in taxpayer subsidies for dirty energy, including oil, coal, gas, and woody biomass via investments in largely theoretical and unproven carbon capture and storage technologies, including an additional $3 billion to begin construction of a massive network of new CO2 pipelines (Sec. 41004), while also dishonestly defining “clean hydrogen” to include hydrogen derived from climate-polluting carbon-fuel sources such as biomass and fossil fuels (Sec. 40311). The approach outlined here is riddled with uncertainty and harmful impacts while perpetuating our reliance on fossil fuels, which is why it has been denounced as a false climate solution by the scientific community. An additional $6 billion in subsidies is proposed for nuclear energy ( Sec. 41002).

– Section 40801: Authorizes USFS to upgrade and “store” National Forest System roads for future commercial timber production, rather than decommission them.

– Section 40803 (“Wildfire Risk Reduction”): Mandates the logging of 10 million acres of federal forestlands over the next 6 years, and an additional 20 million acres of federal forestlands following the initial 10 million acres of logging. The way these provisions are worded could and likely would be interpreted by courts as intending a complete elimination of all federal environmental laws (including NEPA, ESA, NFMA, and others) to facilitate this logging mandate. Section 40803 also dedicates over $1.6 billion in new taxpayer subsidies for logging, including post-fire clearcutting, on federal lands.

– Section 40804 (“Ecosystem Restoration”) : Authorizes $400 million in subsidies for wood processing facilities, such as sawmills, biomass power plants and wood pellet manufacturing; $400 million for increased logging on public and private forests; $50 million for a program to rent equipment to the timber industry to allow them to log otherwise inaccessible areas, and grants to build sawmill infrastructure and other wood-processing facilities.

– Section 40806: Eliminates environmental analysis under NEPA for an unlimited number of logging projects on federal lands, up to 1,000 feet wide and 3,000 acres in size each, under the guise of “fuelbreaks”.

– Section 40807: Weakens current environmental laws to create a broad exemption which eliminates the public’s right to file administrative objections against planned logging projects on federal lands.

– Sections 70301-70303: Promotes post-fire clearcutting and carbon removal, under the scientifically discredited notion that forests do not regenerate after fires, and promotes conversion of native forests to industrial tree plantations.

– Section 80402: Proposes a system of sweeping tax credits (financial implications unspecified, but potentially in the billions of dollars) for dirty energy, including coal, oil, gas, garbage incineration, and woody biomass under the false-solution catch-all of carbon capture and storage.

https://www.congress.gov/bill/117th-congress/house-bill/3684?r=3&s=1

The Only Long-Range Solution to Climate Change

The Only Long-Range Solution to Climate Change

This article originally appeared in Resilience. It is adapted from the book POWER: Limits and Prospects for Human Survival (New Society Publishers, September 2021) by Richard Heinberg

Editor’s note: Under the current system, Economies of Scale create Jevons Paradox. “This is crucial: Increased energy efficiency not only doesn’t generally reduce demand, but instead increases it. This is called the “rebound effect,” and we see it all the time.”
Bright Green Lies p. 213
Our power over nature is only an illusion. Nature has no mercy.


By Richard Heinberg

Climate change is often incorrectly described as an isolated pollution issue. In this flawed framing, humanity has simply made a mistake in its choice of energy sources; the solution entails switching sources and building enough carbon-sucking machines to clear the atmosphere of polluting CO2. Only the political power of the fossil fuel companies prevents us from adopting this solution and ending our existential environmental crisis.

But techno-fixes (that is, technological solutions that circumvent the need for personal or cultural change) aren’t working so far, and likely won’t work in the future. That’s because fossil fuels will be difficult to replace, and energy usage is central to our collective economic power.

In other words, power is the key to solving climate change—but not necessarily in the way that many pundits claim. Solutions will not come just from defeating fossil fuel interests and empowering green entrepreneurs; real climate progress will require the willingness of large swathes of the populace, especially in wealthy countries, to forgo forms of power they currently enjoy: comfort and convenience, the ability to travel far and fast, and the option to easily obtain a wide range of consumer products whose manufacture entails large inputs of energy and natural resources.

This is not a feel-good message, but the longer we postpone grappling with power in this larger sense, the less successful we’re likely to be in coming to terms with the climate threat.

The Big Picture: Power and Consequences

Why can there be no climate techno-fix? There are two routes to this conclusion. The first one meanders through the history of humans on Earth, revealing how each new technological or social innovation empowered some people over others, while often imposing a long-term environmental cost. The adoption of agriculture was a milestone on this path: it enabled more people to subsist in any given area, and it led to cities, kings, and slavery; further, in many places, plowing tended to deplete or ruin topsoil, and city-dwellers cut down nearby forests, leading to eventual societal collapse.

But the real show-stopper came much more recently. The adoption of fossil fuels gave humans the biggest jolt of empowerment ever: in just the last two centuries, our global population has grown eight-fold, and so has per capita energy consumption. Our modern way of life—with cars, planes, supermarkets, tractors, trucks, electricity grids, and internet shopping—is the result.

Climate change is the shadow of this recent cavalcade of industriousness, since it results from the burning of fossil fuels, the main enablers of modern civilization. Nevertheless, rapidly increasing population and consumption levels are inherently unsustainable and are bringing about catastrophic environmental impacts on their own, even if we disregard the effects of carbon emissions. The accelerating depletion of resources, increasing loads of chemical pollution, and the hastening loss of wild nature are trends leading us toward ecological collapse, with economic and social collapse no doubt trailing close behind. Ditching fossil fuels will turn these trends around only if we also deal with the issues of population and consumption.

That’s the big picture. However, the quest for a climate techno-fix also fails on its own terms—that is, as a painless means of averting climate change while maintaining our current industrial economy and way of life. The rest of this essay deals with this second trail of evidence and logic, which requires a more detailed presentation. So: buckle up. Here we go.

Why Solar Panels Won’t Save Consumerism

Most energy analysts regard solar and wind as the best candidates to substitute for fossil fuels in electrical power generation (since nuclear is too expensive and too risky, and would require too much time for build-out; and hydro is capacity constrained). But these “renewables” are not without challenges. While sunlight and wind are themselves renewable, the technologies we use to capture them aren’t: they’re constructed of non-renewable materials like steel, silicon, concrete, and rare earth minerals, all of which require energy for mining, transport, and transformation. These materials are also depleting, and many will be difficult or impossible to recycle.

Sunlight and wind are intermittent: we cannot control when the sun will shine or the wind will blow. Therefore, to ensure constant availability of power, these sources require some combination of four strategies:

  • Energy storage (e.g., with batteries) is useful to balance out day-to-day intermittency, but nearly useless when it comes to seasonal intermittency; also, storing energy costs energy and money.
  • Source redundancy (building far more generation capacity than will actually be needed on “good” days, and then connecting far-flung solar and wind farms by way of massive super-grids), is a better solution for seasonal intermittency, but requires substantial infrastructure investment.
  • Excess electricity generated at times of peak production can be used to make synthetic fuels (such as hydrogen, ammonia, or methanol), perhaps using carbon captured from the atmosphere, as a way of storing energy; however, making large amounts of such fuels will again require substantial infrastructure investment, and the process is inherently inefficient.
  • Demand management (using electricity when it’s available, and curtailing usage when it isn’t) is the cheapest way of dealing with intermittency, but it often implies behavioral change or economic sacrifice.

Today the world uses only about 20 percent of its final energy in the form of electricity. The other 80 percent of energy is used in the forms of solid, liquid, and gaseous fuels. A transition away from fossil fuels will entail the electrification of much of that other 80 percent of energy usage, which includes most transportation and key industrial processes. However, many uses of energy, such as aviation and the making of cement for concrete, will be difficult or especially costly to electrify. In principle, the electrification conundrum could be overcome by powering aviation and high-heat industrial processes with synfuels. However, doing this at scale would require a massive infrastructure of pipelines, storage tanks, carbon capture devices, and chemical synthesis plants that would essentially replicate much of our current natural gas and oil supply system.

Machine-based carbon removal and sequestration methods work in the laboratory, but would need staggering levels of investment in order to be deployed at a meaningful scale, and it’s unclear who would pay for them. These methods also use a lot of energy, and, when full lifecycle emissions are calculated, it appears that more emissions are often generated than are captured.[1] The best carbon capture-and-sequestration responses appear instead to consist of various methods of ecosystem restoration and soil regeneration. These strategies would also reduce methane and nitrous oxide emissions. But they would require a near-complete rethinking of food systems and land management.

Not long ago I collaborated with a colleague, David Fridley, of the Energy Analysis Program at Lawrence Berkeley National Laboratory, to look closely at what a full transition to a solar-wind economy would mean (our efforts resulted in the book Our Renewable Future).[2] We concluded that it will constitute an enormous job, requiring tens of trillions of dollars in investment. In fact, the task may be next to impossible—if we attempt to keep the overall level of societal energy use the same, or expand it to fuel further economic growth.[3] David and I concluded:

We citizens of industrialized nations will have to change our consumption patterns. We will have to use less overall and adapt our use of energy to times and processes that take advantage of intermittent abundance. Mobility will suffer, so we will have to localize aspects of production and consumption. And we may ultimately forgo some things altogether. If some new processes (e.g., solar or hydrogen-sourced chemical plants) are too expensive, they simply won’t happen. Our growth-based, globalized, consumption-oriented economy will require significant overhaul.[4]

The essence of the problem with a climate techno-fix is this: nearly everything we need to do to solve global warming (including building new low-emissions electrical generation capacity, and electrifying energy usage) requires energy and money. But society is already using all the energy and money it can muster in order to do the things that society wants and needs to do (extract resources, manufacture products, transport people and materials, provide health care and education, and so on). If we take energy and money away from those activities in order to fund a rapid energy transition on an unprecedented scale, then the economy will contract, people will be thrown out of work, and many folks will be miserable. On the other hand, if we keep doing all those things at the current scale while also rapidly building a massive alternative infrastructure of solar panels, wind turbines, battery banks, super grids, electric cars and trucks, electrified industrial equipment, and synthetic fuel factories, the result will be a big pulse of energy usage that will significantly increase carbon emissions over the short term (10 to 20 years), since the great majority of the energy currently available for the project must be derived from fossil fuels.

It takes energy to make solar panels, wind turbines, electric cars, and new generations of industrial equipment of all kinds. For a car with an internal combustion engine (ICE), 10 percent of lifetime energy usage occurs in the manufacturing stage. For an electric car, roughly 40 percent of energy usage occurs in manufacturing, and emissions during this stage are 15 percent greater than for an ICE car (over the entire lifetime of the e-car, emissions are about half those of the gasoline guzzler). With solar panels and wind turbines, energy inputs and carbon emissions are similarly front-loaded to the manufacturing phase; energy output and emissions reduction (from offsetting other electricity generation) come later. Replacing a very high percentage of our industrial infrastructure and equipment quickly would therefore entail a historically large burst of energy usage and carbon emissions. By undertaking a rapid energy transition, while also maintaining or even expanding current levels of energy usage for the “normal” purpose of economic growth, we would be defeating our goal of reducing emissions now—even though we would be working toward the goal of reducing emissions later.

Many folks nurture the happy illusion that we can do it all—continue to grow the economy while also funding the energy transition—by assuming that the problem is only money (if we find a way to pay for it, then the transition can be undertaken with no sacrifice). This illusion can be maintained only by refusing to acknowledge the stubborn fact that all activity, including building alternative energy generators and carbon capture machinery, requires energy.

The only way out of the dilemma arising from the energy and emissions cost of the transition is to reduce substantially the amount of energy we are using for “normal” economic purposes—for resource extraction, manufacturing, transportation, heating, cooling, and industrial processes—both so that we can use that energy for the transition (building solar panels and electric vehicles), and so that we won’t have to build as much new infrastructure. Increased energy efficiency can help reduce energy usage without giving up energy services, but many machines (LED lights, electric motors) and industrial processes are already highly efficient, and further large efficiency gains in those areas are unlikely. We would achieve an efficiency boost by substituting direct electricity generators (solar and wind) for inherently inefficient heat-to-electricity generators (natural gas and coal power plants); but we would also be introducing new inefficiencies into the system via battery-based electricity storage and hydrogen or synfuels production. In the end, the conclusion is inescapable: actual reductions in energy services would be required in order to transition away from fossil fuels without creating a significant short-term burst of emissions. Some energy and climate analysts other than David Fridley and myself—such as Kevin Anderson, Professor of Energy and Climate Change at the University of Manchester—have reached this same conclusion independently.[5]

Energy is inextricably related to power. Thus, if society voluntarily reduces its energy usage by a significant amount in order to minimize climate impacts, large numbers of people will likely experience this as giving up power in some form—whether physical, social, or economic.

It can’t be emphasized too much: energy is essential to all economic activity. An economy can grow continuously only by employing more energy (unless energy efficiency can be increased substantially, and further gains in efficiency can continue to be realized in each succeeding year—a near-impossibility over the long run, since investments in making processes more efficient typically see diminishing returns over time). World leaders demand more economic growth in order to fend off unemployment and other social ills. Thus, in effect, everyone is counting on having more energy in the future, not less.

A few well-meaning analysts and pundits try to avoid the climate-energy-economy dilemma by creating scenarios in which renewable energy saves the day simply by becoming dramatically cheaper than energy from fossil fuels; or by ignoring the real costs of dealing with energy intermittency in solar and wind power generation. Some argue that we have to fight climate change by becoming even more powerful than we already are—by geoengineering the atmosphere and oceans and thus taking full control of the planet, thereby acting like gods.[6] And some business and political leaders simply deny that climate change is a problem; therefore, no action is required. I would argue that all of these people are deluding themselves and others.

Do the Right Thing—Even if It’s Hard

Problems ignored usually don’t go away. And not all problems can be solved without sacrifice. If minimizing climate change really does require substantially reducing world energy usage, then policy makers should be discussing how to do this fairly and with as little negative impact as possible. The longer we delay that discussion, the fewer palatable options will be left.

The stakes could hardly be higher. If emissions continue, the result will be the failure of ecosystems, massive impacts on economies, widespread human misery and migration, and unpredictable disruptions to political systems. The return of famine as a familiar feature of human existence is a very real likelihood.[7]

It’s easy to see why people would wish to avoid giving up social, political, economic, and physical power to the degree that’s necessary in order to deal with climate change. Fighting entrenched power is a contentious activity, often a dangerous one. People with power don’t like threats to it, and they often fight back.

That’s why environmentalists like to choose their battles. The fossil fuel industry is wealthy and formidable, but at least it’s an enemy that’s easy to identify, and a lot of people already feel critical of the oil and gas companies for a variety of reasons (gasoline is too expensive, oil pipelines cause pollution, and so on).

But not all roadblocks to climate solutions are attributable to the oil companies. The rest of us are also implicated, though to greatly varying degrees depending on where we live and how much we consume. Our whole modern consumerist way of life, the essence of our economic system, is at fault. Unless we’re willing to give up some of our power over nature—our power to extract and transform resources and deliver the goods that we have come to rely on—then we’re destined to careen from one disaster to the next until our worst fears are realized.

It’s understandable why most environmentalists frame global warming the way they do. It makes solutions seem easier to achieve. But if we’re just soothing ourselves while failing to actually stave off disaster, or even to understand our problems properly, what’s the point?

The only real long-range solution to climate change centers on reining in human physical, social, and economic power dramatically, but in ways that preserve human dignity, autonomy, and solidarity. That’s more daunting than any techno-fix. But this route has the singular advantage that, if we follow it intelligently and persistently, we will address a gamut of social and environmental problems at once. In the end, it’s the only path to a better, safer future.

[1] June Sekera and Andreas Lichtenberger, “Assessing Carbon Capture: Public Policy, Science, and Societal Need.” Biophysical Economics and Sustainability volume 5, Article number: 14 (2020); https://link.springer.com/article/10.1007/s41247-020-00080-5

[2] Richard Heinberg and David Fridley, Our Renewable Future: Laying the Path for 100 Percent Clean Energy. Washington D.C.: Island Press, 2016. Full text available at www.ourrenewablefuture.org. Accessed September 2, 2020.

[3] Other researchers have come to similar conclusions. For example, Tim Morgan (former head of research at Tullett Prebon) argues that it is surplus energy—the energy left over once energy required for energy-producing activities—that has driven economic expansion, and that a transition to renewables will necessarily result in declining surplus energy (see Tim Morgan, Surplus Energy Economics website https://surplusenergyeconomics.wordpress.com/ Accessed September 2, 2020.) In a recent paper, Carey King of the Energy Institute at the University of Texas, Austin, shows the inadequacy of current growth-based economic modeling of the renewable energy transition and proposes a new model that incorporates data-derived relationships between energy use, resource extraction, and economic growth. His conclusion is that the renewable energy transition will entail trade-offs with consumption, population, and wages; these trade-offs will depend on the path taken (whether high or low rate of investment). Carey King, “An Integrated Biophysical and Economic Modeling Framework for Long-Term Sustainability Analysis: The HARMONY Model.” Ecological Economics, Vol. 169, March 2020. https://doi.org/10.1016/j.ecolecon.2019.106464 Accessed September 2, 2020.

[4] Heinberg and Fridley, Our Renewable Future, p. 140

[5] Kevin Anderson and Alice Bows-Larkin, “Avoiding Dangerous Climate Change Demands De-Growth Strategies from Wealthier Nations.” KevinAnderson.Info, November 2013. https://kevinanderson.info/blog/avoiding-dangerous-climate-change-demands-de-growth-strategies-from-wealthier-nations/. Accessed September 2, 2020. See also Patrick Moriarty and Damon Honnery, “Can Renewable Energy Power the Future?” Energy Policy Vol. 93, June 2016, pp. 3-7.  www.sciencedirect.com/science/article/pii/S030142151630088X. Accessed September 2, 2020.

[6] Rachel Kaufman, “The Risks, Rewards and Possible Ramifications of Geoengineering Earth’s Climate.” Smithsonian, March 11, 2019. https://www.smithsonianmag.com/science-nature/risks-rewards-possible-ramifications-geoengineering-earths-climate-180971666/. Accessed September 3, 2020.

[7] Christopher Flavelle, “Climate Change Threatens the World’s Food Supply, United Nations Warns.” New York Times, August 8, 2019. https://www.nytimes.com/2019/08/08/climate/climate-change-food-supply.html Accessed September 3, 2020.

The IPCC Report: Key Findings and Radical Implications

The IPCC Report: Key Findings and Radical Implications

This article originally appeared in Climate & Capitalism.

Editor’s note: DGR has always argued that civilizations are inherently destructive and environmental destruction and degradation has been ongoing for millenia. Climate change is only another concequence of this inherently destructive way of life. This is why technical solutions will never work. What we need to do to save the planet is 1. immediately stop destroying it, and 2. restore what we already have destroyed. This logic is easy to understand if your loyalty lies with the planet and all life on it, but it seems very hard to understand if your loyalty lies with this destructive and addictive way of life.


By Brian Tokar

Beyond the headlines: what climate science now shows about Earth’s future. Can we act in time?

The UN-sponsored Intergovernmental Panel on Climate Change (IPCC) recently released its latest comprehensive report on the state of the earth’s climate. The much-anticipated report dominated the headlines for a few days in early August, then quickly disappeared amidst the latest news from Afghanistan, the fourth wave of Covid-19 infections in the US, and all the latest political rumblings. The report is vast and comprehensive in its scope, and is worthy of more focused attention outside of specialist scientific circles than it has received thus far.

The report affirms much of what we already knew about the state of the global climate, but does so with considerably more clarity and precision than earlier reports. It removes several elements of uncertainty from the climate picture, including some that have wrongly served to reassure powerful interests and the wider public that things may not be as bad as we thought. The IPCC’s latest conclusions reinforce and significantly strengthen all the most urgent warnings that have emerged from the past 30 to 40 years of climate science. It deserves to be understood much more fully than most media outlets have let on, both for what it says, and also what it doesn’t say about the future of the climate and its prospects for the integrity of all life on earth.

Click image to download report. (PDF, 248MB)

First some background. Since 1990, the IPCC has released a series of comprehensive assessments of the state of the earth’s climate, typically every 5–6 years. The reports have hundreds of authors, run for many hundreds of pages (this one has over 3000), and represent the international scientific consensus that has emerged from the period since the prior report. Instead of releasing a comprehensive report in 2019, as originally scheduled, the IPCC followed a mandate from the UN to issue three special reports: on the implications of warming above 1.5 degrees (all temperatures here are in Celsius except where otherwise noted), and on the particular implications of climate change for the earth’s lands and oceans. Thus the sixth comprehensive Assessment Report (dubbed AR6) is being released during 2021–22 instead of two years prior.

Also the report released last week only presents the work of the first IPCC working group (WGI), focused on the physical science of climate change. The other two reports, on climate impacts (including implications for health, agriculture, forests, biodiversity, etc.) and on climate mitigation — including proposed policy measures — are scheduled for release next February and March, respectively. While the basic science report typically receives far more press coverage, the second report on climate impacts and vulnerabilities is often the most revealing, describing in detail how both ecosystems and human communities will experience the impacts of climate changes.

In many respects, the new document represents a qualitative improvement over the previous Assessment Reports, both in terms of the precision and reliability of the data and also the clarity of its presentation. There are countless detailed charts and infographics, each illuminating the latest findings on a particular aspect of current climate science in impressive detail. There is also a new Interactive Atlas (freely available at interactive-atlas.ipcc.ch), which allows any viewer to produce their own maps and charts of various climate phenomena, based on a vast array of data sources and climate models.

If there is a key take-home message, it is that climate science has vastly improved over the past decade in terms of its precision and the degree of confidence in its predictions. Many uncertainties that underlay past reports appear to have been successfully addressed, for example how a once-limited understanding of the behavior and dynamics of clouds were a major source of uncertainty in global climate models. Not only have the mathematical models improved, but we now have more than thirty years of detailed measurements of every aspect of the global climate that enable scientists to test the accuracy of their models, and also to substitute direct observations for several aspects that once relied heavily upon modeling studies. So we have access to better models, and are also less fully reliant upon them.

Second, scientists’ understanding of historic and prehistoric climate trends have also vastly improved. While the IPCC’s third report in 2001 made headlines for featuring the now-famous “hockey stick” graph, showing how average temperatures had been relatively stable for a thousand years before starting to spike rapidly in the past few decades, the current report highlights the relative stability of the climate system over many thousands of years. Decades of detailed studies of the carbon contents of polar ice cores, lake and ocean sediments and other geologically stable features have raised scientists’ confidence in the stark contrast between current climate extremes and a couple of million years of relative climate stability.

The long-term cycle of ice ages, for example, reflects shifts of about 50 to 100 parts per million (ppm) in atmospheric carbon dioxide concentrations, compared to a current concentration (approximately 410 ppm) that is well over 150 ppm higher than the million-year average. We need to look back to the last interglacial era (125,000 years ago) to find an extended period of high average temperatures comparable to what we are experiencing now, and current carbon dioxide concentrations in the atmosphere are believed to be higher than any time in at least two million years.

With these overarching issues in mind, it is time to summarize some of the report’s most distinctive findings and then reflect upon their implications.

First, the question of “climate sensitivity” has been one of the more contentious ones in climate science. It is a measure of how much warming would result from a doubling of atmospheric CO2 from preindustrial levels, i.e. from 280 ppm to 560 ppm. Early estimates were all over the map, giving policymakers the wiggle room to suggest it is reasonable to reduce emissions more slowly or wait for newer technologies — from better batteries to carbon capture and even nuclear fusion — to come along. This report greatly narrows the scope of that debate, with a “best estimate” that doubling CO2 will produce approximately 3 degrees of warming — far too high to avoid extremely dire consequences for all of life on earth.

Climate sensitivity is very likely (more than 90% confidence) between 2.0–4.5 degrees and likely (2/3 confidence) between 2.5 and 4 degrees. Of the five main future scenarios explored in the report, only those where global greenhouse gas emissions reach their peak before 2050 will avoid that disastrous milestone. If emissions continue increasing at rates comparable to the past few decades, we’ll reach doubled CO2 by 2100; if emissions accelerate, it could happen in just a few decades, vastly compounding the climate disruptions the world is already experiencing.

A second key question is, how fast do temperatures rise with increasing emissions? Is it a direct, linear relationship, or might temperature rises begin to level off any time in the foreseeable future? The report demonstrates that the effect remains linear, at least up to the level of 2 degrees warming, and quantifies the effect with high confidence. Of course there are important deviations from this number (1.65 degrees per thousand gigatons of carbon): the poles heat up substantially more quickly than other regions, the air over continental land masses heats up faster than over the oceans, and temperatures are warming almost twice as fast during cold seasons than warm seasons, accelerating the loss of arctic ice and other problems.

Of course more extreme events remain far less predictable, except that their frequency will continue to increase with rising temperatures. For example the triple digit (Fahrenheit) temperatures that swept the Pacific Northwest of the US and southwestern Canada this summer have been described as a once in 50,000 years event in “normal” times and no one excludes the possibility that they will happen again in the near future. So-called “compound” events, for example the combination of high temperatures and dry, windy conditions that favor the spread of wildfires, are the least predictable events of all.

The central conclusion from the overall linear increase in temperatures relative to emissions is that nothing short of a complete cessation of CO2 and other greenhouse gas emissions will significantly stabilize the climate, and there is also a time delay of at least several decades after emissions cease before the climate can begin to stabilize.

Third, estimates of likely sea level rise, in both the near- and longer-terms, are far more reliable than they were a few years ago. Global sea levels rose an average of 20 centimeters during the 20th century, and will continue to rise throughout this century under all possible climate scenarios — about a foot higher than today if emissions begin to fall rapidly, nearly 2 feet if emissions continue rising at present rates, and 2.5 feet if emissions rise faster. These, of course, are the most cautious scientific estimates. By 2150 the estimated range is 2–4.5 feet, and more extreme scenarios where sea levels rise from 6 to 15 feet “cannot be ruled out due to deep uncertainty in ice sheet processes.”

With glacial melting expected to continue for decades or centuries under all scenarios, sea levels will “remain elevated for thousands of years,” potentially reaching a height of between 8 and 60 feet above present levels. The last time global temperatures were comparable to today’s for several centuries (125,000 years ago), sea levels were probably 15 to 30 feet higher than they are today. When they were last 2.5 to 4 degrees higher than preindustrial temperatures — roughly 3 million years ago — sea levels may have been up to 60 feet higher than today. Again these are all cautious estimates, based on the available data and subject to stringent statistical validation. For residents of vulnerable coastal regions around the world, and especially Pacific Island dwellers who are already forced to abandon their drinking water wells due to high infiltrations of sea water, it is far from just a theoretical problem.

Also, for the first time, the new report contains detailed projections for the unfolding of various climate-related phenomena in every region of the world. There is an entire chapter devoted to regionally-specific effects, and much attention to the ways in which climate disruptions play out differently in different locations. “Current climate in all regions is already distinct from the climate of the early or mid-20th century,” the report states, and many regional differences are expected to become more pronounced over time. While every place on earth is getting hotter, there are charts showing how different regions will become consistently wetter or dryer, or various combinations of both, with many regions, including eastern North America, anticipated to experience increasingly extreme precipitation events.

There are also more specific discussions of potential changes in monsoon patterns, as well as particular impacts on biodiversity hotspots, cities, deserts, tropical forests, and other places with distinctive characteristics in common. Various drought-related phenomena are addressed in more specific terms, with separate projections for meteorological drought (lack of rainfall), hydrological drought (declining water tables) and agricultural/ecological drought (loss of soil moisture). It can be expected that all these impacts will be discussed in greater detail in the upcoming report on climate impacts that is due in February.

There are numerous other important observations, many of which directly counter past attempts to minimize the consequences of future climate impacts. For those who want to see the world focus more fully on emissions unrelated to fossil fuel use, the report points out that between 64 and 86 percent of carbon emissions are directly related to fossil fuel combustion, with estimates approaching 100 percent lying well within the statistical margin of error. Thus there is no way to begin to reverse climate disruptions without an end to burning fossil fuels. There are also more detailed projections of the impacts of shorter-lived climate forcers, such as methane (highly potent, but short-lived compared to CO2), sulfur dioxide (which counteracts climate warming) and black carbon (now seen as a substantially less significant factor than before).

To those who assume the vast majority of emissions will continue to be absorbed by the world’s land masses and oceans, buffering the effects on the future atmosphere, the report explains how with rising emissions, a steadily higher proportion of the CO2 remains in the atmosphere, rising from only 30 to 35 percent under low emissions scenarios, up to 56 percent with emissions continuing to increase at present rates and doubling to 62 percent if emissions begin to rise more rapidly. So we will likely see a declining capacity for the land and oceans to absorb a large share of excess carbon dioxide.

The report is also more skeptical than in the past toward geoengineering schemes based on various proposed technological interventions to absorb more solar radiation. The report anticipates a high likelihood of “substantial residual or overcompensating climate change at the regional scales and seasonal time scales” resulting from any interventions designed to shield us from climate warming without reducing emissions, as well as the certainty that ocean acidification and other non-climate consequences of excess carbon dioxide would inevitably continue. There will likely be substantially more discussion of these scenarios in the third report of this IPCC cycle, which is due in March.

In advance of the upcoming international climate conference in Glasgow, Scotland this November, several countries have pledged to increase their voluntary climate commitments under the 2015 Paris Agreement, with some countries now aiming to achieve a peak in climate-altering emissions by mid-century. However this only approaches the middle range of the IPCC’s latest projections. The scenario based on a 2050 emissions peak is right in the middle of the report’s range of predictions, and shows the world surpassing the important threshold of 1.5 degrees of average warming in the early 2030s, exceeding 2 degrees by mid-century, and reaching an average temperature increase between 2.1 and 3.5 degrees (approximately 4–6 degrees Fahrenheit) between 2080 and 2100, nearly two and a half times the current global average temperature rise of 1.1 degrees since preindustrial times.

We will learn much more about the impacts of this scenario in the upcoming February report, but the dire consequences of future warming have been described in numerous published reports in recent years, including an especially disturbing very recent paper reporting signs that the Atlantic circulation (AMOC), which is the main source of warm air for all of northern Europe, is already showing signs of collapse. If carbon emissions continue to increase at current rates, we are looking at a best estimate of a 3.6 degree rise before the end of this century, with a likely range reaching well above 4 degrees — often viewed as a rough threshold for a complete collapse of the climate system.

There are two lower-emissions scenarios in the report, the lowest of which keeps the temperature rise by the century’s end under 1.5 degrees (after exceeding it briefly), but a quick analysis from MIT’s Technology Review points out that this scenario relies mainly on highly speculative “negative emissions” technologies, especially carbon capture and storage, and a shift toward the massive-scale use of biomass (i.e. crops and trees) for energy. We know that a more widespread use of “energy crops” would consume vast areas of the earth’s landmass, and that the regrowing of trees that are cut down to burn for energy would take many decades to absorb the initial carbon release– a scenario the earth clearly cannot afford.

The lower-emissions scenarios also accept the prevailing rhetoric of “net-zero,” assuming that more widespread carbon-sequestering methods like protecting forests can serve to compensate for still-rising emissions. We know that many if not most carbon offset schemes to date have been an absolute failure, with Indigenous peoples often driven from their traditional lands in the name of “forest protection,” only to see rates of commercial logging increase rapidly in immediately surrounding areas.

It is increasingly doubtful that genuine long-term climate solutions can be found without a thorough transformation of social and economic systems. It is true that the cost of renewable energy has fallen dramatically in the past decade, which is a good thing, and that leading auto manufacturers are aiming to switch to electric vehicle production over the coming decade. But commercial investments in renewable energy have leveled off over the same time period, especially in the richer countries, and continue to favor only the largest-scale projects that begin to meet capitalist standards of profitability. Fossil fuel production has, of course, led to exaggerated standards of profitability in the energy sector over more than 150 years, and most renewable projects fall far short.

We will likely see more solar and wind power, a faster tightening of fuel efficiency standards for the auto industry and subsidies for electric charging stations in the US, but nothing like the massive reinvestment in community-scaled renewables and public transportation that is needed. Not even the landmark Biden-Sanders budget reconciliation plan that is under consideration in in the US Congress, with all its necessary and helpful climate measures, addresses the full magnitude of changes that are needed to halt emissions by midcentury. While some obstructionists in Congress appear to be stepping back from the overt climate denial that has increasingly driven Republican politics in recent years, they have not backed away from claims that it is economically unacceptable to end climate-altering pollution.

Internationally, the current debate over reducing carbon pollution (so called “climate mitigation”) also falls far short of addressing the full magnitude of the problem, and generally evades the question of who is mainly responsible. While the US and other wealthy countries have produced an overwhelming share of historic carbon pollution since the dawn of the industrial era, there is an added dimension to the problem that is most often overlooked, and which I reviewed in some detail in my Introduction to a recent book (co-edited with Tamar Gilbertson), Climate Justice and Community Renewal (Routledge 2020). A 2015 study from Thomas Piketty’s research group in Paris revealed that inequalities within countries have risen to account for half of the global distribution of greenhouse gas emissions, and several other studies confirm this.

Researchers at Oxfam have been studying this issue for some years, and their most recent report concluded that the wealthiest ten percent of the global population are responsible for 49 percent of individual emissions. The richest one percent emits 175 times more carbon per person on average than the poorest ten percent. Another pair of independent research groups have released periodic Carbon Majors Reports and interactive graphics profiling around a hundred global companies that are specifically responsible for almost two-thirds of all greenhouse gases since the mid-19th century, including just fifty companies — both private and state-owned ones — that are responsible for half of all today’s industrial emissions (See climateaccountability.org). So while the world’s most vulnerable peoples are disproportionately impacted by droughts, floods, violent storms and rising sea levels, the responsibility falls squarely upon the world’s wealthiest.

When the current IPCC report was first released, the UN Secretary General described it as a “code red for humanity,” and called for decisive action. Greta Thunberg described it as a “wake-up call,” and urged listeners to hold the people in power accountable. Whether that can happen quickly enough to stave off some of the worst consequences will be a function of the strength of our social movements, and also our willingness to address the full scope of social transformations that are now essential for humanity and all of life on earth to continue to thrive.


Brian Tokar is the co-editor (with Tamra Gilbertson) of Climate Justice and Community Renewal: Resistance and Grassroots Solutions. He is a lecturer in Environmental Studies at the University of Vermont and a long-term faculty and board member of the Vermont-based Institute for Social Ecology.

Beavers are back: here’s what this might mean for the UK’s wild spaces

Beavers are back: here’s what this might mean for the UK’s wild spaces

This article originally appeared in The Conversation.

Editor’s note: “That repair should be the main goal of the environmental movement. Unlike the Neverland of the Tilters’ solutions, we have the technology for prairie and forest restoration, and we know how to use it. And the grasses will be happy to do most of the work for us.”
“To actively repair the planet requires understanding the damage. The necessary repair—the return of forests, prairies, and wetlands—could happen over a reasonable fifty to one hundred years if we were to voluntarily reduce our numbers.”
Deep Green Resistance


The Eurasian beaver, once a common sight across Europe, had disappeared almost entirely by the end of the 16th century thanks to hunting and river modification for agriculture and engineering.

But beavers are making a comeback across the UK and several other countries. They have already been released into the wild in Scotland and within enclosed river sections in England. Now expanding the wild release of beavers across England is on the cards.

Ecosystem recovery, increased biodiversity, flood protection and improved water quality are some of the upsides of having beavers around. But reintroducing wild animals to the landscape is always going to involve trial and error, and it’s vital to understand the possible consequences – both good and bad.

The beaver is a gifted environmental engineer, able to create its own ecological niche – matching itself perfectly to its environment – by building dams. These dams are made from materials the beaver can carry or float – typically wood, stones and mud, but also fence posts, crops from nearby fields, satellite dishes and old kids’ toys.

The dam creates a peaceful, watery home for beaver families to sleep, eat and avoid predators. And the effects of dam building ripple outwards, with the potential to transform entire ecosystems.

Our review of beaver impacts considers evidence from across Europe and North America, where wild beaver populations have been expanding since around the 1950s.

Our review of beaver impacts considers evidence from across Europe and North America, where wild beaver populations have been expanding since around the 1950s.

Water

There is clear evidence that beaver dams increase water storage in river landscapes through creating more ponds and wetlands, as well as raising groundwater levels. This could help rivers – and their inhabitants – handle ever more common weather extremes like floods and droughts.

If you observe beaver dams in the wild, water often comes very close to the top of their dams, suggesting they might not be much help in a flood. Nonetheless, some studies are finding that beaver dams can reduce flood peaks, likely because they divert water onto floodplains and slow downstream flow. However, we don’t know whether beaver dams reliably reduce floods of different sizes, and it would be unwise to assume they’re always capable of protecting downstream structures.

The good news is that it seems all the extra water dams store could help supplement rivers during dry periods and act as critical refuges for fish, amphibians, insects and birds during droughts.

Pollution

Beaver dams increase the time it takes for things carried by rivers to move downstream. In some cases, this can help slow the spread of pollutants like nitrates and phosphates, commonly used in fertilisers, which can harm fish and damage water quality.

Beavers’ impact on phosphates is unclear, with just as many studies finding phosphorus concentrations increasing downstream of beaver dams as those finding a decrease or no change. But beavers seem especially skilled at removing nitrate: a welcome skill, since high concentrations of nitrates in drinking water could endanger infant health.

Recovering diversity

All that water storage means beavers create a wonderful mosaic of still-, slow- and fast-moving watery habitats. In particular, they increase the biodiversity of river valleys, for example helping macro-invertebrates like worms and snails – key to healthy food chains – to thrive.

Beavers’ departure can leave anything from fens or peatlands to wet floodplain forests to drier grassland meadows developing in their wake. This gives beavers an important role in rewilding efforts.

But nuance is key here. Evidence of beaver dam impacts on fish populations and river valley vegetation, for example, is very mixed. Because they are such great agents of disturbance, beavers promote plants that germinate quickly, like woody shrubs and grasses.

While this can reduce forest cover and help some invasive plants, given time it can also help create valleys with a far richer mosaic of plant life. So although beaver presence is likely to bring benefits, more research is needed to get clearer on precisely how beavers change ecosystems.

Net zero carbon

Beavers are great at trapping carbon by storing organic matter like plant detritus in slow-flowing ponds. However, this also means beaver ponds can be sources of greenhouse gases, like CO₂ and methane, that contribute to the greenhouse effect. This led one author to wonder “whether the beaver is aware the greenhouse effect will reduce demand for fur coats”.

Can beavers still be helpful in achieving net zero carbon? The short-term answer is probably yes, since more carbon seems to be trapped than released by beaver activities.

However, long-term outcomes are less clear, since the amount of carbon that beavers keep in the ground depends on how willing they are to hang around in a river valley – and how willing we are to let them. A clearer understanding of where beavers fit within the carbon cycle of river systems is needed if we are to make best use of their carbon capture skills.

Management

Beavers are reentering landscapes under human dominance, the same thing that originally drove them from vast swathes of European river systems.

In the UK, this means they’ll lack natural predators and may be in competition with cows and sheep for food: possibly resulting in unsteady wild population trajectories.

Although good data on long-term beaver activity is available from Sweden, Norway and Switzerland, our different climate and landscapes mean it’s hard to make a straightforward comparison.

Beavers’ use in rewilding can be incredibly cost-effective, as dam construction and the biodiversity benefits that flow from it is done largely for free. But we need to be tolerant of uncertainty in where and when they choose to do their work.

Working with wild animals – who probably don’t share our priorities – is always an unpredictable process. The expansion of beavers into the wild has a bright future so long as we can manage expectations of people who own and use beaver-inhabited land.