Editor’s Note: Earlier this year, UN delegates reached an agreement on conservation of marine life on international waters. The agreement, reached after two decades of negotiations, claims it will protect 30 percent of the world’s oceans from biodiversity loss by 2030. It has been hailed as a “breakthrough” by Secretary-General António Guterres. Mainstream environmental organizations have followed suit. These two articles by DGR members question these claims. They explore what the treaty actually says. The article is followed by the invitation to a demonstration against Deep Sea Mining in London on May 3 and 4.
Scrolling through a bright green Facebook page a few weeks ago I saw this headline: “More Than 190 Countries Agree On A Treaty to Protect Marine Life.” Sounds good, but is it really? I wonder if anyone who saw that post actually read and researched the story before reacting to it with likes and hearts and enthusiastic comments.
The article said that The United Nations High Seas Treaty aims to protect 30% of the world’s ocean from biodiversity loss by 2030. My first thought was, why only 30%? My second thought was, There’s got to be something more to this treaty than is being told to us in the article. And there is.
First, let’s look at who is allowed to use ocean resources.
Although the ocean body of water can be used by anyone, the ocean seabed belongs to the coastal state, which is 12 nautical miles from the coast. A nautical mile is a little over a land mile. Each state also has an exclusive economic zone which is 200 nautical miles from its coast. A nation has the right to use the resources in this zone. Beyond the 200 nautical miles is considered international waters — the high seas — which can be used by anyone. The new treaty is supposed to regulate the use of international waters.
Right now, all nations are allowed to lay submarine cables and pipelines along the floor bed of the high seas. That seems destructive enough, but now the UN High Seas Treaty, that is supposed to protect marine life, is going to allow deep sea mining to be exempt from environmental impact assessment (EIA) measures.
Deep sea mining is one of the most destructive activities that can be done to the ocean sea bed. The push for this mining is being driven by an increase in demand for minerals to make so-called renewable energy. More and more of the earth’s land is being mined for these minerals, and the mining industry is now looking to the ocean to continue the destruction.
The land and sea should not be owned by anyone, but as we can see, the most powerful people in this industrial society are just taking what they want. Mining destroys land bases, and now deep sea mining is being added to the destruction of the planet. Whenever governments get together to do something “good,” be very skeptical. It’s usually being done for the good of companies, not the planet.
What they aren’t telling you about the High Seas Treaty
By Julia Barnes
When the High Seas Treaty was announced, conservation groups applauded and social media was abuzz with celebration. The media portrayed it as a long-awaited victory. Commentators claimed that it meant 30% of the ocean would be protected by 2030, that deep sea mining would face strict regulations, and biodiversity would be safeguarded.
The draft text is easily accessible online. It’s a 54-page document, dry and tedious, but clear enough that any lay person should be able to comprehend its meaning.
That is why it is so unforgivable that the treaty has been misrepresented the way it has.
The High Seas Treaty does not guarantee that 30% of the ocean will be protected. It makes no commitment to a percentage, sets no targets. It merely lays out the regulatory framework under which it would be possible to create marine protected areas on the high seas.
When you think of a protected area, you’re likely imagining a place that is off limits to exploitation, where industrial activities are banned.
Under the High Seas Treaty, a protected area is one that is “managed” and “may allow, where appropriate, sustainable use provided it is consistent with the conservation objectives.”
I do not believe that humans possess the wisdom to manage the ocean, nor would we ever be capable of doing a better job than the ocean does itself, with its billions of years of intelligence.
Our track record with managing fisheries should cast serious doubts about our ability to assess sustainability. We must remember that there is no surplus in nature. When something is taken out, even at a rate that is “sustainable,” nutrients are permanently removed from the ecosystem. This cannot happen without consequences.
Even though “protected” might not mean what we expect it to, let’s assume for a moment that an area managed for “sustainable use” is in better shape than one left “unprotected.” Next, we run into the problem of enforcement.
Illegal fishing is rampant, with 40% of fishing boats in the world operating illegally. Marine protected areas are routine victims of poaching. Unless they deploy a navy to patrol the protected areas on the high seas, it is likely these will only be paper parks.
But all this presumes that marine protected areas will, in fact, be created. The process laid out in the treaty makes this quite difficult. With 193 signatory countries, decisions on the creation of marine protected areas are by consensus, and failing that, will require a two-thirds majority vote.
Proposals for new marine protected areas must undergo a review by a scientific and technical body, then consultation with “all relevant stakeholders,” after which the submitting party will be asked to revise the proposal.
Next, there is a 120-day review period. If another party objects to the establishment of a marine protected area within that time frame, the objecting party will be exempted from the marine protected area.
The review period also leaves time for industries to exploit the proposed area before protection is in place. We’ve seen this happen on land when logging companies targeted soon-to-be-protected forests, cutting as many trees as they could before the protection was granted. It’s not hard to imagine something similar taking place on the high seas, with a proposed area being fished intensively during the 120-day period.
What commentators often ignore is that a large portion of the treaty is dedicated to something called “marine genetic resources” and deals with how to share the “benefits” gained from commodifying the genetic material of marine organisms for use in things like pharmaceuticals.
Conservation groups have falsely claimed that the High Seas Treaty puts limits on deep sea mining, when in fact it does not. Deep sea mining is even exempted from environmental impact assessment measures.
The High Seas Treaty may have been a diplomatic feat, but as is often the case when negotiating with so many parties, to achieve agreement, the text ends up watered down and toothless.
This comes as no surprise. What is disheartening is seeing the way news media and NGOs consistently misrepresent the treaty. For a while, the internet exploded with erroneous claims that 30% protection had been achieved, that the ocean had scored a massive victory.
Meanwhile, the deep sea mining industry is gearing up to begin the largest and most destructive project ever imagined on the high seas, and few people have heard of it.
We have an illusion of protection masking a new era of exploitation.
They have been very secretive about the exact location. Which is understandable considering the destructive nature of this profession. But we have found out where it will be held and we need to have an opposition demonstration there. Everyone and anyone in and around London who is against mining the deep sea should come with signs and solidarity. We have set a time and date to show up but feel free to come express your views anytime during the summit. On May 4th at 1pm BST in front of the London Marriott Hotel Canary Wharf 22 Hertsmere Road defend the deep sea!
Species extinction is considered a “likely outcome” of deep sea mining. This new extractive industry threatens not only the fragile seabed, but all levels of the ocean. Mining would produce plumes of sediment wastewater that spread for 100s of kilometers, suffocating the fish who swim throught them.
We have an opportunity to stop this industry before it begins, but we are running out of time. As soon as this July, commercial mining may begin, opening an area of the ocean as wide as North America to exploitation.
We want to show that there is widespread support for a ban on deep sea mining.
We also want to highlight the incredible biodiversity that is threatened, so we are encouraging people to come dressed as their favorite ocean creatures. Don’t let them think your silence means consent.
In the last few years whales stranded on the beaches of the East Coast have become common. In just the past two months there have been over a dozen. And that does not include the whales who have died in that time and sank to the bottom of the ocean. Fishermen blame industrial wind farm surveys, the wind industry blames climate change, and the vessel strikes of the global supply chains of civilization will not slow down. All the while mainstream “environmental” groups have become PR people for industrial energy. That stance is mutually exclusive from their professed goal to protect wildlife like desert tortoise, sage grouse, bats and to Save The Whales.
NOAA declared an official “unusual mortality event” for humpback whales in 2016, when the number of deaths on the East Coast more than doubled from the average in previous years. Coincidentally that is the same year when offshore wind development began, which coincides with the huge jump in NOAA Incidental Harassment Authorizations. The claim that this huge jump in mortality predates offshore wind preparation activities is patently false. This strong correlation is strong evidence of causation, especially since no other possible cause has appeared. It also seems odd that dead whales are now showing up on the west coast just as wind development is starting up there as well.
If what we are seeing is what happens during the surveying process for an offshore wind farm, we can only imagine what will happen when major construction begins. If vessel strikes are a leading cause of death, why on earth would you diminish habitat and increase vessel traffic with the construction of wind turbines? Yet in the recent denial of a vessel speed reduction, NOAA said it was “focused on implementing long-term, substantive vessel strike risk reduction measures.” Hopefully that will include the cancellation of any further wind farm construction. We certainly should not be increasing vessel traffic at this time, we should be restricting it. Vessel strikes and ocean noise from these extra ships and their sonar mapping is killing whales.
Noise interrupts the normal behavior of whales and interferes with their communication. It also reduces their ability to detect and avoid predators and human hazards, navigate, identify physical surroundings, find food and find mates. Such effects make it difficult for whales to avoid ships. It is one of NOAA’s four threats, along with vessel strikes, fishing gear entanglements and climate change.
Sound travels farther and four times faster in water than in air (at a speed of almost 1,500 meters per second). The noise produced by humans can therefore spread considerable distances underwater. These sounds can be relatively constant, such as the noise produced by a ship’s engine and propeller, or sudden and acute in the case of naval sonar and seismic air guns. The sound produced by a seismic air gun can cause permanent hearing loss, tissue damage and even death in nearby animals.
Evidence for the lethal effects of noise can be hard to document in the open ocean, but seismic surveys have been linked to the mass mortality of squid and zooplankton. In 2017, research revealed that a single air gun caused the death rate of zooplankton to increase from 18% to 40–60% over a 1.2 kilometer stretch of the ocean off the coast of southern Tasmania.
Examination of the dead whales revealed they had suffered trauma similar to decompression sickness. This was believed to have been caused by sudden changes in their deep diving behavior following exposure to sonar. The wind companies are using sonar in the geotechnical and site characterization surveys. There is also the detonation of unexploded ordnance (UXO) items from ship wrecks at this time, accidental and intentional.
Noise increases animals’ physiological stress. Research found that a reduction in shipping following the 9/11 terrorist attacks led to a six decibel drop in noise levels in the Bay of Fundy on Canada’s Atlantic coast. This coincided with lower levels of physiological stress detected in North Atlantic right whales when researchers measured stress hormones from floating whale feces.
During construction of the turbines, high-duty cycle impact pile driving (one strike every ~two seconds) will be used. And the pile driving is expected to occur for approximately four hours at one time for monopile installation, and 6 hours per pile for piled jacket installation.
This takes us to the biggest threat to whales and the ocean ecosystem that they live in: climate change. Climate change is caused by greenhouse gas emissions. These are created by industrial development. So climate change is a symptom of industrial development. That is the extractive industries of mining, deforestation, agriculture, factory fishing and dams which provide — through production, manufacture, transport, installation and operation — the current conveniences of a modern way of human life.
Industrial development destroys ecosystems. More industrial development, by the installation of thousands of offshore wind turbines, will not solve the problem of climate change. There’s one inescapable truth about the headlong rush to cover vast swaths of our countryside and oceans with 800-foot-high wind turbines: the more turbines that get built, the more wildlife will be harmed or killed. And no amount of greenwashing can change that fact. So it is distressing to see the numbers of whales washing up on our beaches. NOAA also says there is no proof that offshore wind is killing the whales. We must remember the onus isn’t on whales to prove guilt, it’s on industrial development to prove their innocence.
The production of the materials as well as the manufacturing processes for wind turbines and associated infrastructure of the extracted energy storage and transmission are made possible by burning fossil fuels. To obtain the raw material used in wind turbines, habitat is destroyed through open pit mining and mountaintop removal. The raw materials are then transported to processing plants to be turned into the component parts. It will take a tremendous amount of energy to mine the materials; transport and transform them through industrial processes like smelting; turn them into wind turbines, batteries, infrastructure and industrial machinery; install all of the above; and do this at a sufficient scale to replace our current fossil-fuel-based industrial system. In the early stages of the process, this energy will have to come mostly from fossil fuels, since they supply about 80 percent of current global energy. Their emissions will be added to the current use emissions. After manufacture, the turbine parts need to be transported to the project location. The construction and operation of offshore wind farms increase boat traffic, also leading to more greenhouse gas emissions and pollution. All of which adds to a non-existent carbon budget and thus increasing climate change. Not to mention the increased risk of marine mammal vessel strikes.
All of that energy use has a carbon payback period to plan, build, maintain and decommission the processes involved in an offshore wind turbine and its required infrastructure amounting to many years. This could be up to a quarter of its expected lifecycle. But this does not take into account the wildlife loss and habitat destruction from those processes. And then in 20 years the process must be done all over again. So this is not renewable. Also there are not enough metals on the planet to produce even the first generation of a total electric energy extracting transition, even if we mine the deep sea as we are starting to do.
Currently only 20% of our energy is electric. The other 80% is fossil fuel, the bulk of which is used by industry. The industrial advantage of fossil fuel is that it is stored energy that is extracted rather than an energy extracting device that requires storage and transmission infrastructure.
The paradox of “renewables” is that they need unprecedented volumes of non-renewable mined materials. Increasing “renewables” means large upticks in battery metals such as copper, cobalt, lithium and nickel. Wind turbines need rare earth metals such as neodymium of which there are scarce amounts. But the work wouldn’t stop there.
Closed mines themselves are a huge source of devastation. If all mining stopped today there would still be an area at least the size of Austria with degrading and, in some cases, dangerous levels of heavy metals. Mining brings materials that have been locked up in concentrations underground and lets them out into the world. Mines usually operate at depths below the water table — they need to be constantly dewatered using pumps. When a mine is abandoned, the ground water gradually re-floods underground passages and mineral seams over many months, creating acidic reservoirs of water. Above ground there are tailings ponds and piles of low-grade ore with traces of heavy metals. All of this material is exposed to oxygen and water. Exposing such elements wreaks havoc on ecosystems, soils and water supplies through acid leaching. A mine that is abandoned can have chronic pollution for hundreds if not thousands of years.
Cleaning up a mine consists of reducing water acidity, detoxifying the soil and treating waste before reintroducing flora and fauna to the site. It’s a lengthy, expensive process and can cost billions for a single large mine. Avoiding an environmental catastrophe and cleaning all the world’s mines at once would cost hundreds of billions or even trillions of dollars. So mining the materials needed for renewable energy will increase the threats to biodiversity. These threats will surpass those avoided by “renewable” climate change mitigation.
The concept of material footprints, in addition to carbon footprints, should be taken into consideration by governments. If not, the planet’s scarce non-renewable resources will continue to be destroyed. These factors will more than offset BOEMs calculations for climate change in the DEIS.
During their operation wind turbines create a disturbance in the air that can have far-reaching effects on the environment. The turbulence created is known to warm up the surface temperature around them by up to 2℉. This will change the climate by taking away the cooling breeze. Wind turbines will change weather patterns and currents which will create more and stronger storms.
Michael Moore, a senior scientist at the Woods Hole Oceanographic Institution, said whales face “a suite of risks” as turbines are built, such as increased vessel traffic and potential changes to the ecology. But that ecological change, he said, “needs significant further study to truly understand its significance.”
As Sunrise Wind admits, their planned construction and operations activities are not expected to “take” MORE than small numbers of marine mammals. They say incidental long-term impacts that have negative effects on large whales from the presence of turbine foundations is uncertain. For the right whale, according to NOAA Fisheries, “The potential biological removal level for the species, defined as the maximum number of animals that can be removed annually while allowing the stock to reach or maintain its optimal sustainable population level, is less than 1.” This means the death of a single right whale could make the difference between extinction and recovery.
There is no question wind turbines kill wildlife. Humans and domestic animals account for 96% mammal biomass on the planet. Only 4% is wild. Our activity has reduced the biomass of wild marine and terrestrial mammals by six times. Humanity has wiped out 60% of mammals, birds, fish and reptiles since 1970, leading the world’s foremost experts to warn that the annihilation of wildlife is now an emergency that threatens all life on the planet.
Jennifer Jacquet, a professor of environmental studies at New York University, said, “But we know that even in the face of a shifting climate, direct exploitation remains the largest factor affecting aquatic animals.”
BOEM is basing its conclusions in the DEIS on a false analysis that offshore wind turbines will reduce climate change. They will not. It makes no sense to increase disturbance to whales when they are suffering through an unusual mortality event. Whales as a keystone species are the canary in the coal mine. As they go, so do we. That in the effort to save the climate and continuance of business as usual, we are destroying the environment. If this offshore wind project continues, it will be humans who experience an unusual mortality event.
Carl van Warmerdam has lived his life on the West Coast of Turtle Island. He has always aligned with the counter culture ideals there. Now he currently lives on the coast of New England, the ancestral home of the North Atlantic Right Whale. If you would like to help Save the Whales email Lafongcarl@protonmail.com. We stopped offshore wind before, we can do it again.
The North Atlantic Right Whale (NARW) are among the rarest of all marine mammal species in the Atlantic Ocean. They average approximately 15 m (50 ft) in length. They have stocky, black bodies with no dorsal fin, and bumpy, coarse patches of skin on their heads called callosities. The NARW is one of the world’s most endangered whales. Once common along the eastern U.S. seaboard, the whale was hunted to near-extinction by the 1750s. The species gets its names from early whalers, who considered them to be the “right” whales to hunt. By the early 1900s the population off Europe had been virtually extirpated while a small population of perhaps a hundred or fewer survived in the western North Atlantic off the United States and Canada. After 1935, when an international agreement went into effect banning the hunting of all right whales, their numbers began to increase slowly. In recent decades, this slow recovery has been impeded by mortality and serious injury from ship strikes, entanglement in fishing gear, underwater noise and separation from calving areas because of shipping traffic. NARW now occur almost exclusively along the east coasts of the United States and Canada, where they rely on a calanoid copepod, Calanus finmarchicus, as their primary food source. Beyond eating a lot, whales also produce lots of plumes (a gassy form of underwater poop). These plumes fertilize the ocean and help feed small organisms called phytoplankton. These organisms, in turn, produce 50% of the world’s oxygen – every other breath humans take. Over their lifetimes, NARW also accumulate tons of carbon in their bodies – helping to mitigate climate change. The importance of whales for the ecosystem cannot be overstated.
An 8-year analysis of NARW sightings within Southern New England (SNE) show that the NARW distribution has been shifting (Quintana- Rizzo et al. 2021). A study area of SNE (shores of Martha’s Vineyard and Nantucket to and covering all the offshore wind lease sites of Massachusetts and Rhode Island) recorded sightings of NARW in almost all months of the year. A population trend analysis conducted on the abundance estimates from 1990 to 2011 suggest an increase at about 2.8% per year from an initial abundance estimate of 270 individuals in 1998 (Hayes et al. 2020). However, modeling conducted by Pace et al. (2017) showed a decline in annual abundance after 2011, which has likely continued as evidenced by the decrease in the abundance estimate from 451 in 2018 (Hayes et al. 2019) to 412 in 2020 (Hayes et al. 2020). This decrease correlates to when the Block Island wind turbines were constructed. The only offshore wind Turbines in the Americas.
With an estimated population of fewer than 350 individuals, scientists have been raising the alarm about the dwindling number of reproductive females needed to sustain the population. For a new paper published in the journal Frontiers, lead author Joshua Reed, a PhD candidate from the School of Natural Sciences at Macquarie University, used individual female whales’ reproductive history, rather than age, when modeling population trends to provide a better insight into their numbers. “Our research found that of the estimated 142 female right whales alive in the population at the beginning of 2018, only 72 were actually capable of reproducing. This has certainly influenced the species’ decline in recent years,” said Reed. The researchers also found that in recent years, young females are less likely to start calving when they reach 10 years of age. Ten was the age at which right whales used to have their first calf in the years up to the turn of the century. Right Whales can and should live for up to 75 years. But that number is quickly declining. Scientists identify individual right whales through photographs and compare these images throughout time to learn about their lifespan. And, according to recent estimates, female right whales are barely making it to middle age. But many right whales don’t even make it that far.
In its 2020 update of its “Red List of Threatened Species,” the International Union for Conservation of Nature declared NARW “critically endangered,” the most serious category of risk, with such a small, slow-growing population, any threatening factor may have a significant impact.
Offshore Wind or North Atlantic Right Whale?
“North Atlantic right whale” by FWC Research is licensed under CC BY-NC-ND 2.0.
The Bureau of Ocean Energy Management (BOEM) plans, by 2025, to hold up to five additional, to the Revolution Wind, Offshore Wind (OSW) lease sales and complete the review of at least 16 plans to construct and operate commercial OSW facilities, which would represent more than 22 gigawatts of “clean” energy for the nation. That means thousands of wind turbines along the Eastern Seaboard.
BOEM and the National Oceanic and Atmospheric Administration (NOAA) Fisheries initiated development of a shared Draft North Atlantic Right Whale and Offshore Wind Strategy (hereinafter called “Strategy”) to focus and integrate past, present, and future efforts related to NARW and OSW development. In response to Executive Order 14008, both agencies share a common vision to protect and promote the recovery of NARW while responsibly developing offshore wind energy. The announcement initiated a 45-day public review and comment period on the draft strategy. Comments on the guidance can be submitted via regulations.gov from October 21 to December 4, 2022 under Docket Number BOEM-2022-0066. For more information about the draft strategy and how to submit comments, visit BOEM’s website.
The following is my comment. Please use this opportunity to express your concerns in this regard.
The NARW species provides important ecosystem services, and its potential extinction could be a leading indicator for other ecosystem disruptions (Pershing et al. 2021). The extinction of the Right Whale will be the precursor of the extinction of our own species. Both will be caused by the disturbances to functioning ecosystems by human expansion. And it does not need to be this way. OSW development will result in the destruction or adverse modification of designated critical habitat. Only a “jeopardy” or “adverse modification” conclusion can be reached. Whales and turbines do not mix. Please do not allow this “development” to proceed while the NARW survival is in the balance. There is still time, but the time is now because there is so little left.
Climate change does in-fact pose a significant global threat that will cause planet-wide physical, chemical, and biological changes that substantially affect the world’s oceans, lands, and atmosphere. But climate change is a symptom of industrial civilization and driven by the disease of a consumer culture. A new study finds a 69% average drop in animal populations since 1970. Over those five decades most of the decline can be traced to habitat destruction. The human desire for ever more growth played out over the years, city by city, road by road, acre by acre, across the globe. “Biological diversity is the variety of life on Earth and the natural patterns it forms. The biodiversity seen today is the result of 4.5 billion years of evolution and, increasingly, of human influence as well. It forms the web of life, of which humans are integral and upon which people and the planet so fully depend. The planet is currently in biodiversity breakdown. Species are now disappearing hundreds, or even thousands, of times faster than the natural background rate of extinction. The scientific community has repeatedly sounded the alarm on the triple planetary crisis of climate change, nature and biodiversity loss, and pollution and waste. Over half the world’s total GDP is moderately or highly dependent on nature, which also provides medicine and social benefits.” We are in a biodiversity emergency. With scores of species dying each day, we are in a mass extinction event. Although many of those species may not be as impressive as the megafauna they are just as important to protect the complex balance of nature which all of life is dependent upon.
Without significant reductions in anthropocentric consumption of the natural world, greenhouse gas emissions, extinctions and transformative impacts on all ecosystems cannot be avoided. Our options in what reductions will then be impose by such limits will create harsher impacts on the economic, recreational, and subsistence activities they support.
OSW is abundant and renewable but extracting that energy with turbines will be neither efficient or clean or an alternative domestic energy resource. Wind turbines are not renewable. Heavy industries use a lot of energy to create the components for wind turbines. Coal and other fossil fuels are utilized to power the machinery and furnaces in these factories. According to estimates, the energy utilized by the present United States’ heavy industries is equivalent to the energy necessary to power the country’s entire electrical grid.
The need for energy in the heavy industries grows in tandem with the demand for wind turbines, producing a feedback mechanism in which the more wind power we use, the more reliant we are on the heavy industry, and thus the more fossil fuels we need. Production of wind turbines to extract wind energy will require the release of more emissions that can pollute the air or water without exceptions, and using turbines to extract wind energy has greater effects on the environment than many other energy sources. Wind turbines will not reduce the amount of electricity generation from fossil fuels, and will result in greater total air pollution and carbon dioxide emissions. Transitioning to their use will precipitate a far higher biodiversity loss in their manufacturing process. Already the wind power boom is driving deforestation in the Amazon with its demand for balsa wood.
The major coastal cities, where more than half of the U.S. population resides and energy needs are high, must reduce their energy consumption, as all cities must do. Compared to onshore wind, offshore wind challenges that also need to be considered are higher cost due to specialized installation, equipment, and more expensive support structures; (2) more difficult working conditions; (3) higher wind speeds; (4) decreased availability due to limited accessibility for maintenance; and (5) necessity for special corrosion prevention measures. Hence the lower life cycle of 15 years for offshore wind. Then at the end of their lifecycle they end up in a landfill because they are economically infeasible to recycle. Not to mention that these particular turbines will be built in the home of the NARW.
Without the Departments of the Interior, Energy, and Commerce announced national goal to deploy 30 gigawatts of OSW by 2032 and accompanying subsidies, there wouldn’t be increasing interest in developing OSW. This goal is stated to be achieved while protecting biodiversity and promoting ocean co-use. It can be appreciated that in an attempt to resolve these conflicting goals the BOEM and NOAA Fisheries North Atlantic Right Whale and Offshore Wind Strategy has been put forth.
The Outer Continental Shelf (OCS) Lands Act directs BOEM to study and consider coastal, marine, and human environmental impacts, and BOEM must also comply with many other statutes, regulations, executive orders, and policies in making decisions—including the Endangered Species Act (ESA).
The ESA requires BOEM to ensure that any action it takes to implement the OCS Renewable Energy Program is not likely to jeopardize the continued existence of any listed species or result in the destruction or adverse modification of critical habitat determined for any listed species, including the NARW (ESA section 7(a)(2)). Additionally, section 7(a)(1) of the ESA requires BOEM (and all other Federal agencies) to “utilize their authorities in furtherance of the purposes of this Act by carrying out programs for the conservation of endangered species.”
NOAA Fisheries strives to take an ecosystem-based approach to managing living marine resources, recognizing the interconnectedness of ecosystem components and the value of resilient and productive ecosystems to living marine resources. This connectedness should also be applicable to places where the metals and material are mined to make wind turbines, for example deep sea mining. A declaration of oceanic rights from the United Nations could recognize the ocean as a living entity that has its own inherent entitlements, such as those to life and health, along with the right to continue its vital natural cycle.
NOAA Fisheries and NOAA National Marine Sanctuaries share NOAA’s mission to 1) understand and predict changes in climate, weather, ocean and coasts; 2) share that knowledge and information with others; and 3) conserve and manage coastal and marine ecosystems and resources. So coastal and marine ecosystems then are not resources to conserve and manage for the continuation of extractive industries. They function best when left alone.
As noted above, section 7(a)(2) of the ESA requires BOEM, in consultation with NOAA Fisheries, to ensure that any action the agencies authorize, fund, or carry out is not likely to jeopardize the continued existence of any endangered species or result in the destruction or adverse modification of designated critical habitat; this coordination is accomplished through ESA section 7 consultations. The Strategy does not state that when a Federal agency’s action “may affect” a protected species, that agency is required to consult with the National Marine Fisheries Service (NMFS) or the U.S. Fish and Wildlife Service (USFWS). This requirement needs to go upstream to the threatened species caused by mining for the materials of the construction of the wind turbines.
In response to a request for consultation, NOAA Fisheries prepares a Biological Opinion detailing how an agency (i.e., BOEM) action affects a threatened or endangered species and/or its critical habitat and a conclusion as to whether the proposed action is likely to jeopardize the continued existence of the species. It considers whether the action will result in reductions in reproduction, numbers, or distribution of the species and then considering whether these reductions would reduce appreciably the likelihood of both the survival and recovery of the species, as those terms are defined for purposes of the ESA. The Biological Opinion also includes a determination as to whether the proposed action is likely to result in the destruction or adverse modification of designated critical habitat. If a “jeopardy” or “adverse modification” conclusion is reached, the Biological Opinion would include one or more Reasonable and Prudent Alternatives to the proposed action that would avoid the likelihood of jeopardizing the continued existence of the listed species or the destruction or adverse modification of designated critical habitat.
If a “no jeopardy” conclusion is reached, either based on the proposed action and its mitigation or after adopting a Reasonable and Prudent Alternative, NOAA Fisheries may issue an Incidental Take Statement that exempts a certain amount and type of take from the ESA section 9 prohibitions on take. The Strategy should include the following definition: The ESA broadly defines “take” to include “harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect.” In the case of the NARW this should not be allowed.
According to the Petition for Incidental Take Regulations for the Construction and Operation of the Revolution Wind Offshore Wind Farm :
NARW feed mostly on zooplankton and copepods belonging to the Calanus and Pseudocalanus genera (Hayes et al. 2020). NARWs are slow-moving grazers that feed on dense concentrations of prey at or below the water’s surface, as well as at depth (NMFS 2021l). Research suggests that NARWs must locate and exploit extremely dense patches of zooplankton to feed efficiently (Mayo and Marx 1990).
2.3.2 • Likely changes in copepod distribution between pre- and post-OSW construction. This must be tested to verify. CRITICAL what effect do the present in-place turbines have on prey food?
Currently there are no quantitative data on how large whale species (i.e., mysticetes) may be impacted by offshore wind farms (Kraus et al. 2019). Navigation through or foraging within the Revolution Wind Farm by large whales could be impeded by the presence of the wind turbine generatorsand offshore substations foundations, which range in diameter from 12 to 15 m with approximately 1.15 mi (1.8 km) spacing between foundations (Section 1). Additionally, wakes in water currents created by the presence of the foundations could alter the distribution of zooplankton within the water column, which would impact prey availability for some marine mammal species (Kraus et al. 2019).
What is the effect the extraction of wind energy from the surface of the ocean in regards to water temperature and currents?
WIND ENERGY EXTRACTION
“Horns rev offshore wind farm” by Vattenfall is licensed under CC BY-ND 2.0.
Climatic Impacts of Wind Power
• Wind turbines raise local temperatures by making the air flow more turbulent and so increasing the mixing of the boundary layers.
• However, because wind turbines have a low output density, the number of them required has a warming impact on a continental scale. During the day, the surface temperature rises by 0.24 degrees Celsius, while at night, it may reach 1.5 degrees Celsius. This impact happens immediately.
• Considering simply this, the consequences of switching to wind power now would be comparable to those of continuing to use fossil fuels till the end of the century.
In general, BOEM will consider recommendations from NOAA Fisheries and attempt to avoid issuing new leases in areas that may impact potential high-value habitat and/or high-density/use areas for important life history functions such as NARW foraging, migrating, mating, or calving. BOEM and NOAA Fisheries will include potential lessees in these conversations as early as possible to raise awareness of concerns over impacts to NARW.
If issuing new leases in these areas is not avoidable they still must avoid the likelihood of jeopardizing the continued existence of the listed species or the destruction or adverse modification of designated critical habitat. Under what condition would they be unavoidable?
Developers should avoid proposing development in areas that may impact high-value habitat and/or high-density/use areas used for important life history functions such as NARW foraging, migrating, mating, or calving. If avoidance is not possible, include measures to avoid and minimize impacts to NARW and their habitat. In this situation the developer should have alternative proposals in different areas.
BOEM will work with NOAA Fisheries to ensure environmental review under applicable statutes evaluate measures to avoid (primary goal) or minimize (secondary goal) impacts to NARW and high-value habitat and/or high-density/use areas for important life history functions such as NARW foraging, migrating, mating, or calving. The results of these environmental reviews will ultimately inform Construction and Operation Plan (COP) conditions of approval.
THIS IS GOOD: If new information becomes available indicating that activities previously authorized by BOEM through a plan approval (e.g., COP, Site Assessment Plan, General Activities Plan) are now resulting in an imminent threat of serious or irreparable harm or damage to NARW, BOEM has the authority to suspend operations.
Protected Species Observers (PSOs): Use trained, third-party PSOs with no duties other than to effectively implement mitigation and monitoring measures during construction and operations. Adopt standards for protected species monitoring (e.g., minimum visibility, PSO protocols, etc.). Use only independent, third-party PSOs (i.e., not construction personnel) that are approved by NOAA Fisheries. Locate PSOs safely at the best vantage point(s) to ensure coverage of the entire visual Clearance and Shutdown Zones, and as much of the behavioral harassment zones as possible. Ensure PSOs do not exceed 4 consecutive watch hours on duty at any time, have a two- hour (minimum) break between watches, and do not exceed a combined watch schedule of more than 12 hours in a 24-hour period. These PSO should not be contractors of the developer. They must be payed through a government agency which can be covered through developer fees.
For the success of “DRAFT BOEM and NOAA Fisheries North Atlantic Right Whale and Offshore Wind Strategy” what exactly is that? To promote the recovery of NARW while responsibly developing OSW. What happens if these two are mutually exclusive? Would it be a success if Right Whales continue to survive but wind turbines do not? Must NOAA Fisheries meet the shared vision to protect and promote the recovery of NARW while responsibly developing offshore wind energy? So long as the NARW numbers are declining there should be no disturbance of their habitat.
There are no time tables in this Strategy so is it understood then that no action shall be taken until such time as the appropriate data is collected? Although it is long on data collection there is no mention of inspection. All of these actions will require funding but these extra expenses can not be covered in the normal operating budgets of the agencies. Where will it come from and where will it go?
I commend BOEM and NOAA Fisheries for producing a strategy in regard to the NARW. I also acknowledge that in order to maintain functioning ecosystems, this type of Strategy should be implemented for all of the new mining operations, logistics, transportation and infrastructure that will be required to build all of the proposed turbines needed to transition to an energy capturing economy.
Carl van Warmerdam has lived his life on the West Coast of Turtle Island. He has always aligned with the counter culture ideals there. Now he currently lives on the coast of New England, the ancestral home of the Right Whale. If you would like to help save the whales email Lafongcarl@protonmail.com. We stopped offshore wind before, we can do it again.
Editor’s Note: While climate change is taken as THE pressing ecological concern of current era, biodiversity loss is the often less known but probably more destructive ecological disaster. UNEP estimates we lose 200 species in a day. That is 200 species that are never going to walk the Earth again. With these, we lose 200 creatures that play a unique and significant part in the natural communities, and immeasurable contributions of each to the health of the nature.
This study finds 69% average drop in animal populations since 1970. Over those five decades most of the decline can be traced to habitat destruction. The human desire for ever more growth played out over the years, city by city, road by road, acre by acre, across the globe. It is to want a new cell phone and never give a second thought as to where it comes from. Corporations want to make money so they hire the poor who want only to feed their families and they cut down another swath of rainforest to dig a mine and with it a dozen species we haven’t even named yet die. Think about what goes into a house to live in and the wood that must come from somewhere, and the coal and the oil to power it, and to power the cars that take people from there to the store to buy more things. And on and on, that is the American Dream.
Wildlife populations tracked by scientists shrank by nearly 70%, on average, between 1970 and 2018, a recent assessment has found.
The “Living Planet Report 2022” doesn’t monitor species loss but how much the size of 31,000 distinct populations have changed over time.
The steepest declines occurred in Latin America and the Caribbean, where wildlife abundance declined by 94%, with freshwater fish, reptiles and amphibians being the worst affected.
High-level talks under the U.N. Convention on Biological Diversity (CBD) will be held in Canada this December, with representatives from 196 members gathering to decide how to halt biodiversity loss by 2030.
In 2014, as temperatures topped 40° Celsius, or 104° Fahrenheit, in eastern Australia, half of the region’s black flying fox (Pteropus alecto) population perished, with thousands of the bats succumbing to the heat in one day.
This die-off is only one example of the catastrophic loss of wildlife unfolding globally. On average, wildlife populations tracked by scientists shrank by nearly 70% between 1970 and 2018, a recent assessment b WWF and the Zoological Society of London (ZSL) found.
“When wildlife populations decline to this degree, it means dramatic changes are impacting their habitats and the food and water they rely on,” WWF chief scientist, Rebecca Shaw, said in a statement. “We should care deeply about the unraveling of natural systems because these same resources sustain human life.”
WWF’s “Living Planet Report 2022,” launched this October, analyzed populations of mammals, birds, amphibians, reptiles and fish. “It is not a census of all wildlife but reports how wildlife populations have changed in size,” the authors wrote.
In 2014, as temperatures topped 40°C, or 104°F, in eastern Australia, half of the region’s black flying fox (Pteropus alecto) population perished, with thousands of the bats succumbing to the heat in one day. Image by Andrew Mercer via Flickr (CC BY-NC-SA 2.0).
A million species of plants and animals face extinction today, according to a landmark 2019 report from the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), an international scientific body. The new analysis uncovers another aspect of this biodiversity crisis: The decline of wild populations doesn’t just translate into species loss but can also heighten extinction risk, particularly for endemic species found only in one location.
Instead of looking at individual species, the Living Planet Index (LPI) on which the report is based tracks 31,000 distinct populations of around 5,000 species. If humans were considered, for example, it would like tracking the demographics of countries. Population declines in one country could indicate a localized threat like a famine, but it was happening across continents, that would be cause for alarm.
The steepest species declines occurred in Latin America and the Caribbean, where wildlife abundance dropped by 94% on average. In this region, freshwater fish, reptiles and amphibians were the worst affected.
Freshwater organisms are at very high risk from human activities worldwide. Most of these threats are linked to habitat loss, but overexploitation also endangers many animals. In Brazil’s Mamirauá Sustainable Development Reserve, populations of Amazon pink river dolphin or boto (Inia geoffrensis) fell by 65% between 1994 and 2016. Targeted fishing of these friendly animals for their use as bait contributed to the decline.
Climatic changes render terrestrial habitats inhospitable too. In Australia, in the 2019-2020 fire season, around 10 million hectares (25 million acres) of forestland was destroyed, killing more than 1 billion animals and displacing 3 billion others. For southeastern Australia, scientists showed that human-induced climate change made the fires 30% more likely.
These losses are happening not just in land-based habitats but also out at sea. Coral reefs and vibrant underwater forests are some of the most threatened ecosystems in the world. But they’re being battered by a changing climate that makes oceans warmer and more acidic. The planet has already warmed by 1.2°C (2.2°F) since pre-industrial times, and a 2°C (3.6°F) average temperature rise will decimate almost all tropical corals.
However, the bat deaths in Australia, Brazil’s disappearing pink river dolphins, and the vulnerability of corals are extreme examples that can skew the index, which averages the change in population sizes. In fact, about half of wildlife populations studied remained stable and, in some cases, even grew. Mountain gorillas (Gorilla beringei beringei) in the Virunga Mountains spanning Rwanda, the Democratic Republic of Congo and Uganda number around 604 today, up from 480 in 2010.
Despite these bright spots, the overall outlook remains gloomy. Even after discounting the extremes, the downward trend persists. “After we removed 10 percent of the complete data set, we still see declines of about 65 percent,” Robin Freeman, an author of the report and senior researcher at ZSL, said in a statement.
Often, habitat loss, overexploitation and climate change compound the risk. Even in cases where a changing climate proves favorable, the multitude of threats can prove insurmountable. Take bumblebees, for example. Some species, like Bombus terrestris or the buff-tailed bumblebee, could actually thrive as average temperatures rise. But an assessment of 66 bumblebee species documented declining numbers because of pesticide and herbicide use.
The report emphasizes the need to tackle these challenges together. Protecting habitats like forests and mangroves can, for example, maintain species richness and check greenhouse gas emissions. The kinds of plants and their abundance directly impact carbon storage because plants pull in carbon from the atmosphere and store it as biomass.
An assessment of 66 bumblebee species documented declining numbers because of pesticide and herbicide use. Image by mikaelsoderberg via Flickr (CC BY 2.0).
One of the deficiencies of the LPI is that it doesn’t include data on plants or invertebrates (including insects like bumblebees).
The report was released in the run-up to environmental summits that will see countries gather to thrash out a plan to rein in climate change in November and later in the year to reverse biodiversity loss. Government leaders are set to meet for the next level of climate talks, called COP27, in Egypt from Nov. 6-13. At the last meeting of parties, known as COP26 in Glasgow, U.K., last year, nations committed to halt biodiversity loss and stem habitat destruction, partly in recognition that this would lower humanity’s carbon footprint.
In December, the 15th meeting of the Conference of the Parties to the U.N. Convention on Biological Diversity (CBD) will be held in Montreal. Representatives from 195 states and the European Union will meet to decide the road map to 2030 for safeguarding biodiversity.
Citations:
Herbertsson, L., Khalaf, R., Johnson, K., Bygebjerg, R., Blomqvist, S., & Persson, A. S. (2021). Long-term data shows increasing dominance of Bombus terrestris with climate warming. Basic and Applied Ecology,53, 116-123. doi:10.1016/j.baae.2021.03.008
Herbertsson, L., Khalaf, R., Johnson, K., Bygebjerg, R., Blomqvist, S., & Persson, A. S. (2021). Long-term data shows increasing dominance of Bombus terrestris with climate warming. Basic and Applied Ecology,53, 116-123. doi:10.1016/j.baae.2021.03.008
Outhwaite, C. L., McCann, P., & Newbold, T. (2022). Agriculture and climate change are reshaping insect biodiversity worldwide. Nature,605(7908), 97-102. doi:10.1038/s41586-022-04644-x
Sobral, M., Silvius, K. M., Overman, H., Oliveira, L. F. B., Raab, T. K., & Fragoso, J. M. V. 2017. Mammal diversity influences the carbon cycle through trophic interactions in the Amazon. Nature Ecology & Evolution,1, 1670–1676. doi:10.1038/s41559-017-0334-0
Editor’s Note: Deep sea mining is being pursued on the pretext of a transition towards a “cleaner” source of energy. This transition is being hailed as “the solution” to all environmental problems by the majority of the environmental movement. The irony of “the solution” to environmental problems being destruction of natural communities seems to be lost on a lot of people.
The International Seabed Authority has been criticized for a lack of transparency and corporate capture by the companies it is supposed to regulate. Given that the organization is expected to be funded from mining royalties, it may not come as a surprise that it has prioritized the interests of corporations above the preservation of the deep sea. Despite numerous concerns raised about Nauru Ocean Resources Inc. (NORI)’s environmental impact statement, the ISA gave permission to NORI to begin exploratory mining. NORI’s vessel, The Hidden Gem, is currently extracting polymetallic nodules from the seafloor in the Clarion Clipperton Zone. This exploratory mining will cause tremendous harm itself, but it is also a big step towards opening the gates to large-scale commercial exploitation of the deep sea. To help stop this, get organized, become a Deep Sea Defender.
The International Seabed Authority (ISA), the intergovernmental body responsible for overseeing deep sea mining operations and for protecting the ocean, recently granted approval for a mining trial to commence in the Clarion-Clipperton Zone (CCZ) in the Pacific Ocean.
The company undertaking this trial is Nauru Ocean Resources Inc (NORI), a subsidiary of Canadian-owned The Metals Company (TMC), which is aiming to start annually extracting 1.3 million metric tons of polymetallic nodules from the CCZ as early as 2024.
The approval for this mining test, the first of its kind since the 1970s, was first announced by TMC earlier this week.
Mining opponents said the ruling took them by surprise and they feared it would pave the way for exploitation to begin in the near future, despite growing concerns about the safety and necessity of deep sea mining.
On Sept. 14, the Hidden Gem — an industrial drill ship operated by a subsidiary of The Metals Company (TMC), a Canadian deep sea mining corporation — left its port in Manzanillo, Mexico. From there, it headed toward the Clarion-Clipperton Zone (CCZ), a vast abyssal plain in international waters of the Pacific Ocean that stretches over 4.5 million square kilometers (1.7 million square miles) across the deep sea, roughly equivalent in size to half of Canada.
The goal of TMC’s expedition is to test its mining equipment that will vacuum up polymetallic nodules, potato-shaped rocks formed over millions of years. The nodules contain commercially coveted minerals like cobalt, nickel, copper and manganese. TMC, a publicly traded company listed on the Nasdaq exchange, announced that it aims to collect 3,600 metric tons of these nodules during this test period.
This operation came as a surprise to opponents of deep-sea mining, mainly because of the stealth with which they said the International Seabed Authority (ISA) — the UN-affiliated intergovernmental body dually responsible for overseeing mining in international waters and for protecting the deep sea — authorized TMC to commence the trial.
It is the first such trial the ISA has authorized after years of debate over whether it should permit deep-sea mining to commence in international waters, and if so, under what conditions. News of the authorization did not come initially from the ISA, but from TMC itself in a press release dated September 7. The ISA eventually posted its own statement on Sept. 15, more than a week after TMC’s announcement. It is not clear when the ISA granted the authorization.
“We’ve been caught off guard by this,” Arlo Hemphill, a senior oceans campaigner at Greenpeace, an organization campaigning to prevent deep sea mining operations, told Mongabay in an interview. “There’s been little time for us to react.”
A tripod fish observed in the deep-sea. Image by NOAA Okeanos Explorer Program via Flickr (CC BY 2.0).
Mounting concerns, sudden actions
Several weeks ago, in July and August, delegates to the ISA met in Kingston, Jamaica, to discuss how, when and if deep sea mining could begin. In July 2021, discussions acquired a sense of urgency when the Pacific island state of Nauru triggered an arcane rule embedded in the United Nations Convention on the Law of the Sea (UNCLOS) that could obligate the ISA to kick-start exploitation in about two years with whatever rules are in place at the time. Nauru is the sponsor of Nauru Ocean Resources Inc (NORI), a subsidiary of TMC that is undertaking the tests. TMC told Mongabay that it expects to apply for its exploitation license in 2023, and if approved by the ISA, to begin mining towards the end of 2024.
The ISA subsequently scheduled a series of meetings to accelerate the development of mining regulations, but has yet to adopt a final set of rules.
The delay is due, in part, to the increasing number of states and observers from civil society raising concerns about the safety and necessity of deep sea mining. Some member states, including Palau, Fiji and Samoa, have even called for a moratorium on deep sea mining until more is understood about the marine environment that companies want to exploit. Other concerns hinge upon an environmental impact statement (EIS) that NORI had to submit in order for mining to begin.
NORI submitted an initial draft of its EIS in July 2021, as per ISA requirements, and an updated version in March 2022.
Matt Gianni, a political and policy adviser for the Deep Sea Conservation Coalition (DSCC), a group of environmental NGOs calling for NORI’s testing approval to be rescinded, said that the ISA’s Legal and Technical Commission (LTC) — the organ responsible for issuing mining licenses — previously cited “serious concerns” about NORI’s EIS, including the fact that it lacked baseline environmental data. The LTC had also raised concerns about the comprehensiveness of the group’s Environmental Management and Monitoring Plan (EMMP), he said.
But then, “all of a sudden,” the LTC granted approval for the mining test without first consulting ISA council members, said Gianni, who acts as an observer at ISA meetings.
The fact that TMC announced the decision before the ISA did “reinforces the impression that it’s the contractor and the LTC and the [ISA] secretariat that are driving the agenda, and states are following along,” Gianni said.
Harald Brekke, chair of the LTC, sent Mongabay a statement similarly worded to the recent announcement made by the ISA. He said that the LTC had reviewed NORI’s EIS and EMMP for “completeness, accuracy and statistical reliability,” and that an internal working group had worked closely with NORI to address concerns. In response, the mining group adequately dealt with the issues, which allowed the LTC to approve the proposed testing activities, he said.
“This is a normal contract procedure between the [ISA] Secretary-General and the Contractor, on the advice and recommendations by the [Legal and Technical] Commission,” Brekke said in the emailed statement. “It is not a decision to be made by the [ISA] Council. According to the normal procedure of ISA, the details of this process will be [communicated] by the Chair of the Commission to the Council at its session in November.”
“I also would like to point out that this procedure has followed the regulations and guidelines of ISA,” Brekke added, “which are implemented to take care of the possible environmental impacts of this kind of exploration activity.”
Yet Gianni said he did not believe the LTC had satisfactorily reviewed the EIS for its full potential of environmental impact, nor had it considered the “serious harmful effects on vulnerable marine ecosystems” as required under the ISA’s own exploration regulations for polymetallic nodules.
Questions about transparency
Sandor Mulsow, who worked as the director of environment and minerals at the ISA between 2013 and 2019, said that the ISA “is not fit to carry out an analysis of environmental impact assessment” and that the grounds on which the ISA authorized NORI to begin testing were questionable.
“Unfortunately, the [International] Seabed Authority is pro-mining,” Mulsow, who now works as a professor at Universidad Austral de Chile, said in an interview with Mongabay. “They’re not complying with the role of protecting the common heritage of humankind.”
A recent investigation by the New York Times revealed that the ISA gave TMC critical information over a 15-year period that allowed the company to access some of the most valuable seabed areas marked for mining, giving it an unfair advantage over other contractors.
The ISA has also frequently been criticized for its lack of transparency, including the fact that the LTC meets behind closed doors and provides few details about why it approves mining proposals. The ISA has previously granted dozens of exploratory mining licenses to contractors, although none have yet received an exploitation license. While NORI is not technically undertaking exploratory mining in this instance, their testing of mining equipment falls under exploration regulations.
Mongabay reported that transparency issues were even prominent during the ISA meetings that took place in July and August this year, including restrictions on participation and limited access to key information for civil society members.
The ISA did not respond to questions posed by Mongabay, instead deferring to the statement from Brekke, the LTC chair.
A sea cucumber seen at 5,100 meters (3.2 miles) depth on abyssal sediments in the western Clarion-Clipperton Zone. Image by DeepCCZ expedition/NOAA via Flickr (CC BY-SA 2.0).
‘Full-blown mining in test form’
During the mining trial set to take place in the CCZ — which could begin as early as next week — NORI will be testing out its nodule collector vehicles and riser systems that will draw the nodules about 3,000 meters (9,840 feet) from the seabed to the surface. If NORI does begin exploitation in 2024, Gianni said the risers will be pumping about 10,000 metric tons of nodules up to a ship per day.
“That’s a hell of a lot,” Gianni said. “This is heavy duty machinery. This is piping that has to withstand considerable pressure.”
NORI intends to extract 1.3 million metric tons of wet nodules each year in the exploitation stage of its operation, TMC reported.
The Metals Company argues that this mining will provide minerals necessary to power a global shift toward clean energy. Indeed, demand for such minerals is growing as nations urge consumers to take up electric vehicles in an effort to combat climate change.
Mining opponents, however, have argued that renewable technologies like electric cars don’t actually need the minerals procured from mining.
Moreover, a growing cadre of scientists have been warning against the dangers of deep sea mining, arguing that we don’t know enough about deep sea environments to destroy them. What we do know about the deep sea suggests that mining could have far-reaching consequences, such as disturbing phytoplankton blooms at the sea’s surface, introducing toxic metals into marine food webs, and dispersing mining waste over long distances across the ocean — far enough to affect distant fisheries and delicate ecosystems like coral reefs and seamounts.
“Every time somebody goes and collects some sample in that area of the Clarion-Clipperton Zone, there’s a new species coming up,” Mulsow said. “We don’t know how to name them, and we want to destroy them.”
TMC has stated that the testing activities will be monitored by “independent scientists from a dozen leading research institutions around the world.”
However, Hemphill of Greenpeace, who also has ISA observer status, questions whether the monitoring process will be unbiased.
“We’re thinking there’s a high chance that these risers might not work,” he said. “But if there’s not a third party observer out there, then we just have to rely on The Metals Company’s own recording.”
“It’s going to be basically a full-blown mining operation in test form, where they’re not only using the [collector] equipment, but they’re using the risers to bring the nodules to the surface,” Hemphill added.
Nodule collection trials like the one NORI is undertaking haven’t been conducted in the CCZ since the 1970s, TMC noted in its press release.
When Mongabay reached out to TMC for further information about its operation, a spokesperson for the company said that they “believe that polymetallic nodules are a compelling solution to the critical mineral supply challenges facing society in our transition away from fossil fuels.”
“While concern is justified as to the potential impacts of any source of metals — whether from land or sea — significant attention has been paid to mitigate these, including by setting aside more area for protection than is under license in the Clarion-Clipperton Zone of the Pacific Ocean,” the TMC spokesperson said.
‘No way back’
Mulsow said he was sure that this trial would pave the way for exploitation to start next year, not only giving TMC’s NORI access to the deep sea’s resources, but opening the gates for other contractors to begin similar operations.
“[In June] 2023, we will have … the application for the first mining license for the deep sea,” he said, “and then there will be no way back.”
Hemphill said he also feared the move would set a process into motion for mining to start next year — but added that Greenpeace would continue its fight to stop mining.
“We’re not giving up just because the two-year rule comes to pass,” he said. “And then if things get started, we’re in this for the long haul.”
Gianni said he was hopeful that the dynamic could also change at the next ISA meeting scheduled for November, in which delegates will get the chance to discuss whether they’re obligated to approve the start of mining the following year.
“The fact that the LTC has done this … may finally get council members to start saying, ‘Wait a minute, we need to bring this renegade fiefdom [at] the heart of the ISA structure under control,” Gianni said, “because they’re going off and deciding things in spite of all the reservations that are being expressed by the countries that are members of the ISA.”
Featured image and all other images, unless mentioned otherwise, were provided by Julia Barnes.